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In the classical study of modular forms, the notion of congruence subgroups is ubiquitous.

This is in sharp contrast with the adelic treatment of automorphic forms, where congru-

ence subgroups are either entirely missing or only appear in the vague statement that

“passing to the adelic setting has the advantage that one can now look at all congruence

subgroups at once”. In this note, we attempt to find out:

(Q1) What happened to congruence subgroups upon adelization?

(Q2) How do we get them back?

The short answers are (see §0 for the notations):

(A1) The suitable adelic substitute for congruence subgroups of G(F ) are open compact

subgroups of G(Af ).

(A2) Congruence subgroups Γ ⊂ G(F ) are obtained from open compact subgroups L ⊂
G(Af ) by intersecting with G(F ). If G has “strong approximation” (cf. §6), then

for each Γ there exists precisely one L with Γ = L ∩G(F ).

Let us now go into more details. After fixing some notation in §0, we give the classical

and modern definitions of (principal) congruence subgroups in §1 and §2, respectively.

Then, in §3 and in §4, we prove (A2), putting emphasis on why strong approximation is

needed, and in §5 we conclude with an observation on automorphic forms. The appendix

(§§A-C) is merely a collection of easy topological facts that are used in §2.

§0. We first fix some notation. Let F be a number field, and let Af =
∏′
ν<∞ Fν

denote the ring of finite adeles of F . As usual, F is embedded diagonally into Af via

r 7→ (r)ν<∞ = (r, r, ...); recall that the image of F is dense in Af , cf. e.g. [5, Thm. 1.5].

Next, let G be a reductive algebraic group defined over F ; for most intents and pur-

poses, we will have to fix an embedding G ↪→ GLn for some n. (Thus, for each F -algebra

A, we regard the group G(A) of A-points as a subgroup of GLn(A).)
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§1. Let us recall the definition of congruence subgroups in the classical setting (F = Q,

G = SL2). A principal congruence subgroup of SL2(Z) is a subgroup of the form

Γ(N) := {γ =
(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)}

for some integer N ≥ 1. More generally, Γ ⊆ SL2(Z) is called a congruence subgroup of

SL2(Z) if it contains some principal congruence subgroup Γ(N). (In this case, the index

[Γ : Γ(N)] is necessarily finite.)

Example. For any N ≥ 1,

Γ0(N) := {γ =
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)}

(sometimes called the Hecke subgroup) and

Γ1(N) := {γ =
(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)}

are congruence subgroups of SL2(Z).

Analogously, for general F and G (and a fixed embedding G ↪→ GLn), we may define

a principal congruence subgroup of G(F ) to be a subgroup of the form

Γ(a) := G(F ) ∩ ker
(
GLn(OF )→ GLn(OF /a)

)
,

where OF is the ring of integers of F and a is a nonzero ideal of OF . At this point, it

would seem natural to define congruence subgroups as those Γ ⊂ G(F ) such that

Γ contains a principal congruence subgroup Γ(a) as a subgroup of finite index. (*)

We want to keep this in the back of our minds, but this is not the definition we (or

anyone else, for that matter) shall be working with.

§2. The modern notion of congruence subgroups is as follows: we call Γ ⊂ G(F ) a

congruence subgroup of G(F ) if it is of the form

Γ = G(F ) ∩ L

for some open compact subgroup L of G(Af ).
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This definition may feel a bit like it fell from the sky. Let us provide arguments to

remedy this. On the one hand, the link with the classical definition from §1 is contained

in the two following facts (which are proved in §C below):

Fact 2.1. Let Γ = Γ(a) be a principal congruence subgroup of G(F ), cf. §1. Then

there exists an open compact subgroup L(a) of G(Af ) such that Γ = G(F ) ∩ L(a).

Fact 2.2. Let Γ be a congruence subgroup of G according to the new definition. Then

Γ contains a principal congruence subgroup Γ(a) = G(F ) ∩ L(a) as a subgroup of finite

index. (That is, Γ satisfies (*).)

On the other hand, it is not at all clear whether every Γ satisfying (*) is a congruence

subgroup. Thus, our fancy new definition has the advantage that it automatically makes

the (set-theoretic) function

{open compact subgroups of G(Af )} → {congruence subgroups of G(Q)},

L 7→ G(F ) ∩ L

(well-defined and) surjective. This will come in handy later (in §4).

§3. Our shiny new definition of congruence subgroups (see §2) raises a natural ques-

tion, which is related to (Q1) from the introduction:

(Q1’) Given a concrete congruence subgroup Γ of G(F ), how do we obtain or construct

an open compact subgroup L of G(Af ) such that Γ = G(F ) ∩ L?

Of course Fact 2.1 already answers this question for principal congruence subgroups Γ =

Γ(a), but even in this special case there may be more than one L(a) with Γ = G(F )∩L(a)

– as a matter of fact, there may even be more than one a such that Γ is of the form Γ(a),

as illustrated nicely (or horribly) by the following example.

Example. Let F = Q and let G = GL1, embedded into itself. Since OF = Z is a PID,

we can simplify the notation by considering positive integers N in lieu of nonzero ideals

a ⊆ OF .

Now, as N ranges over the positive integers, all L(N)’s are pairwise distinct. (This is

apparent by their definition, see §B.) However, G(Q) only has two distinct congruence

subgroups, one being all of G(Z) = GL1(Z) = {±1} and the other one being the trivial

subgroup {1}.

Accordingly, in order to obtain a nice correspondence and a satisfactory answer to

(Q1’), we have to impose additional assumptions on G.
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§4. The decisive assumption on G is that G(F ) (or rather, its image under the diagonal

embedding) be dense inG(Af ); if this is the case, we say thatG has strong approximation.

The need for this definition is shown by the following example:

Example. Let F = Q and let G be the multiplicative group Gm = GL1. We claim

that G(F ) = Q× is not dense in G(Af ) = A×f . Since a dense subset must meet every

non-empty open subset, it suffices to find U ⊂ G(Af ) open such that U ∩Q× = ∅.
First, let O :=

∏
p Z×p . Since A×f is precisely the restricted product of the Q×p with

respect to Z×p as p ranges over the primes (cf. footnote 4), O is open by definition of the

restricted product topology. On the other hand, O intersects Q× in the two-point set

{±1}. Hence U = O \ {±1} is an open subset of A×f which does not meet Q×.

(On the other hand, the well-known fact that F is dense in Af tells us precisely that

the additive group G = Ga has strong approximation. Moreover, the special linear group

G = SLn has strong approximation, see [2, Thm 3.3.1.(i)].)

Without further ado, let us present our main result, which makes up the bulk of (A2)

from the introduction.

Theorem. Suppose that G has strong approximation. Then the congruence subgroups of

G(F ) are in one-to-one correspondence with the open compact subgroups of G(Af ), the

bijection being given by

Γ 7→ Γ,

L ∩G(F )←[ L;

here Γ denotes the closure of Γ in the topology of G(Af ).

Proof. It suffices1 to show that, for any open compact L ⊆ G(Af ),

G(F ) ∩ L = L,

i.e. that for each g ∈ L there exists a sequence (gn)n∈N in G(F ) ∩ L converging to g.

Hence, let g ∈ L. Since L ⊆ G(Af ), by strong approximation there exists a sequence

(gn)n∈N in G(F ) converging to g. But L is open, so gn will eventually lie in L for large

1The argument is purely set-theoretical. As we observed in §2, the assignment L 7→ G(F ) ∩ L is
surjective; in particular it has a right inverse. On the other hand, we now claim that it has a left inverse,
namely the closure operator. But if both a left and a right inverse exist, they must coincide, so the
closure operator and the given assignment are inverse to each other.
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enough n. Thus, discarding finitely many terms if necessary, we can assume that each

gn lies in G(F ) ∩ L, which means that (gn)n∈N has the desired property.

To conclude this paragraph, let us remark that Kneser [3] provided a complete clas-

sification of (reductive) algebraic groups which have strong approximation; this topic is

treated in detail in [5, §7.4]. As Borel and Jacquet remark in [1, 4.7], for G semisimple and

almost simple over F to have strong approximation it is (necessary and) sufficient that G

be simply connected and G∞ be noncompact; check [5, 2.1.13] for some of the definitions.

§5. We wish to round out this note with an observation on the spaces of automorphic

forms which helps build a bridge between the classical and the adelic worlds; we have

resolved to keep the rigour and technical details to a minimum because, after all, we are

not writing a textbook. We follow the notations and terminology of [1]; and the details

may be looked up there.

Let L be an open compact subgroup of G(Af ), let ξL denote the corresponding idem-

potent of the Hecke algebra Hf (cf. [1, 3.1-3.2]), and let A (ξ∞ ⊗ ξL, J,K∞) denote

the space of “(adelic) automorphic forms for G of type (ξ∞ ⊗ ξL, J,K∞)”, i.e. smooth

functions f : G(AF )→ C such that

(i) f(γx) = f(x) for all γ ∈ G(F );

(ii) f ∗ ξL = f , which by [1, 3.2] means precisely that f is right invariant under L;

(iii) f is annihilated by J which is an ideal of finite codimension in ... (you know the

drill);

(iv) f is slowly increasing.

On the other hand, let Γ be a congruence subgroup of G(F ), and let A (Γ, ξ∞, J,K∞)

denote the space of “(classical) automorphic forms for (Γ,K∞) of type (ξ∞, J)”, i.e.

smooth functions f : G∞ → C such that

(i) f(γx) = f(x) for all γ ∈ Γ;

(ii) f ∗ ξ∞ = f , which by [1, 1.5] means precisely that f is right K∞-finite;

(iii) f is annihilated by J which is again an ideal of finite codimension yadda yadda

yadda;

(iv) f is slowly increasing.

If G has strong approximation, and if Γ and L correspond to one another via the

bijection from Thm. §4, then we have an isomorphism

A (ξ∞ ⊗ ξL, J,K∞)
∼−→ A (Γ, ξ∞, J,K∞).
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Note that, for varying L, the spaces on the left-hand side form a directed system: an

inclusion L ⊃ L′ yields an inclusion A (ξ∞ ⊗ ξL, ...) ⊂ A (ξ∞ ⊗ ξL′ , ...). The corres-

ponding direct (or inductive) limit shall be denoted by A (ξ∞, J,K∞). Similarly, if Σ

denotes the family of congruence subgroups of G(F ), then we can form the direct limit

A (Σ, ξ∞, J,K∞) as Γ runs over the elements of Σ. Perhaps unsurprisingly, we get an

isomorphism

A (ξ∞, J,K∞)
∼−→ A (Σ, ξ∞, J,K∞).

But more importantly (at least, I believe so), G(Af ) acts on both spaces, and the iso-

morphism commutes with these actions! On the one hand, the action of G(Af ) on the

“adelic space” is defined in [1, 4.7]. On the other hand, in [1, 1.9] the authors define

an action of a certain2 topological group G(F )Σ on A (Σ, ξ∞, J,K∞), and later argue

that, since G has strong approximation, the group G(F )Σ is precisely G(Af ). (They also

spend a few words on the general case, where G(F )Σ is merely a subgroup of G(Af ).) In

my limited view and understanding, this makes automorphic representations look “more

natural”, or at least more rooted in the classical theory. I hope it was also somewhat

interesting for the reader.

Appendix

§A. We start by asking the question: what do open compact subgroups of Af look

like?

Fact A.1. In the local field Fν , a neighbourhood base around 0 is given by the open

subgroups $kOν as k ranges over N. Each $kOν is also compact.

Indeed, $kOν coincides with the open ball of radius ρk−1 around 0, where ρ = |$|ν < 1.

As for the second claim, $kOν is compact as it coincides with the closed ball of radius

ρk around 0.

Fact A.2. Let a be a nonzero ideal of OF with prime ideal decomposition3 a =∏
ν<∞ pkνν , and let

K(a) :=
∏
ν<∞

$kν
ν Oν .

Then K(a) is an open compact subgroup of Af .

2I have some half-assed notes on (completions of) topological groups where I meant to mention stuff
like G(F )Σ in much more detail. If I ever get around to finishing those, I will also make them available
to anyone who cares.

3Recall that the finite places of F are in one-to-one correspondence with the nonzero prime ideals of
the Dedekind domain OF . For a place ν, we denote the corresponding prime by pν .
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Indeed, the given subgroup is open by definition of the restricted product topology on

Af , and it is compact by Tychonoff’s theorem. (In both cases we are using Fact A.1.)

Fact A.3. Let K be any open compact subgroup of Af . Then there exists a nonzero

ideal a ⊆ OF such that K ⊇ K(a).

Indeed, by using Fact A.1 together with the definition of the restricted product topo-

logy, we obtain that the K(a)’s form a neighbourhood base around 0 in Af .

§B. We now try to use §A to infer some results on open compact subgroups of G(Af ).

The point here is, that for topological purposes, the elements of G(Af ) ⊆ GLn(Af )

are regarded as points (resp., vectors) in some high-dimensional4 affine space ANf , with

the entries as components; thus, topological statements over the underlying ring Af
carry over to the group G(Af ) because “they are true entry-wise”. (This is analogous to

classical observations such as: SL2(Z) is discrete in SL2(R) precisely because Z is discrete

in R.)5

With this idea in mind and some elbow grease, it should be possible to prove the

following analogues of Facts A.1-A.3.

Fact B.1. Let ν <∞ and k ∈ N, and let

Hk,ν :=

GLn(Oν), if k = 0;

1n +$kMn(Oν), if k > 0,

where Mn(Oν) is the space of (n × n)-matrices with entries in Oν . Then Hk,ν is an

open compact subgroup of GLn(Fν), and its intersection with G(Fν) is an open compact

subgroup of G(Fν). Moreover, as k ranges over N, these subgroups form a neighbourhood

base around 1n in the topology of GLn(Fν), resp. G(Fν).

4As is often the case in our field, the exact nature of this embedding becomes less clear as one consults
more reference texts. We have chosen to follow [2, §3.3] and thus identify GLn(Af ) with a subset X of

An
2+1
f , namely

X = {(a11, a12, ..., ann, d) ∈ An
2

f × Af : det(aij) · d = 1} ⊂ An
2+1
f ,

and equip it (and subsequently also G(Af )) with the subspace topology. Alternatively, G(Af ) is the
restricted product of the G(Fν) with respect to the G(Oν), where each G(Fν) is topologized as a subspace

of Fn
2+1

ν in a similar way as above.
5Obviously, we are cheating a little here. For instance, even though F is dense in Af , it is not true

for general reductive G that G(F ) is dense in G(Af ), as we saw in §4.
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Fact B.2. Let a =
∏
ν<∞ pkνν be a nonzero ideal of OF , and let

L(a) :=
∏
ν<∞

(
Hkν ,ν ∩G(Fν)

)
⊂ G(Af ).

Then L(a) is an open compact subgroup of G(Af ).

Fact B.3. Let L be any open compact subgroup of G(Af ). Then there exists a nonzero

ideal a ⊆ OF such that L ⊇ L(a).

§C. Let us finally prove Facts 2.1 and 2.2.

It is more or less evident that L(a) ∩ G(F ) coincides with the principal congruence

subgroup Γ(a) defined in §1. This proves Fact 2.1.

Now let Γ = G(F ) ∩ L be an arbitrary congruence subgroup as in §2. By Fact B.3,

there exists some a such that L(a) ⊆ L. Since L is compact and L(a) is open, L can

be covered by finitely many translates of L(a); in other words, the index of L(a) in L is

finite. But then so is [Γ : Γ(a)] ≤ [L : L(a)], and Fact 2.2 is proved.
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