
Preamble

In July 2019, I attended a retreat of Herwig Hauser’s research group in Lüsens (Tyrol)

on the topic of “Moduli”. In my talk, which in a certain sense served to introduce and

motivate the topic of moduli (spaces), I aimed to show how modular curves arising in

the classical theory of modular forms can be interpreted as moduli spaces for elliptic

curves over the complex numbers. This is essentially the content of the first section

below. This “classical” result can also be used as a stepping stone to consider similar

moduli problems and to even give a precise definition of what we mean by a “moduli

problem” in the first place; this is touched upon in the second section.

1. Contents of the talk in Lüsens

Roughly, a moduli space is a geometric object whose points parametrize a family of

objects (up to isomorphism).

A bad example: we could say that R2 × R>0 is a moduli space for circles in the

Euclidean plane.

A better example: let n ≥ 0. Then Pn−1(C) is a moduli space for one-dimensional

linear subspaces of Cn.

Today, we talk about the fact that modular curves are moduli spaces for elliptic

curves (with level structure).

Two fundamental questions: What are elliptic curves?, and: What are modular

curves?

1.1. Definition. Let k be a field. An elliptic curve over k “is” a smooth projective

cubic plane curve E over k, together with a distinguished point O ∈ E(k). I.e.,

E = V (F )

= {[x : y : z] ∈ P2(k) : F (x, y, z) = 0}

⊂ P2(k)

for a homogeneous polynomial F of degree 3 with coefficients in k. “Smooth” means

that the only solution of F = ∂F
∂x = ∂F

∂y = ∂F
∂z = 0 is the trivial one: x = y = z = 0.

1.2. Example. Consider E = V (F ) ⊂ P2(k) in the following cases:

(1) F (x, y, z) = x3 + y3 − z3. Smooth: X (as long as char(k) 6= 3). For the distin-

guished point take e.g. O = [1 : 0 : 1]. Then (E,O) is an elliptic curve.

(2) F (x, y, z) = 3x3 +4y3 +5z3. Smooth: X (if char(k) 6∈ {2, 3, 5}), but if e.g. k = Q
then it was shown by Selmer that E(k) = ∅, so there is no choice for O. (Things would

be different if, say, k = R or C.)
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(3) F (x, y, z) = y2z − x3. Smooth? No, because in [0 : 1 : 0] ∈ E(k) all derivatives

vanish.

1.3. Fact. There is an invariant for curves called the genus (dt. Geschlecht). For a

smooth plane curve C given by a polynomial of degree d, the genus g = g(C) is equal

to (d−1)(d−2)
2 . (If C is not smooth, one has to subtract something depending on the

singularities of C.) Thus, a cubic plane curve has genus ≤ 1, and = 1 if and only if it

is smooth.

On the other hand, it follows from the Riemann-Roch theorem that a smooth curve

of genus 1 can be realized as a cubic plane curve (keyword: Weierstraß normal form).

As a matter of fact, the “proper” definition of elliptic curves over a field k is that they

are smooth projective curves of genus 1 with a distinguished k-rational point O.

1.4. Fact. We just said that for any elliptic curve, the defining equation can be put

in Weierstraß form. We are not going to need this form in full generality; it suffices to

know that, if char(k) 6= 2, 3, then by a linear change of coordinates the equation can

be (further) simplified to

y2 = 4x3 +Ax+B

(or more precisely its homogenization) with distinguished point the “point at infinity”

O = [0 : 1 : 0]. Smoothness of E implies that the discriminant ∆ = −16(4A3 + 27B2)

is nonzero (and viceversa, every equation of this form with this condition on the

coefficients yields a smooth cubic). The quantity j(E) = −123 · 64A3

∆ can be shown to

be invariant under isomorphism (which is why it’s called the j-invariant). Conversely,

it turns out that if two elliptic curves over an algebraically closed field have the same

j-invariant, then they are already isomorphic.

1.5. Now we should define modular curves. This is done as follows: first, consider the

action of GL2(R) on P1(C) “ = C ∪ {∞} ” given by fractional linear transformations,

γ · z :=
az + b

cz + d
, γ =

(
a b

c d

)
∈ GL2(R).

(Special cases: let γ =
(
a b
c d

)
be given. If c 6= 0, then γ ·

(
−dc
)

= ∞ and γ · ∞ = a
c . If

c = 0, then γ · ∞ =∞.)

If det γ > 0 and Im(z) > 0 (in particular, γ · z 6= ∞), then a simple computation

shows that Im(γ · z) > 0. In other words, GL2(R)+, or any subgroup thereof, acts on

the upper half-plane H := {z ∈ C : Im(z) > 0} ⊂ C.

1.6. Definition. (1) SL2(Z) and its subgroups of finite index are called modular

groups. The full modular group is SL2(Z).
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(2) For a non-negative integer N , the subgroup

Γ(N) = ker(SL2(Z)→ SL2(Z/NZ))

=

{
γ ∈ SL2(Z) : γ ≡

(
1 0

0 1

)
(mod N)

}
is of finite index in SL2(Z); it is called the principal congruence subgroup of level N

(dt. Hauptkongruenzuntergruppe der Stufe N). Observe that Γ(1) = SL2(Z).

(3) Let Γ ⊆ SL2(Z), Γ ⊇ Γ(N) for some N . The quotient of H by the action of

Γ, denoted Y (Γ), is the modular curve (dt. Modulkurve) corresponding to Γ. In the

special case Γ = Γ(N) the corresponding modular curve is denoted simply Y (N).

(4) For a non-negative integer N , consider the Hecke modular groups

Γ0(N) =

{
γ =

(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
and

Γ1(N) =

{
γ =

(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
.

Observe that Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) for all N . The corresponding modular curves

are denoted Y0(N) and Y1(N), respectively.

1.7. Why are the modular curves curves?, one may ask. Because, since H is an open

subset of C, and Γ acts properly discontinuously (dt. eigentlich diskontinuierlich),

the quotient inherits a differentiable structure, i.e., it is a (one-dimensional) complex

manifold in a natural way. (In other words, it is a topological space that is locally

homoeomorphic to the open unit disk in C and such that transition maps between

charts are holomorphic.) As a one-dimensional manifold, it is a “curve”.

1.8. We shall now show that the points of the modular curve Y0(1) = SL2(Z)\H (it

is customary to write the quotient “on the left”) parametrize isomorphism classes of

elliptic curves over C. The claim follows by combining the facts below:

1.9. Fact. (1) Let Λ ⊂ C be a lattice (dt. Gitter) in C, i.e. a discrete subgroup

of rank 2 (i.e., Λ = Zω1 ⊕ Zω2 for complex numbers ω1, ω2 which are R-linearly

independent). Then the quotient C/Λ, with 0 ∈ C/Λ as its distinguished point, is an

elliptic curve over C given by (the homogenization of) the equation

y2 = 4x3 − g2x− g3,
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where g2 = g2(Λ) = 60
∑

06=l∈Λ
1
l4 and g3 = g3(Λ) = 140

∑
06=l∈Λ

1
l6 , and conversely

every elliptic curve over C is of this form.

(2) Two elliptic curves E, E′ over C are isomorphic if and only if the corresponding

lattices Λ, Λ′ are homothetic, i.e., there exists a complex number λ with Λ′ = λΛ.

(3) Every lattice is homothetic to a lattice Λτ = Z⊕ τZ for some τ ∈ H. (Caveat :

there is more than one τ for which this holds! For instance, it is easy to see that

Λτ = Λ1+τ for any τ ∈ H.)

(4) Two lattices Λτ and Λτ ′ are the same (up to homothety) if and only if τ ′ = aτ+b
cτ+d

for some
(
a b
c d

)
∈ SL2(Z).

1.10. About the proofs:

(1) By general theory, there is a one-to-one correspondence between smooth pro-

jective algebraic curves over C and compact (connected) one-dimensional complex

manifolds. When the complex manifold is viewed as a real surface, it is a closed sur-

face (dt. geschlossene Fläche) and it is orientable, and so by a well-known classification

it is homoeomorphic to a sphere with a finite number of “handles”. This number is

called the genus of the surface and turns out to be precisely equal to the (algebraic)

genus mentioned above. Thus, elliptic curves over C “are” complex tori. And a torus

is a parallelogramme with opposite sides identified, i.e. a quotient C/Λ for a lattice

Λ. The exact equation is obtained by the theory of elliptic functions and involves the

Weierstraß ℘ function. To go back, one uses the fact that the j-invariant is surjective

(i.e., each complex number appears as the j-invariant of some elliptic curve over C).

(2) It turns out that two lattices are homothetic if and only if the corresponding

j-invariants are equal.

(3) This is easy: if Λ = Zω1⊕Zω2, then choose τ ∈ {ω1

ω2
, ω2

ω1
} so that Im(τ) > 0 and

accordingly λ = ω2 or λ = ω1.

(4) In general, two bases {ω1, ω2} and {ω′1, ω′2} define the same lattice if and only if

there is an invertible matrix with coefficients in Z converting one basis representation

into the other. If furthermore the bases are ordered so that ω1/ω2 = τ ∈ H and

similarly for the other one, then the determinant of the base change matrix
(
a b
c d

)
must be positive (hence +1) and τ ′ =

ω′
1

ω′
2

= aω1+bω2

cω1+dω2
= aτ+b

cτ+d as claimed.

2. Formalization of moduli problems

We have seen in the previous section that points of Y0(1) = SL2(Z)\H parametrize

isomorphism classes of elliptic curves over C. Thus, according to our initial “defini-

tion”, Y0(1) is “a moduli space” for elliptic curves over C. But we have also seen that
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isomorphism classes of elliptic curves over C are parametrized by the set of values

attained by the j-invariant, which is a subset of the complex numbers. In fact, it turns

out that the map j : H → C sending τ ∈ H to the j-invariant of the elliptic curve

C/(Z ⊕ τZ) is surjective, and so we could’ve taken C itself to be a moduli space for

elliptic curves over C. But then why would we bother with modular curves, when C is

obviously an “easier” moduli space? What is the advantage in using one space rather

than the other?

2.1. One advantage of the description by modular curves is that it generalizes, in the

sense that every modular curve of the form Y0(N), Y1(N) or Y (N) as introduced in 1.6

can be interpreted as a moduli space for elliptic curves over C with additional structure.

In order to thoroughly explain this, we have to look more closely at the group law on

elliptic curves.

Let (E,O) be an elliptic curve over k. Then the set E(k) of k-rational points of

E can be made into an abelian group with zero element given by the distinguished

point O ∈ E(k). The deeper reason for this stems from E having genus one: in fact,

by the Riemann-Roch theorem, the choice of O yields a bijection between the points

of E and the abelian group of degree-zero divisors on E, so we can “pull back” the

group structure onto (the underlying set of) E. (Although we won’t need this, the

maps describing multiplication and inversion are even morphisms of varieties, so an

elliptic curve is actually an algebraic group.) However, the group law also has a very

concrete description: once we bring the describing equation for E in Weierstraß form

(hereby sending O to the point [0 : 1 : 0]), the point O acts as the neutral element and

any three points P,Q,R ∈ E(k) sum up to O if and only if they are collinear in P2(k).

Finally, over k = C there is an even simpler description available: if E ∼= C/Λ, then

the group law on E is obtained by pulling back the group law on the quotient group

C/Λ.

The last description allows us to analyze the N -torsion on E, denoted E[N ], for any

positive integer N ≥ 1, at least over the ground field k = C. If we let Λ = Zω1⊕Zω2 be

a lattice such that E ∼= C/Λ, then obviously any complex number which is a Z-linear

combination of ω1

N and ω2

N gives rise to an element in the torsion E[N ] ⊂ E. In more

succinct terms,

E[N ] =
1

N
Λ/Λ

and in particular E[N ] is a free Z/NZ-module of rank 2. For a lattice of the form

Λ = Λτ = Z⊕ τZ, we see immediately that 1/N and τ/N form a basis for E[N ]. We
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finally introduce the Weil pairing

e : E[N ]× E[N ]→ Z/NZ

sending a pair (P,Q) with P = aω1

N + bω2

N and Q = cω1

N + dω2

N to the element

e(P,Q) := ad− bc ∈ Z/NZ.

Note that, for the special choice Λ = Λτ , one has e(1/N, τ/N) = −1.

2.2. At this point, for any integer N ≥ 1 (the “level”) we can define level-N structures

on E in the following ways:

(1) We can take a level-N structure to be a pair (E,P ) where P is a point of E(k)

of exact order N . Two such pairs are isomorphic if there is an isomorphism φ : E → E′

sending P to P ′.

(2) We can take a level-N structure to be a pair (E,C) where C is a cyclic subgroup

of E of order N . Two such pairs are isomorphic if there is an isomorphism φ : E → E′

such that φ(C) = C ′.

(3) We can take a level-N structure to be a triple (E,P,Q) where P and Q are

a basis for E[N ] with e(P,Q) = −1. Two such triples are isomorphic if there is an

isomorphism φ : E → E′ sending P to P ′ and Q to Q′.

(Observe that the first two notions make sense for elliptic curves over any field,

and that, for N = 1, any of the three notions collapses to the definition of an elliptic

curve.)

Using the above result – i.e., the bijection by which the orbit of τ ∈ H in SL2(Z)\H
corresponds to the isomorphism class of the elliptic curve C/Λτ – and keeping track

of what happens to the special point(s) P (and Q), resp. the subgroup C, it is not

especially hard to prove the following statements, see e.g. the first two and a half pages

of [3] or alternatively [1, §7.2].

2.3. Fact. Let N ≥ 1 be an integer.

(1) The points of the modular curve Y1(N) parametrize isomorphism classes of

pairs (E,P ) as above.

(2) The points of the modular curve Y0(N) parametrize isomorphism classes of

pairs (E,C) as above.

(3) The points of the modular curve Y (N) parametrize isomorphism classes of

triples (E,P,Q) as above.

2.4. We have now essentially proved the claim that we started out with: modular curves

are moduli spaces for elliptic curves with level structure. The word “essentially” is
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crucial because we still have not defined what we mean by a moduli space or rather what

properties we expect (read: demand) that a moduli space should have. Nonetheless, the

correspondences we have observed so far will be enough to attain a formal definition.

To proceed towards formalization, recall that a moduli space should be a space of

some kind (!) whose points parametrize isomorphism classes of a certain type of object.

It is only natural to require that, if the objects we wish to classify (e.g., in our case,

elliptic curves over C) belong to some category (that of algebraic varieties over C),

then so should the moduli space M. But then, if M is an algebraic variety over the

algebraically closed field C, its (closed) points have a more conceptual interpretation as

morphisms (of schemes!) SpecC→M. We thus have the following situation: starting

e.g. from the base field C, we have on the one hand a family F(C) of objects to be

classified (considered as a set) and on the other hand we seek an algebraic variety M
such that

Hom(SpecC,M)

(again considered as a set) is isomorphic (as a set!) to F(C). This suggests a “categor-

ification”, as we shall see presently.

2.5. Recall the following basic notions. Let C be a category and A be an object of

C. If C is locally small, then this means (almost by definition) that for any object

B of C we have a corresponding set (i.e., object in the category Set) HomC(A,B).

Moreover, for a morphism φ : B → B′ in C, we have a corresponding morphism

HomC(A,B)→ HomC(A,B
′) which sends ψ ∈ HomC(A,B) to the composition φ◦ψ ∈

HomC(A,B
′). These assignments determine a covariant functor C → Set, which we

denote by HomC(A, – ). Similarly, any object B of C determines a contravariant functor

HomC( – , B) from C to Set. We say that the former (resp., latter) functor is represented

by A (resp., B), and functors of this form1 are said to be representable.

Let us again look at the situation of 2.4. The step where we have put the points of

M in bijection with the elements of Hom(SpecC,M) suggests that the right category

in which to work is that of schemes (or some full subcategory, for instance the one of

Noetherian schemes). If we manage to extend the above assignment C 7→ F(C) – or

rather, after an obvious shift in perspective, SpecC 7→ F(SpecC) – to a contravariant

functor F from the category of Noetherian schemes to Set, then we will (finally) be

able to give a proper definition of a moduli space, namely as a scheme representing F
(if it exists). This is now precisely the line of reasoning that leads to the formalization

1up to a natural isomorphism
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of moduli problems: compare the two definitions below, taken from [4, Chapter 5, §2]

and from [2, Chapter 4], respectively.

2.6. Definition (after Mumford). Let g ≥ 0 be an integer.

(1) Let S be a Noetherian schemes. A smooth, proper morphism of schemes C → S

is called a curve of genus g over S if all its geometric fibers are irreducible curves of

genus g. Let Mg(S) denote the set of curves of genus g over S.

(2) Given a morphism f : T → S of Noetherian schemes and a curve C → S of

genus g over S, one checks that the projection from the fibre product C ×S T to its

second factor T defines a curve of genus g over T . Thus, f induces a map from Mg(S)

to Mg(T ), which we denote by Mg(f).

(3) The previous observations combined yield a contravariant functor Mg from the

category of Noetherian schemes to Set. If this functor is representable by a scheme

M, we call M a fine moduli scheme.

(4) Mumford also defines what it means for a scheme to be a coarse moduli scheme

(for a particular moduli problem); the gist of this latter definition is that, when spe-

cializing to (spectra of) algebraically closed fields, we still obtain a bijection as wished,

and the “universality” of the moduli scheme is made (more) explicit, but the resulting

notion is weaker than its “fine” counterpart from (3).2

2.7. Definition (after Katz-Mazur). Recall that an elliptic curve over a field k is a

smooth projective curve E of genus 1 over k together with a k-rational point. In the

language of schemes, this means a (smooth etc.) morphism of schemes E → Spec k

together with a section O : Spec k → S.

(1) Let S be an arbitrary scheme. An elliptic curve over S is a smooth, proper

morphism of schemes E → S all of whose geometric fibers are irreducible curves of

genus 1, together with a section O.

(2) A morphism of elliptic curves E → S and E′ → S′ is a cartesian (!) square

E′ E

S′ S.

Recall that “cartesian” means that E′ is isomorphic to the fibre product E ×S S′.
(3) Elliptic curves over variable base schemes, together with their morphisms, form

a category Ell. A moduli problem for elliptic curves is a contravariant functor P :

2On the other hand, Mumford calls the definition of a fine moduli scheme “vacuous”, and that of

a coarse moduli scheme the “useful” one.
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Ell → Set. We call a moduli problem P representable if it is so as a contravariant

functor.

2.8. Caveat. The two definitions above involve representability of different functors

(between different categories!) and so cannot quite be compared directly. See [2, (4.3)–

(4.4)] for an explanation of how a representable moduli problem in the sense of Def.

2.7 yields a scheme representing a functor as in Def. 2.6 (i.e., a fine moduli scheme).

One obtains a converse if P is rigid, see ibid.

2.9. Remark. The category Ell from 2.7 is called the moduli stack of elliptic curves.

It is a special case of an algebraic stack and can be seen as one of the main motivations

for introducing such objects. This links nicely to the article [6] Christopher suggested

to me prior to the workshop.

2.10. “Categorifying” the problem has several desirable consequences beside offering

an elegant reformulation:

(1) It allows us to talk about families of elliptic curves, as shown by the following

example (taken from [1, Example 8.1.1]). If e.g. we put

S = Spec(Z[j, j−1(j − 1728)−1])

and let E be the closed subscheme of P2
S defined by (the homogenization of)

y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
,

then E is an elliptic curve over S: for each geometric point Spec Ω→ S, defined by a

ring morphism j 7→ j0 ∈ Ω, j0 6= 0, 1728, the fibre is an elliptic curve with j-invariant

j0, obtained by replacing j with j0 in the Weierstraß equation.

(2) It allows us to talk about level structures (!).

In the picture of Def. 2.6, this is achieved by specializing to the subcategory of

Z[1/N ]-schemes and then finding appropriate “replacements” for pairs (E,P ) resp.

(E,C) (cf. 2.2); see [1, 8.2] for more details. We borrow their notation (E ,P), resp.

(E , C), for these newly-defined pairs.

In the picture of Def. 2.7, given a moduli problem P, a “level P structure” on an

object E → S of Ell is an element of the set P(E → S).

2.11. Let us finally talk (more) rigorously about moduli spaces. We refer to [1, 8.2]

and [2, Chapter 4] for more details.

2.12. Fact. (1) Let F1(N) be the contravariant functor from the category of Z[1/N ]-

schemes to Set which assigns to S the set of isomorphism classes of pairs (E ,P), cf.
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2.10.(2). Then for N > 3 the functor F1(N) is representable (i.e., we have a fine mod-

uli scheme). Moreover, the C-points of this moduli scheme form a space analytically

isomorphic to Y1(N).

(2) Let F0(N) be the contravariant functor from the category of Z[1/N ]-schemes to

Set which assigns to S the set of isomorphism classes of pairs (E , C), cf. again 2.10.(2).

Then one can construct a scheme which is a coarse moduli scheme, and whose space

of C-points is analytically isomorphic to Y0(N); however, it need not represent F0(N)

in general.

(3) In the case N = 1 it even turns out that there cannot be a fine moduli scheme

because elliptic curves have nontrivial automorphisms, as explained in [5], [6].3 The

problem however becomes solvable when passing to the level of stacks, as explained in

[6].

2.13. Remark. Let us conclude with a remark that is most interesting if one is already

familiar with the theory of modular curves.

Let Γ ⊆ SL2(Z) be a congruence subgroup, meaning that Γ ⊇ Γ(N) for some N ≥ 1.

Recall that the modular curve Y (Γ) = Γ\H has the structure of a one-dimensional

complex manifold.

In the classical theory of modular curves, one learns that Y (Γ) has a compactification

X(Γ) that is obtained by adding finitely many points, called the cusps of Γ\H, just like

C is compactified by adding the single point∞ to obtain the Riemannsche Zahlenkugel.

One can construct X(Γ) directly, namely as the quotient Γ\H∗, where

H∗ := H ∪Q ∪ {∞} ⊂ P1(C).

This space is indeed the disjoint union of Γ\H and a finite set of points. By defining suit-

able open charts at each point, Γ\H∗ is given the desired structure of a one-dimensional

complex manifold, which turns out to be compact.

Since we have a (loose) moduli interpretation for modular curves of the form Y (N),

Y0(N) and Y1(N) for any N ≥ 1, it is natural to wonder if there is an analogous, “com-

patible” interpretation of their respective compactifications X(N), X0(N), X1(N), and

if so, what the cusps correspond to. This is answered in [1, 9.2 and 9.3]: briefly, we can

say that, when a point of Y0(1) = SL2(Z)\H gets closer to a cusp, the corresponding

elliptic curve gets closer to being “degenerate”, and so we can weaken our definition

3In fact, the notion of rigidity of a moduli problem P as in Def. 2.7 – which, as we mentioned

in 2.8, guarantees that a representable moduli problem admits a fine moduli scheme – boils down

precisely to the absence of nontrivial automorphisms.
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of elliptic curves to include the degenerate cases (this is then called a generalized el-

liptic curve, again over a base scheme S) and consider, similarly to what we did above,

the moduli problem for isomorphism classes of generalized elliptic curves with level

structure. It turns out that coarse moduli schemes always exist both for pairs (E ,P)

and for pairs (E , C) and that their spaces of C-points are analytically isomorphic to

the compactified modular curves X1(N) and X0(N), respectively. In the case of pairs

(E ,P) and for N > 4 the moduli scheme is even a fine one.
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