
Unitary induction for locally compact groups

Giancarlo Castellano

25 March 2020

1 Motivation: induction for finite groups

The history of induced representations begins with Frobenius, who introduced them

for finite groups from a purely algebraic viewpoint. It is worthwhile to go over the

original construction (or some of the several equivalent ones) before moving on to

the more complicated general case (section 2). Accordingly, let the following be in

force until the end of the section (unless explicitly stated otherwise):

Conventions 1.1. G denotes a finite group,H denotes a subgroup ofG, andG/H =

{gH : g ∈ G} denotes the set of left cosets.

A “representation” of a group means a linear representation on a complex vector

space.

Finally, (π, V ) denotes a fixed but arbitrary representation of the subgroup H. �

With the above conventions, set

h · v := π(h)v

for h ∈ H and v ∈ V . The goal is to extend this to a rule that works for general

g ∈ G and again defines a left action by linear endomorphisms.

Naturally, any element of G lies in some left coset for H, so upon choosing a

system of representatives {g1, . . . , gn} for G/H, i.e.,

G =
n∐
i=1

giH, (1)

for arbitrary g ∈ G and v ∈ V it must hold that

g · v = gi · (h · v︸︷︷︸
∈V

) where g = gih ∈ giH

1



and thus it suffices to know how each gi acts.

At this point clearly there is a choice involved. The most general (“universal”1)

way to go about this now is to think of each vector space giV := {gi · v, v ∈ V } as

an independent copy of V . Then, by the defining properties of a left action of G, for

an element g ∈ G and an element gi · v in some giV the equation

g · (gi · v) = (g · gi) · v = (gk · h) · v = gk · π(h)v ∈ gkV (2)

should hold with the “obvious” choice of an index k ∈ {1, . . . , n} and an h ∈ H

(namely: k is such that ggi ∈ gkH, and then h is the element g−1
k ggi ∈ H). Observe

in particular that none of the spaces giV is invariant under G in general: in fact,

each g induces a permutation σg of the set of indices {1, . . . , n} via

ggi ∈ gσg(i)H.

Thus, in order to have a space invariant under the action in (2), one is led to consider

the complex vector space
n⊕
i=1

giV

(note the similarity with (1)) with the left action2 of G given by

g ·
n∑
i=1

givi :=

n∑
i=1

gσg(i)π(g−1
σg(i)ggi︸ ︷︷ ︸
∈H

)vi (3)

(cf. (2)). This is the construction of the induced representation found e.g. in Serre’s

Linear representations of finite groups, §3.3.

Realization A (Outer direct sum)

(First, choose a full system of representatives {g1, . . . , gn} for G/H.)

The representation space is
n⊕
i=1

giV

and the action is given by (3) supra.

1Indeed, the induced representation as defined in this section can be shown to satisfy a universal

property. As long as one works with algebraic representations, this universal property can be used

to define the induced representation. Cf. also the remark at the end of this section.
2That this is indeed a left action boils down to associativity of the group operation on G.
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A more natural way to look at the representation space
⊕n

i=1 giV presents itself if

one observes that the notation
∑
givi is really just an unorthodox way of writing a

(set-theoretic) function

f : {g1, . . . , gn} → V,

namely the one mapping gi to vi. Clearly this sets up an identification not only as

sets, but even as complex vector spaces. It is then a trivial step to view the represen-

tation space simply as the space of (set-theoretic) functions G/H → V . In this way,

one obtains a different, but equivalent, realization of the induced representation:

Realization B (Functions on the quotient)

(First, choose a full system of representatives {g1, . . . , gn} for G/H.)

The representation space is

V G/H = {f | f is a function G/H → V }

and the action is again given by (3) supra.

Observe that, while this is a compact description for the space, the formula for the

action still inevitably involves the gi’s and thus relies on a non-canonical choice. The

next goal, therefore, is to give a more “intrinsic” realization.

First observe that, since the cosets giH form a partition of G, a function f :

{g1, . . . , gn} → V , which may be viewed indifferently as f : G/H → V , can be

meaningfully extended toG. Since these functions go into a linear space, an extension

would have to look something like

f(gih) = “some linear endomorphism of V ”︸ ︷︷ ︸
=:A

·f(gi) ∀i ∀h,

where the endomorphism A = A(h, i) depends on h and possibly on i. Conversely –

having fixed the endomorphism A – functions of this form are uniquely determined

by their restriction to {g1, . . . , gn}, and so (for any A) they form a complex linear

space isomorphic to the one of Realization B supra.

Since a group homomorphism π : G → GL(V ) is already given, the obvious

choice for A would seem to be A = π(h) (without any dependence on the index i).

However, since the goal is to eliminate the dependence on the choice of {g1, . . . , gn},
it is necessary to take a group antihomomorphism. In fact, if A : H → GL(V ) is an

antihomomorphism, then

f(gih) = A(h)f(gi) for i = 1, . . . , n and h ∈ H
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already implies

f(gh) = A(h)f(g) for all g ∈ G, h ∈ H,

as shown by the following computation: (write g = gih̃)

f(gh) = f(gih̃h)

= A(h̃h)f(gi)

= A(h)A(h̃)f(gi)

= A(h)f(gih̃)

= A(h)f(g).

It is then only natural to look at the antihomomorphism A(h) := π(h−1).

To summarize the immediately preceding discussion, the elements of

V π := {f : G→ V : f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H}

have the property that, for any full system of representatives {g1, . . . , gn} for G/H,

they are uniquely determined by their restriction to {g1, . . . , gn}. Thus a choice of

{g1, . . . , gn} sets up an identification (a priori as sets, but even as complex vector

spaces) of V π with the representation space V G/H from Realization B.

It is now straightforward to pull back the action of G as given in Realization B

to the space V π along any isomorphism V π → V G/H . On the other hand, the space

V π, viewed as a subspace of the (complex linear) space V G of all (set-theoretic)

functions from G to V , is stable under the left action of G on V G given by

(L(g)f)(x) := f(g−1x)

(the left regular representation). Perhaps surprisingly, these two procedures lead to

the very same action on V π. Equivalently – and this is relatively easy to check – for

any choice of {g1, . . . , gn} the linear isomorphism

V π →
n⊕
i=1

giV

f 7→
n∑
i=1

gif(gi)

intertwines the action L given above with the one of G given in Realization A. In

conclusion, the following is yet another realization of the induced representation:
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Realization C (Functions on G; left translation)

The representation space is

V π := {f : G→ V : f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H}

and the action L : G→ GL(V π) is given by

(L(g)f)(x) := f(g−1x)

for g ∈ G and x ∈ G.

Observe that this is very sleek and elegant. However, aesthetically speaking, some

might prefer to work with the right regular representation

(R(g)f)(x) := f(xg)

of G on V G. This poses no real problems since L and R are equivariant representa-

tions: in fact, the map f 7→ f̌ , where

f̌(x) := f(x−1) for x ∈ G,

is a linear isomorphism of V G into itself which intertwines L and R, i.e., R(g)f̌ =

(L(g)f )̌ . Thus, plainly, G operates on

{f̌ where f : G→ V, f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H}

by right translation R. This yields the final realization of the induced representation:

Realization D (Functions on G; right translation)

The representation space is

{f : G→ V : f(hg) = π(h)f(g) for all g ∈ G, h ∈ H}.

and the action R is given by

(R(g)f)(x) := f(xg)

for g ∈ G and x ∈ G.

Of course, functions in the space of Realization D are uniquely determined by

their values on a full system of representatives for right H-cosets, rather than left.

5



This is only a minor detail in the case of finite groups, but it will become apparent

in the study of unitary induction (see section 2) that the initial choice of working

with left actions, left cosets, &c. influences many other choices downstream and that,

because of this, realizations where the action is by left translation turn out to be

easier to construct (and to find references for) than ones where the action is by right

translation.

Remark 1. Yet another way of defining the induced representation uses the isomorphism of cat-

egories between representations of a finite group and modules over its group ring. (See also Serre,

op. cit., §7.1; note, however, that there is not much there in the way of proofs.)

Recall that, for any group G (not necessarily finite) and any ring R (not necessarily commuta-

tive), the group ring R[G] is the set

R[G] :=
⊕
g∈G

R

= {f : G→ R : f(g) 6= 0 for at most finitely many g ∈ G},

equipped with “component-wise” (in the first description) resp. “pointwise” (in the second descrip-

tion) addition, and with multiplication given by convolution: if f1, f2 ∈ R[G] are viewed as functions,

then (f1 · f2)(g) :=
∑
g=xy f1(x)f2(y) for g ∈ G.

Clearly, if G is finite, then R[G] is none other than the set of all (set-theoretic) functions from

G to R. Let moreover R = K be a field. Then it is a relatively standard fact that any linear

representation of G on a K-linear space is also a K[G]-module in a canonical way, and viceversa.

This can be checked to yield an isomorphism between the category RepK(G) (whose objects are

linear representations of G on K-linear spaces and whose morphisms are K-linear G-equivariant

maps) and the category K[G]-mod of left K[G]-modules.

It turns out that taking induced representations at the level of groups corresponds to extending

scalars at the level of rings: if (π, V ) is a linear representation of a subgroup H ⊆ G on a C-linear

space, and V is viewed as a left C[H]-module in the canonical way, then the induced representation

of G is the one corresponding to the C[G]-module C[G]⊗C[H] V . This makes it less mysterious that

the induced representation can be realized as a space of functions from G to V subject to some

condition coming from π, or that it satisfies a universal property of sorts. It can also be checked

that induction defines a functor RepK(H) → RepK(G) that is left adjoint to the “restriction”

functor RepK(G) → RepK(H). This immediately sheds light on such phenomena as Frobenius

reciprocity. . .
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2 Unitary induction

2.1 Some context

For many purposes, including some applications to theoretical physics, one is con-

fronted with the task of investigating (unitary) representations of infinite groups,

prominently matrix groups over the reals or the complex numbers. Since these are

naturally equipped with a topological (and even a smooth) structure, one is led

to consider topological groups and their (unitary) continuous [see the Conventions

below for clarification] representations.

A subclass of topological groups that is of particular interest is that of locally

compact groups [see also the Conventions below], which includes all discrete groups,

compact groups, Lie groups and p-adic groups. This is the subclass for which the

theory is most highly developed (and arguably quite beautiful), due, among other

factors, to the availability and essential uniqueness of invariant measures. The study

and classification of irreducible unitary representations of locally compact groups can

also be viewed as – and is often termed – (non-commutative) harmonic analysis.3

Remark 2. A further reason for restricting to unitary representations of locally compact groups

is that the category they form (morphisms being, of course, intertwining operators) is equivalent to

the category of representations of a certain “group algebra”, whose role is thus entirely analogous

to that of the group ring in Remark 1. The precise statement is as follows (all references will be to

Wallach’s two-volume book [1]).

Let G be a locally compact [see Conventions below], separable topological group. Define the

C∗-algebra (read: “C-star”) of G as in 14.2 (see 14.1.6 for the general definiton of C∗-algebras).

Consider now the category of nondegenerate representations of C∗(G) (see 14.1.13–14). Then (Thm.

14.2.5) this category is equivalent to that of continuous unitary4 representations of G.

3“Classical” harmonic analysis is Fourier analysis, including applications to time-frequency anal-

ysis, signal processing, &c. “Abstract” harmonic analysis is the generalization of Fourier analysis

to arbitrary locally compact abelian (LCA) groups. For such groups, the unitary dual, i.e. the set

(topological space) of irreducible unitary representations, is simply the group of unitary charac-

ters equipped with the compact-open topology, a.k.a. the Pontrjagin dual of the original group,

and many classical results in Fourier theory such as the Fourier inversion formula, the Plancherel

formula, &c. generalize to LCA groups.
4Wallach’s “unitary” representations are by definition unitary continuous representations, see

footnote 8 ahead.
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2.2 Preliminaries and conventions

Unitary induction for locally compact groups was originally introduced by George

Mackey under some countability assumptions on both the group at hand and the

Hilbert spaces on which the group operated, cf. e.g. §5 of his survey [2] (as well

as references [77]-[80] ibid. for the original papers). As Mackey himself admits in

loc. cit., his construction of the induced representation can really only be made

“perspicuous” in the case that the space of (right) H-cosets has invariant measure

[cf. Conventions below]. More “perspicuous” constructions will be given in the next

subsection; the “optimal” one seems to be due to Blattner.

The main references for most of this section are [3, §§2.3–2.4] and [4, §6.1], which

read quite similarly. It is often instructive to compare with Warner’s book [5], esp.

§5.1, but the reader should be aware that, in this book, there is almost always an

additional assumption that the group at hand be countable at infinity5, and in §5.1,

the group G is even assumed to be a Lie group throughout.

Finally, an alternative construction is presented in Wallach’s book [1, §1.5], but

note that it is only valid under restrictive assumptions.

This being so, it is now a good time to lay down the conventions that will be in

force until the end of the section.

Conventions 2.1 (Locally compact spaces, groups). A topological space will be

said to be locally compact if every point has a compact neighbourhood.

By this definition, locally compact spaces need not be Hausdorff. (Caveat : this

contrasts with some authors’ usage, most notably Bourbaki’s!) However, following

widespread convention, the phrase locally compact group will be reserved for topo-

logical groups whose topology is both locally compact and Hausdorff. �

Conventions 2.2 (G and H). G will denote a fixed but arbitrary locally compact

group, and H will denote a closed subgroup of G. (Observe that then H is again a

locally compact group with the subspace topology.) �

Conventions 2.3 (Measures; Cc(X)). In this note, there is no need for measure

theory in greatest generality: it will only be necessary to consider (Borel) measures

on locally compact Hausdorff (LCH) topological spaces.

Thus, following Bourbaki’s Integration ([6, Chapter III, §1, No. 5]), a (positive

5i.e., that it is a countable union of compact subspaces; some use the term “σ-compact” instead.
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real) measure on a LCH6 topological space X is defined to be a positive linear

functional on the space Cc(X;R) of real-valued compactly supported continuous

functions X → R.

Similarly (cf. ibid., No. 3), a complex measure on X is by definition a continuous

linear functional on Cc(X) ( = Cc(X;C)).

Caveat : What is called a “measure” in [6] and in this note is called a “Radon

measure” or a “regular Borel measure” by other authors, cf. e.g. [4, pp. vii–viii]

and [3, p. 2]. These authors then use some (unstated) version of the Riesz repre-

sentation theorem (https://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_

representation_theorem) to obtain Radon measures out of positive linear func-

tionals.

It is also worth noting that usage of the terms “Radon”, “regular” and even

“Borel” can be far from canonical, cf. https://mathoverflow.net/questions/

109505/about-the-definition-of-borel-and-radon-measures. �

Conventions 2.4 (Haar measures). Left Haar measures7 on G and H are fixed now

once and for all. When left Haar measure of G (resp., H) appears in integrals, it will

be denoted simply by dg (resp., dh), or dx, depending on the integration variable. �

Remark 3 (Modular functions). Recall that left Haar measure on a general locally compact group

G need not be right-invariant. Instead, for every g ∈ G, there exists a positive real number ∆G(g)

such that (if µ denotes left Haar measure, then) µ(Eg) = ∆G(g)µ(E) for every Borel subset E ⊆ G.

Similarly, for each g ∈ G there is a positive real number δG(g) such that∫
G

f(xg) dx = δG(g)

∫
G

f(x) dx

for any function f for which the integral makes sense. In fact, δG(g) = ∆G(g−1) = ∆G(g)−1 for all

g ∈ G. Thus, for any g ∈ G, the formulae∫
G

f(x) dx = ∆G(g)

∫
G

f(xg) dx

and ∫
G

f(g−1) dg =

∫
G

f(g)∆G(g−1) dg

hold for all f as above. Observe that, since left Haar measure is unique up to scalars, ∆G, or

equivalently δG, is truly unique.

6Recall that Bourbaki write “locally compact” in lieu of “locally compact Hausdorff” throughout

Integration.
7By a well-known result of Haar, cf. [6, Chapter VII, §1, No. 2, Thm. 1], if G is locally compact

group, then there exists a nonzero left-invariant measure [in the sense of the preceding Convention]

on G, which is furthermore unique up to positive scalars; any such measure is called (left) Haar

measure on G.
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Conventions 2.5 (The modular function). In the following, the phrase “modular

function of G” (resp., H) will refer to ∆G, resp. ∆H .

(This is in line with the conventions and notations of [3]. In Warner’s book [5],

the “modular function”, denoted by δG, is the same as “our” modular function, cf.

op. cit., p. 474. Beware however that, in Wallach’s book [1], the “modular function”,

denoted δG, is by definition the same as “our” δG.) �

Conventions 2.6 (The quotient G/H). Consider the canonical map q : G→ G/H,

where G/H denotes the set of left H-cosets. The image of x ∈ G under q will also be

denoted xH or ẋ. The quotient topology on G/H makes G/H into a locally compact

Hausdorff space. A section G/H → G is a right inverse to q.

The quotient space G/H will be said to have “invariant measure” if there is a

nonzero positive measure µ on G/H that is invariant with respect to multiplication

on the left by elements of G, i.e., for each g ∈ G the measure µg defined by

µg(E) = µ(gE) for all Borel sets E ⊆ G/H

is precisely equal to µ. Moreover, if such a µ exists, it is unique up to a constant

factor ([4, Thm. 2.49]). �

Conventions 2.7 (Representations; continuity; (π, V )). As in the previous section,

a “representation” of a group means a linear representation of said group on a

complex vector space. The representation spaces will always come equipped with

the structure of Hausdorff topological vector spaces over C and, in fact, will as a

general rule be Hilbert spaces.

The phrase “continuous representation” is to be intended as in [5, Vol. I, p. 219].

(If the representation space is barrelled, then this notion is equivalent with that of

“strong continuity” as argued in loc. cit., and if the space is additionally Banach, then

both notions coincide with that of “weak” continuity, as proved in [5, Thm. 4.2.2.1].)

Phrases such as “Hilbert representation” or “Banach representation” are to be

interpreted as “continuous representation on a Hilbert (resp., Banach) space”.

Finally, (π, V ) will denote a fixed but arbitrary unitary continuous representation

of the subgroup H on a Hilbert space V .8 The inner product on V will be denoted

〈·, ·〉V if necessary. �
8Note that, since V is assumed Hilbert and by the above discussion, “our” ( = Warner’s) unitary

continuous representations are the same as Kaniuth-Taylor’s ([3, p. 21]), Folland’s ([4, p. 67f.]) and

Wallach’s ([1, §§1.1.1–1.1.2]).
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2.3 The search for the optimal realization

The aim of this subsection is to get to the “best possible” definition of unitarily in-

duced representation. Rather than a “top-down”, definition-theorem-proof approach,

the idea here is to make the procedure seem “natural” and introduce the necessary

concepts as they arise along the way. The “model” for the entirety of the discus-

sion will be Realization C from section 1; in other words, the goal is to realize the

induced representation on a Hilbert space of (essentially) functions from G to V ,

with the unitary action of G on the space being simply by left translation. (Having

achieved this, alternative realizations will be presented which are more reminiscent

of Realizations B and D from section 1.)

Since the representation space should be a Hilbert space made up (essentially)

of functions from G to V , it is natural to draw inspiration from the standard con-

struction of L2 spaces. Of course, this entails pinpointing a precise notion of “mea-

surability” for functions G→ V . We shall come back to this issue in the beginning

of the next subsection, but for the moment, we shall work with measurability in the

Bochner sense.

In conclusion, keeping in mind the construction of L2 spaces as well as Realization

C from the previous section, one might tentatively proceed as follows: consider the

space of measurable functions from G to V satisfying

f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H. (4)

Impose a condition ∫
. . . <∞ (5)

that some integral involving f be finite (which will then, by definition, be equal to

‖f‖2 = 〈f, f〉), and subsequently identify functions that agree almost everywhere

(with respect to the fixed left Haar measure on G). Then the space should become a

Hilbert space with the inner product 〈·, ·〉 (which arises from applying the polariza-

tion identity to ‖ · ‖). Additionally, the action of G on this space should be by left

translation,

(L(g)f)(x) := f(g−1x)

(where as usual no distinction is made notationally between a function f and its

equivalence class).
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The next step is to pinpoint which integral should appear in (5). The key obser-

vation to this end is that, because of (4) and because π is unitary by assumption,

x 7→ 〈f(x), f(x)〉V

is a (nonnegative real-valued) function on G that is constant on left H-cosets, and

hence descends to a function on G/H.

Thus, if G/H has invariant measure µ, it is only natural to choose (5) to

read as follows: ∫
G/H
〈f(x), f(x)〉V dµ(ẋ) <∞. (6)

(The notation should remind one that integration is with respect to the variable

ẋ = xH which runs over the elements of G/H.) The corresponding inner product is

then

〈f, g〉ind :=

∫
G/H
〈f(x), g(x)〉V dµ(ẋ) (7)

and, by left invariance of µ, the operators L(g) from above are, indeed, unitary for

all g ∈ G. For convenience, the above process is summarized in the following box:

Realization C 2.0 (assuming invariant measure µ on G/H)

Choose a nonzero positive invariant measure µ on G/H, if possible.9

The Hilbert representation space is the space of measurable functions f : G → V

satisfying

f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H (4↑)

and ∫
G/H
〈f(x), f(x)〉V dµ(ẋ) <∞, (6↑)

with functions being identified if they agree almost everywhere (w.r.t. left Haar

measure on G); the inner product on this space is given by

〈f, g〉ind :=

∫
G/H
〈f(x), g(x)〉V dµ(ẋ) . (7↑)

The action is by left translation precisely as in Realization C.

9Observe that replacing µ by another invariant measure on G/H, i.e. by a scalar multiple of µ

[see the previous subsection], yields the same linear space and only changes the inner product by a

scalar. Hence: while Realization 2.0 is not truly unique, its unitary equivalence class is.
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While this already gives a complete solution in the case where G/H has invariant

measure, the problem is that this does not happen very often. (In fact, G/H has

invariant measure if and only if the restriction of ∆G to H agrees with ∆H , see also

[4, Thm. 2.49].) It is, however, always the case that G/H can be equipped with a

(strongly) quasi-invariant measure. For the purposes of this discussion, this existence

result can be phrased as follows [but see also the Remark below a more systematic

approach]: G and H being as above, there exist a nonzero positive measure µ on

G/H and a real-valued function ρ on G with the following properties:

(a) ρ(x) > 0 for all x ∈ G;

(b) ρ is continuous;

(c) ρ satisfies:

ρ(xh) =
∆H(h)

∆G(h)
ρ(x) for all x ∈ G, h ∈ H; (8)

and finally,

(d) the equation ∫
G/H

∫
H
f(xh) dhdµ(ẋ) =

∫
G
f(x)ρ(x) dx (9)

holds for all f ∈ Cc(G).

We now fix such a µ and such a ρ and retain these notations for the rest of this

subsection. About this choice, note the following facts:

• µ and ρ actually determine each other uniquely, and accordingly ρ will some-

times be called the “rho-function” corresponding to µ; cf. the remark immedi-

ately below.

• Any two quasi-invariant measures on G/H have the same null sets ([3, Corol-

lary 1.23]; cf. also op. cit., Lemma 1.22 with [4, Thm. 2.64]. Alternatively see

[6, §2, No. 5, Thm. 1(a)]).

• The case of invariant measure, which was already “solved”, will be contained

as a special case of the discussion below: for if G/H has invariant measure

µ, then µ is quasi-invariant and, upon scaling µ by a scalar, one may choose

ρ ≡ 1 ([4, Thm. 2.49]).

Remark 4 (Quasi-invariant measures and rho-functions). The contents of this remark are not

essential to understanding the rest of the note and can safely be ignored. The background can be

found in [3, §1.3], [4, §2.6] (which read very similarly to one another), or even in Chapter VII of

Bourbaki’s Integration [6]. Finally, some of this material is also discussed in Appendix 1 (pp. 474ff.)

of Warner’s book [5], under the usual additional assumption that all groups be countable at infinity.

With these preliminaries out of the way, we can now dive in.
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Recall from the previous subsection that a (nonzero positive) measure µ on G/H is said to be

invariant if it is equal to all its “left translates” µg, g ∈ G. As a natural generalization, a nonzero

measure µ on G/H is called quasi-invariant if, for all g ∈ G, µ and µg are equivalent, i.e., mutually

absolutely continuous, which, by definition, means that they have the same null sets; see also [4,

p. 58].

Existence of quasi-invariant measures can be proved in different ways. For instance, Warner

sketches an argument due to Dieudonné on p. 474 of his book (here the assumption of countability

at infinity seems to be crucial). On the other hand, the “usual” proof of existence, given e.g. in [4,

Thm. 2.56], uses so-called “rho-functions”10 and even establishes a slightly stronger result, which

shall be discussed presently.

There is an arguably technical fact which underlies some points of the discussion below and

which will even pop up outside of this remark. It is given here for convenience:

Fact. The map Cc(G)→ Cc(G/H) sending f to

ḟ : ẋ 7→
∫
H

f(xh) dh

is surjective. (Warning: The image of f is variously denoted Pf in [4], f ] in [3] and f [ in [6]. A

proof of surjectivity of the above rule is e.g. in [4, Prop. 2.48].)

Now for the proof of existence of quasi-invariant measures. All references in the following will be to

[6], Chapter VII, §2 unless explicitly stated otherwise.

First, it is proved in No. 5, Lemma 4 that, if µ is a nonzero quasi-invariant measure on G/H,

then there exists a function ρ : G → R>0 which is locally integrable with respect to left Haar

measure on G and such that the equation (9) relating µ and ρ holds. Moreover, any two such

functions ρ and ρ′ must agree outside of a set of measure zero. (In fact, ρ is “the” Radon-Nikodym

derivative of a certain measure µ] on G with respect to left Haar measure on G, cf. also No. 2, Prop.

4 for the notation µ].)

Furthermore, a function ρ obtained in this fashion must satisfy (8) locally almost everywhere

by No. 5, Lemma 5.

Finally, both implications are actually stated as equivalences in Bourbaki: going the other way,

if ρ is a locally integrable function G → R>0 that satisfies (8) locally almost everywhere, then ρ

yields a quasi-invariant measure µ on G/H such that (9) holds. In fact,

ḟ 7→
∫
G

f(x)ρ(x) dx

is a well-defined positive linear functional on Cc(G/H), i.e. a measure on G/H, which is then quasi-

invariant by the implication (c)⇒(a) in the aforementioned No. 5, Lemma 4. (For well-definedness,

one has to keep in mind the above Fact and to check that, if ḟ is identically zero, then also the

right-hand side of the above rule is zero; this is [3, Prop. 1.13].)

In summary, proof of existence of quasi-invariant measure is reduced to proof of existence of

functions ρ with the above properties. It now turns out that there even exist continuous functions

10There are different notions of “rho-functions” in the literature. Broadly speaking, they are

functions satisfying properties (a)–(c) listed before this remark. Sometimes (b) is weakened to

“local integrability” and/or (a) is weakened to ρ ≥ 0 rather than > 0.
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ρ with these properties (No. 5, Thm. 2(a), or [4, Prop. 2.54]). The corresponding µ is then not

only quasi-invariant, but has the stronger property (No. 5, Thm. 2(c), or [4, Prop. 2.56]) that the

function

G×G/H → R>0,

(x, ẏ) 7→ dµx
dµ

,

where dµx
dµ

denotes the Radon-Nikodym derivative of the “translate” µx (see above) with respect to

µ, is continuous. Following Folland, we call quasi-invariant measures with this additional property

strongly quasi-invariant.

Finally, if µ is a strongly quasi-invariant measure on G/H, then there is a unique function

ρ with properties (a)–(d) as listed before this remark. In fact, recall that there was already an

argument for existence earlier in this remark (involving a certain measure µ] on G); however, to get

(a)–(d) in their strong form above, strong quasi-invariance is needed, which is why it is worthwhile

to look at the proof in [4, Thm. 2.59]. As for uniqueness, this follows from the fact that, among

all Radon-Nikodym derivatives of µ] with respect to left Haar measure on G, there can be at most

one which is continuous (because any two Radon-Nikodym derivatives differ at most on a set of

measure zero).

Having fixed a strongly quasi-invariant measure µ (and a corresponding ρ), the

next thing that comes to mind would be to check if the discussion leading up to

Realization C 2.0 still applies verbatim to the general case.

This turns out to be the case as far as the representation space is concerned.

Indeed, a closer look at the construction outlined for Realization C 2.0 shows that

invariance of µ is not needed in order to construct the vector space or to define the

inner product 〈·, ·〉ind on it. What does break down, unfortunately, is unitarity of

the left-translation operators L(g), g ∈ G.

To see this, it suffices to look at very special elements of the Hilbert space at

hand. For let f be a function G→ V which is continuous, satisfies

f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H (4↑)

and such that the image of the support of f under the projection q : G → G/H is

compact in G/H. Then

ẋ 7→ 〈f(x), f(x)〉V

is a (well-defined) compactly supported (nonnegative real-valued) function on G/H,

so its integral with respect to µ is certainly finite and so it (or more precisely its

class w.r.t. equality a.e.) lies in the Hilbert space being discussed. Moreover, by the

15



Fact stated in the preceding Remark 4, this function can be written as Φ̇ for some

Φ ∈ Cc(G). Thus, paraphrasing (9),∫
G/H
〈f(x), f(x)〉V dµ(ẋ) =

∫
G

Φ(x)ρ(x) dx

(and the common value is, by definition, 〈f, f〉ind).

Now consider

〈L(g)f, L(g)f〉ind =

∫
G/H
〈(L(g)f)(x), (L(g)f)(x)〉V dµ(ẋ)

=

∫
G/H
〈f(g−1x), f(g−1x)〉V dµ(ẋ) ;

by (9),

=

∫
G

Φ(g−1x)ρ(x) dx ,

and using left invariance of dx and again (9),

=

∫
G

Φ(x)ρ(gx) dx

=

∫
G/H
〈f(x), f(x)〉V

ρ(gx)

ρ(x)
dµ(ẋ) ,

which is in general not the same as 〈f, f〉ind (cf. above).

The silver lining is that this computation also immediately gives a way to fix the

problem: it suffices to introduce a factor in the action of G in such a way that the

ratio of ρ-values will cancel out. Keeping in mind also the change of variables in the

above chain of equalities, one quickly arrives at the following:
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Realization C+ρ

Fix a nonzero quasi-invariant Radon measure µ on G/H and the corresponding

rho-function ρ.

The Hilbert representation space is the space of measurable functions f : G → V

satisfying

f(gh) = π(h−1)f(g) for all g ∈ G, h ∈ H (4↑)

and ∫
G/H
〈f(x), f(x)〉V dµ(ẋ) <∞, (6↑)

with functions being identified if they agree almost everywhere (w.r.t. left Haar

measure on G); the inner product on this space is given by

〈f, g〉ind :=

∫
G/H
〈f(x), g(x)〉V dµ(ẋ) . (7↑)

The action L̃ is by left translation adjusted by a factor:

(L̃(g)f)(x) :=

(
ρ(g−1x)

ρ(x)

) 1
2

f(g−1x). (10)

By rewriting the very last equation as

ρ(x)
1
2 (L̃(g)f)(x) = ρ(g−1x)

1
2 f(g−1x)

it should become apparent that “multiplication by ρ(·)1/2 intertwines the modified

left translation L̃ with standard left translation L”. To make this more precise,

consider{
x 7→ ρ(x)

1
2 f(x), f is in the representation space of Realization C+ρ

}
.

(We’re being a little nonchalant here with the identification between functions and

their equivalence classes, but this really poses no problems.)

It is not hard to define this space more intrinsically, building upon the properties

that elements of the previous representation space are known (required) to have. For

instance, let φ correspond to f , i.e., φ(x) = ρ(x)
1
2 f(x) for all x ∈ G. Then clearly –

as long as the notion of measurability is a sane one – φ is measurable if and only if

f is. Moreover, the integral in (6) reads∫
G/H

ρ(x)−1〈φ(x), φ(x)〉V dµ(ẋ) . (11)
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Finally (4) implies

φ(gh) = ρ(gh)
1
2 f(gh)

=

[
ρ(g)

∆H(h)

∆G(h)

] 1
2

π(h−1)f(g)

=

(
∆H(h)

∆G(h)

) 1
2

π(h−1)φ(g).

for all g ∈ G and h ∈ H. In summary, here is a further realization of the induced

representation (where we return to denoting functions by f rather than φ):

Realization C+∆

Fix a nonzero quasi-invariant Radon measure µ on G/H and the corresponding

rho-function ρ.

The Hilbert representation space is the space of measurable functions f : G → V

satisfying

f(gh) =

(
∆H(h)

∆G(h)

) 1
2

π(h−1)f(g) for all g ∈ G, h ∈ H (12)

and11 ∫
G/H

ρ(x)−1〈f(x), f(x)〉V dµ(ẋ) . (11↑)

with functions being identified if they agree almost everywhere (w.r.t. left Haar

measure on G); the inner product on this space is given by

〈f, g〉ind :=

∫
G/H

ρ(x)−1〈f(x), g(x)〉V dµ(ẋ) . (13)

The action L is by “regular” left translation:

(L(g)f)(x) = f(g−1x).

For all the advantages of Realization C+∆ with respect to previous attempts, it

might have been noted that it still involves a choice of a quasi-invariant measure µ

or, equivalently, of a (continuous, everywhere strictly positive) rho-function ρ. But

11Observe that, because of (12) and (8) (and, of course, unitarity of π), the integrand in (11) is

indeed a well-defined function on G/H.
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even this “non-canonicity” can be eliminated, making the resulting realization truly

intrinsic.

The first observation to be made is that µ and ρ now only appear in the condition

(11), and not in the “functional equation” (12) or in the equation describing the

action of G. Thus, it is only a matter of replacing the “finiteness of some integral”

condition (cf. (5) from the very beginning) by a more instrinsic one. This can be

done relatively easily using the Fact stated in Remark 4 supra.

Thus, let f be a measurable function G → V satisfying (12). An assumption

needs to be made here, the reason for which will become apparent presently: it will

be assumed that ‖f(·)‖2, i.e., the mapping

G→ C

x 7→ 〈f(x), f(x)〉V ,

is a locally integrable function on G. This entails that the product of this function

with any Φ ∈ Cc(G) is integrable (in the sense that the integral exists and is finite).

This being so, it can be shown ([5, Lemma 5.1.1.1]) that the rule

Φ̇ 7→
∫
G
〈f(x), f(x)〉V Φ(x) dx

is well-defined (cf. also the Fact stated in Remark 4) and thus yields a positive linear

functional on Cc(G/H), i.e., a measure µf on G/H. One sets

(f, f) := µf (G/H)

=

∫
G/H

dµf

provided this is finite. Then, if g is another function satisfying the same assumptions

as f and if both µf (G/H) and µg(G/H) are finite, one can define the appropriate

inner product (f, g) by an application the polarization identity, obtaining

(f, g) = µf,g(G/H)

=

∫
G/H

dµf,g

where µf,g is the complex measure on G/H corresponding to the linear functional

Φ̇ 7→
∫
G
〈f(x), g(x)〉V Φ(x) dx
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on Cc(G/H) (see again [5, Lemma 5.1.1.1]; in passing, note that µf = µf,f ). In

summary,

Realization C-opt (no choices, totally intrinsic, optimal)

The Hilbert representation space is the space of measurable functions f : G → V

satisfying

f(gh) =

(
∆H(h)

∆G(h)

) 1
2

π(h−1)f(g) for all g ∈ G, h ∈ H (12↑)

and such that ‖f(·)‖2 is locally integrable and∫
G/H

dµf <∞ (14)

(where µf is constructed as in the discussion above), with functions being identified

if they agree almost everywhere (w.r.t. left Haar measure on G); the inner product

on this space is given by

(f, g) :=

∫
G/H

dµf,g . (15)

(see discussion above).

The action L is by “regular” left translation:

(L(g)f)(x) = f(g−1x).

(We will comment on the proof of unitary equivalence between Realization C-opt

and the other realizations in the next subsection.)

2.4 References and recap

For starters, we ought to give at least one reference for at least one of the above

realizations. Hence, let it be said that Realization C-opt as given above is verbatim

as in Warner’s book [5, pp. 366–368]. This source also includes complete proofs

(see e.g. pp. 371–372 for the proof of unitarity). A couple of remarks on the word

“verbatim”:

• In the whole section §5.1 of Warner’s book, G is assumed to be a Lie group,

countable at infinity. However, it is quite likely that this is not used substan-

tially anywhere in the proofs.
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• By the conventions laid out on p. 365f., Warner’s phrase “dG-measurable”

means “Bochner (strongly) measurable w.r.t. left Haar measure on G”. This is

precisely in accordance with the notion of measurability adopted throughout

the previous subsection of this note.

Next, Realization C+∆ as given above is “almost verbatim” the one given in Warner’s

book at the beginning of p. 374. In more detail,

• For Warner, G is still a Lie group.

• Warner’s “measurability” condition here reads (in our notation): “for every

v ∈ V , the function G→ C, x 7→ 〈f(x), v〉V is a Borel function on G”.

• Warner’s rho-function (ρH in his notation) is assumed to be normalized so that

ρH(1) = 1, which, by (8), implies ρH(h) = ∆H(h)
∆G(h) for any h ∈ H. Moreover, ρH

is assumed to be smooth on G, but it is also claimed on the same page that

this is not essential.

Finally, Realization C+ρ as given above is verbatim the one given in Kaniuth and

Taylor’s book [3] in the middle part of p. 73. The only problem here is (again) the

possibly differing notion of measurability: this book often uses the word “measurable”

in reference to functions G → V without ever spending a word on what notion of

measurability is meant.

It is precisely to “finesse most technical problems associated with the study of mea-

surable vector-valued functions” ([4, p. 154]) that the representation spaces of Real-

izations C+ρ, C+∆ and C-opt are often constructed not starting with measurable

functions and then “cutting down” to suitable subspaces to ensure finiteness of the

inner product, but rather starting with continuous function with compact support

(in a suitable sense), for which inner products are automatically finite, and then

taking Hilbert space completions.

For the sake of clarity, we illustrate this by giving the alternative construction

for the space of Realization C-opt; in this way we shall obtain a “new” realization

of the unitarily induced representation (which differs from C-opt only in how the

representation space is concretely constructed), to be denoted by C-opt in reference

to the common notation for completions. Of course, it is not yet obvious at this

point that the representation spaces of C-opt and C-opt are identical, or at least

isometric; references for this are given below.

Thus, let F denote the space of continuous functions f : G→ V such that

the image of supp f under q : G→ G/H is compact (16)
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(we say that f is “compactly supported mod H ”12) and which satisfy

f(gh) =

(
∆H(h)

∆G(h)

) 1
2

π(h−1)f(g) for all g ∈ G, h ∈ H. (12↑)

For any f, g ∈ F , it makes sense to define the measure µf,g on G/H precisely as in

the discussion preceding Realization C-opt, and it holds that∫
G/H

dµf,g <∞. (17)

It is then easily checked that

(f, g) :=

∫
G/H

dµf,g . (15↑)

turns F into a pre-Hilbert space.

Realization C-opt

The Hilbert representation space is given as the completion of the space F w.r.t.

the inner product (15) (see discussion above).

The action L is by “regular” left translation,

(L(g)f)(x) = f(g−1x), f ∈ F ,

which extends unitarily to the completion of F .

In a totally analogous manner one can, of course, look at Realizations C 2.0 ,

C+ρ and C+∆ . For more details, see the following references:

• Realization C 2.0 is given in [4, p. 152f.].

• Realization C+ρ is handled in [4, p. 153f.] and [3, pp. 70–72].

• Realization C-opt is the subject of [3, §2.3] and [4, p. 155f.].

Moreover, at the end of the previous subsection we left open the question of the

unitary equivalence of Realization C-opt and the other ones. In our references, one

can find the following:

• In [4, p. 157f.], it is proved that C+ρ is unitarily equivalent to C-opt via

f 7→ √ρf .

• At the beginning of [3, §2.4], it is proved that:

12This condition had already appeared in the discussion preceding Realization C+ρ.
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� f 7→ √ρf is a linear isomorphism between the space (pre-completion) of

C+ρ and the space (pre-completion) of C-opt ;

� pulling back the inner product on the latter space to the former space

yields precisely (6); and

� pulling the unitary action L of G on the space (post-completion) of C-opt

back to the space (post-completion) of C+ρ yields precisely (10).

Implicitly, this should also essentially prove that the inner products on the

spaces of C+∆ and C-opt agree.

Of course, this still leaves the question of whether the spaces of Realization C-opt

(resp. C+ρ) and C-opt (resp. C+ρ ) are “the same”. On this note:

• It is the subject of [3, p. 72f.] that the spaces of Realizations C+ρ and C+ρ

can be identified. Recall however that in [3] the notion of measurability is never

made precise.

• In [4, Remark 1, p. 154f.], it is explained how to view elements of C+ρ as

equivalence classes (w.r.t. equality a.e.) of functions G → V (defined a.e.).

This might shed some light into what notions of measurability can be used in

these identifications.

• As for Realizations C-opt and C-opt , Lemma 5.1.1.5 in Warner’s book [5]

shows that the space F discussed above (which he denotes LC(G;E)) embeds

as a dense subspace in the representation space of Realization C-opt (which he

denotes EL), and a comparison of [5, Lemma 5.1.1.1] and [3, p. 64, Prop. 2.20]

shows that the inner products on both sides of the embedding are “the same”.

Thus, the spaces of C-opt and C-opt can be identified by essential uniqueness

of Hilbert space completions.

Summarizing essentially the entire content of the previous subsection and this sub-

section thus far, one can say:

Summary. Given the data G, H (with fixed left Haar measures) and (π, V ) as per

subsection 2.2,

(a) the induced representation can be defined intrinsically ( = without any further

data) to be the one constructed as in C-opt, or equivalently as in C-opt .

(b) For any choice of a strongly quasi-invariant measure µ on G/H and corre-

sponding rho-function ρ,

(1) C+∆ (resp. C+∆ ) is precisely the same as C-opt (resp. C-opt ) as a

Hilbert space and as a representation of G.
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(2) C+ρ (resp. C+ρ ) is unitarily equivalent to C-opt (resp. C-opt ) via

(essentially) f 7→ √ρf .

(c) If G/H has invariant measure µ, scaled in such a way that ρ ≡ 1, then all of

C+ρ, C+∆ and C-opt are identical as Hilbert spaces and as representations

of G and any of these yields back Realization C 2.0 from the beginning of

subsection 2.3. (Moreover, the analogous statements hold if all Realizations

are replaced by their overlined alter ego’s.)

Furthermore, while this was not mentioned yet, it is an easy exercise to check

that, if G is a finite group (in particular, ∆G = ∆H ≡ 1, hence G/H has invariant

measure) and both G and H are equipped with the counting measure, then:

(d) the inner product (f, g) = µf,g(G/H) from Realization C-opt is defined and fi-

nite for any set-theoretic functions f, g : G→ V , hence the space of Realization

C-opt (or equivalently, by (c), C 2.0) coincides with the space of Realization

C from section 1. Explicitly the inner product on the induced representation

is given by

(f, g) =
1

|H|
∑
x∈G
〈f(x), g(x)〉V .

(To understand where the factor 1/|H| comes from, observe that, if the surjective linear map

Cc(G) � Cc(G/H) from the Fact in Remark 4 is denoted Φ 7→ P (Φ), then for any subset

A ⊆ G/H,

χA = P

(
1

|H|χq−1(A)

)
,

where χ• denotes the characteristic function.)
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