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Abstract

The Riemann-Roch Theorem (RRT) is the name commonly given to either of two

formally analogous results in the areas of complex analysis and algebraic geometry

respectively, each of which yields a formula for the dimension of certain spaces of

functions with “prescribed poles” on the geometric object at hand. Our main goal is

to give an “adelic proof” of the algebraic RRT, following the treatments of Iwasawa

[1] and Weil [2], and use it as motivation for the complex-analytic RRT, whose

proof we shall only sketch. Finally, in the last section we shall present a well-known

application of number-theoretic significance.

Introduction

Originally proved for compact Riemann surfaces and subsequently extended to pro-

jective curves over arbitrary fields, the Riemann-Roch Theorem (RRT) is a useful

tool for describing spaces of functions with “prescribed poles” (see below) on a given

curve. In these notes, we shall ultimately deal with both versions separately, but we

wish to start with a simultaneous description of both the complex-analytic and the

algebraic-geometric setting which highlights their similarity.

In either version of the RRT, the starting point is a curve X over a ground field

F ; more precisely, in what we will call the “complex-analytic” case F = C and

X is taken to be a compact connected Riemann surface, while in the “algebraic-

geometric” version X denotes a smooth projective curve over an arbitrary field

F . Associated to X is field K of maps f : X → F ∪ {∞}, which are assumed

meromorphic in the complex-analytic case and rational in the algebraic case. Note

that K strictly contains a copy of F , namely the subfield of constant functions.

Finally, for each P ∈ X we have a normalized discrete valuation1 ordP on K which

is trivial on F ; in either version of the theorem, it is given by

ordP f =


m if f has a zero of order m in P,

−m if f has a pole of order m in P,

0 otherwise.

1See Appendix A.



The aforementioned problem of finding functions with “prescribed poles”, which

was the original motivation for the complex-analytic Riemann-Roch theorem, can

be stated as follows: given finitely many points P1, ..., Pk on the curve X, and non-

negative integers n1, ..., nk, determine all f ∈ K such that:

if f has a pole at P ∈ X, then P = Pi for some i ∈ {1, ..., k} and the pole has

order not worse than ni.

This is customarily formalized and generalized by considering divisors on X, which

we now define. Let us remark that the concept of divisors makes sense on more

general algebraic varieties or complex manifolds, but we shall not need this in full

generality and so we settle for an ad hoc definition for curves.

A divisor on X is defined as an element of the free abelian group D on X, i.e. of

the direct sum ⊕P∈XZ. We shall denote a divisor D on X as a formal finite Z-linear

combination
∑
P∈X nPP , where nP = 0 for almost all2 P ∈ X. Then the above

problem reduces to a special case of the following

Problem. Let D =
∑
P∈X nPP =

∑k
i=1 niPi be a divisor on X. By the properties

of ordP , the elements f ∈ K such that ordP (f) ≥ −nP for all P ∈ X, i.e. such that

ordP f ≥

−ni if P = Pi

0 otherwise,

form an F -linear space3, which we denote L(D). Is its dimension over F finite? If

so, what is it?

As we shall see, either version of the Riemann-Roch Theorem yields a thorough

and effective solution to the above problem. The algebraic case will be discussed in

chapter 1: the key observation here is that, by the assumptions on X, the function

field K behaves analogously to algebraic number fields from a valuation-theoretic

viewpoint, and so we can associate to K an object called the adèle ring of K after

the analogous construction from number theory. The statement and proof of the

RRT will now follow naturally from the topological structure of the adèle ring.

In chapter 2, we shall move on to the statement of the complex RRT, and briefly

discuss how it can be proved. Finally, in chapter 3 we shall discuss an application

of the Riemann-Roch Theorem that shows how powerful the theorem is, namely the

computation of the dimension of spaces of modular forms.

At the end of these notes three appendices can be found, on the topics of valu-

ation theory, projective geometry and locally compact groups respectively; we have

included them for the sake of completeness, and as a practical reservoir of informa-

tion to look up definitions and results in. They are listed in decreasing order of how

essential they are to an understanding of the main text: the contents of the first

2Throughout these notes, “almost all” means “all except at most finitely many”.
3Here it is convenient to follow the convention ordP (0) =∞ for all P .



appendix are heavily relied upon in many passages, while knowledge of projective

geometry is only relevant to a few observations and remarks, and, with the exception

of a handful of definitions, the contents of Appendix C serve merely as the “classical

counterpart” of (and motivation for) some contents of Chapter 1.
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1. The algebraic Riemann-Roch Theorem

In this section, we focus exclusively on the “algebraic case” of the problem discussed

in the introduction, with the ultimate goal to derive the RRT from properties of the

adèle ring of K. For the purposes of the proof we shall present, there is (surpris-

ingly) no need to formally define smooth projective curves or their fields of rational

functions; the only relevant fact for us, whose validity we justify in Appendix B, is

the following:

Let X be a smooth projective curve over F and let K = F (X) be the field of rational

functions on X. Then:

(i) K is an algebraic function field in one variable over F , i.e., there exists some

x ∈ K which is transcendental over F and such that [K : F (x)] <∞, and

(ii) the points of X are in bijection with the nontrivial places of K which are trivial

on F , cf. Appendix A.

A few observations are in order:

(O1) We may assume, and shall do so for the rest of this chapter, that F is algeb-

raically closed in K, see also Appendix A.

(O2) For any x ∈ K×, the formal sum div(x) :=
∑
P∈X ordP (x)P is a divisor on X,

the principal divisor associated to x.

(O3) The map P 7→ [FP : F ], where FP is the residue class field of K at P , extends

to a group homomorphism deg : D → Z. If D = div(x) is a principal divisor,

then deg(D) = 0 by the product formula for K, see also Appendix A.3.

(O4) If two divisors D, D′ ∈ D differ by a principal divisor, i.e. if D′ = D + div(x)

for some x ∈ K×, then L(D) defined in the introduction is isomorphic to L(D′)

via f 7→ f · x.



For the next definition, we draw from the strong formal analogy between algebraic

number fields and algebraic function fields, which is explored in Appendix A. Histor-

ically, this analogy has been very fruitful in the development of number theory: for

instance, Kurt Hensel introduced p-adic valuations on Q as an analogue of valuations

of the form ordP discussed in the introduction. Here, we shall do the opposite: in

order to tackle a problem concerning function fields, we shall draw inspiration from

number theory, more precisely from the notion of the adèle ring of an algebraic

number field, see also Appendix C4.

Thus, let K be a function field4 over a field F , and let X = XK denote the set

of nontrivial places of K which are trivial on F . Then the adèle ring of K is defined

as

AK := {a = (aP )P ∈
∏
P∈X

KP : ordP (aP ) ≥ 0 for almost all P ∈ X},

where KP denotes the completion of K at the place P ∈ X and ordP denotes the

canonical discrete valuation on KP , cf. Appendix A. We regard each KP as equipped

with the topology induced by ordP ; thus, we can consider subsets of AK of the form∏
Q∈S

UQ ×
∏
P 6∈S

OP ,

where S ⊂ X is finite, UQ is an open subset of KQ for each Q ∈ S and OP := {x ∈
KP : ordP (x) ≥ 0} ⊂ KP . These sets form the basis for a topology on AK , which

makes AK into a topological ring (cf. Appendix C), and each KP is isomorphic (as

a topological field) to the quotient AK/mP , where mP denotes the maximal ideal

{a = (aP ) ∈ AK : aP = 0} ⊂ AK . Finally, we note that, since

(i) K ⊂ KP for each P , and

(ii) for each x ∈ K×, ordP (x) = 0 for almost all P ∈ X,

the ring AK contains the subfield {(x)P = (x, x, x, ...) ∈
∏
KP : x ∈ K} which

is clearly isomorphic to K. Thus, everything so far is completely analogous to the

number-theoretic case and the same arguments go through.

The first notable discrepancy becomes apparent upon taking a closer look at the

topology on AK . If K is an algebraic number field, then each KP is a locally compact

field, and thus AK is a locally compact ring, see also Appendix C. This is also true if

K is a function field over a finite field F , but does not hold in general. Nevertheless,

if the notion of (local) compactness is suitably weakened then many results can be

derived which are strikingly similar to well-known properties of compact topological

spaces or locally compact groups as the case may be. Accordingly, the next section

is devoted to developing the notion of (local) linear compactness, and our process of

deriving the Riemann-Roch Theorem will resume in §2.

4We shall henceforth write “function field (over F )” instead of “algebraic function field in one variable
(over F )” whenever no confusion can arise.



1.1. Linear compactness

Recall that a topological space X is compact if and only if

(C) for each family {Fα}α∈A of closed subsets of X with the finite intersection

property5,
⋂
α∈A Fα 6= ∅.

The concept of linear compactness, which Solomon Lefschetz introduced in his 1942

book Algebraic Topology with “applications to homology” in mind, can be seen as a

natural adaptation of (C) to vector spaces, and in fact, the contents of this section

will show that “linearly compact spaces are to vector spaces as compact (Hausdorff)

spaces are to topological spaces”. Interestingly, this somewhat vague statement can

be made precise (and proved!) in the context of category theory, cf. [5].

Keeping this analogy in mind, we now delve into a rigorous treatment of the

theory of linearly compact spaces. For the entirety of this section, we fix a ground

field F , endowed with the discrete topology. A Hausdorff topology on a vector space

V over F will be called a linear topology if:

(i) the additive group of V is a topological group (cf. Appendix C),

(ii) the scalar multiplication F × V → V is continuous, and

(iii) 0 ∈ V has a neighbourhood basis consisting of linear subspaces of V .

An F -vector space equipped with a linear topology is said to be linearly topologized.

Example. (0) If V is any vector space over F , then the discrete topology on V is

a linear topology on V .

(1) Let K be a function field over F , and X = XK be the set of nontrivial places

of K which are trivial on F . Then it is a routine check of the definition that any

place P ∈ X is a linear topology on K (hint: a neighbourhood basis around 0 is

given by the powers of m(P ) as defined in Appendix A). Similarly, each completion

KP , P ∈ X is linearly topologized and so is the adèle ring of K defined above. �

Remark. (0) Let V be a linearly topologized F -vector space. Since translations by

elements of V are homoeomorphisms, any neighbourhood (basis) around a point of

V is given by translation of some neighbourhood (basis) around 0. It follows easily

that a linear subspace of V which is also a neighbourhood of 0 is automatically open.

Moreover, an open linear subspace U is automatically closed, since V is partitioned

by translates of U .

All these facts are special cases of results on general (abelian) topological groups.

The general theory also tells us that any discrete linear subspace of V (i.e., a linear

subspace on which the subspace topology is discrete) is automatically closed in V . �

Let W be a linearly topologized F -linear space. By an affine subspace of W we

mean a subset V of the form v + U where U ⊆ W is a linear subspace and v ∈ W .

An affine subspace V ⊆W is linearly compact if

5We say that {Fα}α∈A has the finite intersection property if
⋂
α∈S Fα 6= ∅ for any finite subset S ⊂ A.



(LC) for each family {Uα}α∈A of closed6 affine subspaces of V with the finite inter-

section property,
⋂
α∈A Uα 6= ∅.

Obviously, by a linearly compact (vector) space over F we mean a linearly topologized

vector space V over F which is linearly compact as an affine subspace of itself.

Example. (0’) Consider V = F as a discrete F -linear space. Then the only affine

subspaces of V are singletons and V itself, so V is obviously linearly compact. �

In accordance with our earlier claim, most desirable consequences of compactness

are preserved when passing to linear compactness, as shown by (a)-(f) below.

(a) An arbitrary product of linearly compact spaces is itself linearly compact in the

product topology.

This is an analogue of a well-known theorem of Tychonoff on compact spaces,

which can be proved in a way that only makes use of condition (C) above, see [4, p.

19]. The proof for the linearly compact case only requires minor modifications.

Let V be a linearly compact vector space over F . Then:

(b) Every closed affine subspace of V is linearly compact.

(c) If W is a linearly topologized F -vector space and ϕ : V → W is a continuous

F -linear map, then the image of V under ϕ is again linearly compact.

(d) If U is a closed affine subspace of V , then U is discrete (i.e., the subspace topo-

logy on U is the discrete topology) if and only if U is finite-dimensional over F .

The proofs of (b) and (c) are straightforward and virtually identical to the stan-

dard proofs for the compact case. Moreover, sufficiency in (d) follows from choosing

an F -linear isomorphism U ∼= F × ... × F (which is also a homoeomorphism since

both spaces are discrete) and applying Ex.(0’) and claim (a).

As for necessity, the claim is trivial if U = {0}, so we may assume U 6= {0}. Now

fix a basis B for U , and for u ∈ U write u =
∑
b∈B ubb where of course almost all

ub vanish. Then the sets Ub = {u ∈ U : ub = 1} form a family {Ub}b∈B of closed

affine subspaces of U with the finite intersection property; by linear compactness,⋂
b∈B Ub is non-empty, which is only possible if B is a finite set.

Remark. (1) It is easy to check that, if V is linearly topologized and U is a closed

linear subspace of V , then both the subspace topology on U and the quotient topo-

logy on V/U are linear topologies (the Hausdorff property follows from the fact that

U is closed). By (b) and (c), if V is linearly compact then so are U and V/U . �

Let V be a linearly topologized vector space over F . Then:

(e) If U is a linearly compact subspace of V , then U is closed.

6Each Uα is required to be closed in the subspace topology on V .



(f) Let {Uα}α∈A be a non-empty family of linearly compact subspaces of V . Then⋂
α∈A Uα is linearly compact.

We observe that (f) follows immediately from (e) and (b), so we focus on (e).

To prove the claim, pick v ∈ V in the closure of U , and let F denote the family of

neighbourhoods of v which are also affine subspaces of V . Then each E ∈ F is of

the form v+E′, where E′ is some linear subspace which is also a neighbourhood of

0. By Rmk.(0), E′ is closed, so E ∈ F is as well closed.

We see that E ∩ U is non-empty for every E ∈ F by the assumption on v, and⋂
E∈F (E ∩ U) ⊆

⋂
E∈F E = {v}. But {E ∩ U}E∈F is a family of non-empty closed

affine subspaces of U with the finite intersection property, so linear compactness

implies
⋂
E∈F (E ∩ U) = {v} and therefore v ∈ U .

Let V be a linearly topologized vector space over F , and let U1, U2 be open, linearly

compact subspaces of V . Then:

(g) If W ⊆ U1 ∩ U2 is an open, linearly compact subspace, then dimF (Ui/W ) is

finite for i = 1, 2.

(g’) The difference dimF (U1/W ) − dimF (U2/W ) is independent of W ; we denote

it by λV (U1, U2).

(h) If U is a closed linear subspace of V , then

λV (U1, U2) = λU (U1 ∩ U,U2 ∩ U) + λV/U
(
U1/(U1 ∩ U), U2/(U2 ∩ U)

)
,

where each term makes sense by Rmk.(1).

In order to prove (g), note first that W is closed in Ui by (e), so Ui/W is linearly

compact by Rmk.(1). But W is also open in Ui, so the quotient topology on Ui/W

is discrete, and the claim follows from (d).

As for (g’), let W0 := U1 ∩ U2. This is obviously an open linear subspace of

V and it is linearly compact by (f). Moreover, dimF (Ui/W0) = dimF (Ui/W ) −
dimF (W0/W ) for i = 1, 2, whence the claim follows immediately.

Finally, (h) follows from a simple computation that is left to the reader.

Remark. (2) If K1, K2 are compact subsets of a locally compact group G, then the

“relative measure” µ(K1)/µ(K2), where µ is any Haar measure on G, is well-defined

even though the Haar measure µ is itself not unique, cf. Appendix C1. The function

λV defined above can be thought of as an analogue of this “relative measure”. The

formula in (h) mirrors the corresponding equality for Haar measures on subgroups

and quotients, cf. Appendix C1. �

1.2. The adèle ring and divisors

We now have all the information necessary to describe the topology of the adèle ring

of a function field. For this section, we fix a field F and a function field K over F ,



and keep the notations X = XK , KP , ordP , OP , AK from the beginning of Chapter

1. We further identify K with the corresponding subfield of AK .

Theorem 1. With the above notations, the following hold.

(i) For P ∈ X, OP is linearly compact. More generally, every fractional ideal of

OP is linearly compact.

(ii) The F -linear subspace

O := {a = (aP )P ∈ AK : ordP (aP ) ≥ 0 ∀P ∈ X} ⊂ AK

is an open, linearly compact neighbourhood of 0 ∈ AK .

(iii) K ⊂ AK is discrete, hence closed.

(iv) The quotient AK/K is linearly compact.

Proof. (i) Let mP = {x ∈ KP : ordP (x) > 0}, and consider the F -linear isomorph-

ism (and homoeomorphism) OP ∼= OP /mP ×mP /m
2
P ×m2

P /m
3
P × .... Each factor

on the right-hand side is a copy of FP , and is discrete since all powers of mP are

open in KP . Since FP is a finite-degree extension of F , the linear compactness of

OP follows from claims (d) and (a) of the previous section.

As for the last claim, it suffices to observe that a fractional ideal of OP is either

{0}, which is trivially linearly compact, or of the form tkOP for some k ∈ Z, where

t is any element of KP with ordP (t) = 1. But multiplication with tk is continuous,

so tkOP is linearly compact by (c) of §1.

(ii) Clearly O is a linear subspace of AK . Further, O is open by the definition

of the topology on AK . Finally, since O =
∏
P∈X OP , the linear compactness of O

follows from (i) together with claim (a) of the previous section.

(iii) It suffices to show that there exists a neighbourhood U of 0 in AK such that

U ∩K = {0}. Accordingly, fix a nonzero x ∈ K, and let S be the finite set of places

P ∈ X for which ordP (x) < 0. Then

U := {a = (aP )P ∈ AK : ordP (aP ) ≥ 0 ∀P ∈ X, ordP (aP ) > 0 for P ∈ S}

has the desired property. The last claim follows using Rmk.(0).

(iv) The claim follows from the fact that AK = K + Ũ , where Ũ is a linearly

compact neighbourhood of 0 defined similarly as U in the proof of (iii). For a proof

of this, we refer the reader to [1], or [2] for the special case that F is finite.

The main achievement of this section is the following reinterpretation of the spaces

L(D), D ∈ D defined in the introduction. For a divisor D =
∑
nPP =

∑
niPi on

X, let M(D) be the set of adèles a = (aP )P ∈ AK such that ordP (aP ) ≥ nP for all

P , i.e. such that

ordP (aP ) ≥

ni if P = Pi,

0 otherwise.

Then clearly L(D) = K ∩M(−D) for any D.



Proposition 1. Let K, X, AK be as above, and O =
∏
OP ⊂ AK as in Thm. 1.

(i) M(D) is an open, linearly compact O-module for any D =
∑
nPP ∈ D.

(ii) If M ⊂ AK is an open, linearly compact O-module, then M = M(D) for some

divisor D.

Proof. (i) Let i = (iP )P be any element of AK such that iP 6= 0 for every P ∈ X
and ordP (iP ) = nP for all P . Then i is invertible in AK , so multiplication by i is a

homoeomorphism. It follows that M = iO is again open and linearly compact, since

O is; moreover, M is obviously a principal O-module.

(ii) For P ∈ X, the projection πP : AK → KP is an open, continuous, F -linear

surjective ring homomorphism. In particular, the image MP of M under πP is an

open fractional ideal of OP , and thus is of the form MP = tnPOP , where t is an

element of KP with ordP (t) = 1 and nP ∈ Z, cf. the proof of Thm. 1.(i).

Clearly M =
∏
P MP ; since M is open, it must possible to write M as a union

of basic open sets in AK , so necessarily MP = OP , i.e. nP = 0, for almost all P .

Thus,
∑
nPP is a divisor on X, and M = M(D).

Since obviously M(D) 6= M(D′) for distinct divisors D, D′, the content of Pro-

position 1 is that the open linearly compact O-submodules of AK are in bijection

with the divisors on X.

Remark. (3) Let M,M ′ ⊂ AK be open, linearly compact O-modules. We wish to

compute λ(M,M ′), where λ = λAK is as in claim (g’) of §1. By (g’) and Prop. 1.(ii),

it suffices to compute λ
(
O,M(D)

)
for a divisor D ∈ D.

We first consider the special case D = 1 ·P , where P ∈ X. In this case, M(D) =

mP ×
∏
Q6=P OQ, where mP = {x ∈ KP : ordP (x) > 0} ⊂ OP . In particular, M(D)

is contained in O and indeed both are equal at each component except at P . Thus,

λ
(
O,M(D)

)
= dimF OP /mP = dimF FP = [FP : F ], where FP is the residue field

at P . Accordingly, for arbitrary D we have λ
(
O,M(D)

)
= degD as defined at the

beginning of this chapter. �

We can now reap the first fruit of our adelic approach by answering the first part

of the problem posed in the introduction, namely whether the F -dimension of the

linear spaces L(D) is finite. Since M(D) is linearly compact for any divisor D ∈ D,

and K ⊂ AK is discrete by Thm. 1.(iii), the intersection L(D) = M(−D) ∩ K is

indeed a finite-dimensional F -vector space by claim (d) of §1.

1.3. Pairings and duality

Central to either version of the Riemann-Roch Theorem (see also Chapter 2) is an

involution, i.e. a self-inverse bijection, of the group D of divisors on X. A divisor

and its image under this involution may thus also be seen as “dual” to each other.

In this section, we show that, in the algebraic version of the RRT, where divisors

are identified with certain subspaces of the adèle ring as in §2, this duality of sorts

arises naturally from the familiar concept of “dual spaces” from linear algebra.



When discussing dual spaces, we shall need some facts about so-called “pairings”,

which we now mention. For the rest of this section, the ground field F is fixed and

is equipped with the discrete topology, as in §1.

In our terminology, a pairing of F -vector spaces V and W (to F ) is simply an

F -bilinear map V ×W → F , (v, w) 7→ vw, the prototypical example being of course

(symmetric) bilinear forms V ×V → F . For a subset S ⊆ V , the annihilator S′ of S

is defined as S′ := {w ∈ S : sw = 0 ∀s ∈ S} ⊆ W , cf. the notion of the orthogonal

complement. The annihilator of T ⊆W is defined similarly.

Lemma 1. Let V and W be F -vector spaces with a pairing V ×W → F , (v, w) 7→
vw. If V ′ = {0} ⊂ W and W ′ = {0} ⊂ V , then dimF V is finite if and only if

dimF W is, in which case they are equal.

Proof. Let v1, ..., vn be linearly independent elements of V , and suppose for the

sake of contradiction that dimF W = m < n. If w1, ..., wm is a basis for W , then the

(n ×m)-matrix M =
(
viwj

)
has nontrivial kernel. But if (x1, ..., xn) ·M = 0, then

x1v1 + ... + xnvn ∈ W ′ = {0}, a contradiction, so indeed dimF W ≥ n. The claim

now follows upon interchanging V and W .

Recall that, for any F -vector space V , the F -linear maps χ : V → F form an F -

vector space, called the dual space of V and denoted V ∗. The elements of V ∗ are

called (F -)linear functionals on V , but we shall also call them (field) characters of

V after the analogous concept for abelian groups, cf. Appendix C2.

Clearly V × V ∗ → F , (v, χ) 7→ χ(v) is a pairing of V and V ∗, called the dual

pairing of V and V ∗. If S ⊆ V is a linear subspace, then we quickly check that the

annihilator S′ ⊆ V ∗ is isomorphic to (V/S)∗, and analogously if the roles of V and

V ∗ are interchanged. In particular, this dual pairing satisfies the assumptions of the

above proposition, so dimF V
∗ = dimF V if the latter is finite.

Let V be a linearly topologized F -vector space, V ∗ its dual space.

(0) The annihilators E′ ⊆ V ∗, where E runs over the linearly compact subspaces

of V , form the neighbourhood basis around 0 ∈ V ∗ for a linear topology on V ∗.

From now on, V ∗ shall always be equipped with the topology from (0).

(1) The dual pairing of V and V ∗ is continuous. In particular, for a subset T ⊆ V ∗,
the annihilator T ′ ⊆ V is always closed linear subspace of V , and for a subset

S ⊆ V we have (S′)′ = span(S).

(2) The aforementioned linear isomorphism S′ ∼= (V/S)∗ is a homoeomorphism

for any closed subspace S ⊆ V .

(3) If V is linearly compact, then V ∗ is discrete.

(3’) Conversely, if V is discrete, then V ∗ is linearly compact.

The proof of (0) is a routine check of the definition given in §1 and is left to

the reader. Claim (1) is also straight-forward, since F is equipped with the discrete

topology, and (2) follows by comparing the subspace topology on S′ ⊆ V ∗ with the



topology on (V/S)∗ and keeping in mind that E′ ∩ S′ = (E + S)′ for any linear

subspace E ⊆ V .

The proof of (3) is again nearly trivial: by the definition of the topology on V ∗,

the subspace V ′ = {0} ⊂ V ∗ is a neighbourhood of 0, so V ∗ is discrete.

As for (3’), we fix a basis B for V and identify V with the direct sum ⊕b∈BF
both algebraically and topologically. The F -vector space W :=

∏
b∈B F is linearly

compact by the results of §1, and is isomorphic (as an F -vector space) to V ∗ via

τ : (wb)b∈B 7→ (χ : b 7→ wb), with inverse map χ 7→
(
χ(b)

)
b∈B .

Furthermore, τ is continuous: for let E′ be a fundamental neighbourhood of 0,

i.e. the annihilator of some linearly compact E ⊆ V . Since V is discrete, E is finite-

dimensional by claim (d) of §1, so E is contained in the span of some finite subset

B′ ⊂ B. Then τ−1(E′) is contained in U = {w = (wb) ∈W : wb = 0 ∀b ∈ B′}, which

by Rmk.(0) is an open neighbourhood of 0 ∈ W , proving continuity. By combining

claims (b), (c) and (e) of §1, we finally obtain that τ is also a closed map, so τ is a

homoeomorphism by elementary topology and V ∗ is linearly compact as claimed.

Remark. (3) The above claims (3) and (3’) are similar to certain statements for

group characters which are developed in the theory of Pontrjagin duality, cf. Ap-

pendix C2. One can also show that, if V is locally linearly compact, then so is V ∗, and

in fact we have the following stronger statement: if V , W are locally linearly compact

F -vector spaces with a pairing V ×W → F , (v, w) 7→ vw, such that v 7→ (w 7→ vw)

is an isomorphism V
∼→ W ∗, then w 7→ (v 7→ vw) is an isomorphism W

∼→ V ∗, and

the given pairing is precisely the dual pairing of V and V ∗. �

Let us now return to the adèle ring AK of the function field K, viewed as an

F -vector space. We shall fix a nonzero element χ : AK → F of A∗K which is trivial on

K, i.e. χ(K) = 0. Then we have a map ψ : AK → A∗K given by a 7→
(
χa : b 7→ χ(ab)

)
.

With some patience and ingenuity, it is possible to show that ψ is a linear isomorph-

ism and a homoeomorphism; in other words, we may say that AK is self-dual, again

cf. Appendix C2. In particular, for each subspace H ⊂ AK , the annihilator H ′ can

be seen as a subspace of AK upon identifying a with ψ(a) = χa, and if H is closed

then (H ′)′ = H by claim (1) above.

Remark. (4) Consider K ⊂ AK as an F -linear subspace, and consider K ′ ⊂ AK .

Since χ(K) = 0, we have K ⊂ K ′ and KK ′ ⊂ K ′, i.e., K ′ is a K-vector space.

But K ′ is also discrete as the dual of the linearly compact group AK/K, see Thm.

1.(iv) and claims (2) and (3) above. Moreover, K ′/K is linearly compact as a closed

subspace of AK/K, and so K ′/K is a finite-dimensional F -vector space by claim (d)

of §1. But since dimF K =∞, this is only possible if K ′ = K.

(4’) Thus, if χ̂ is another nonzero element of A∗K which is trivial on K, then

χ̂ = χa for some a ∈ K ′ = K. �

We conclude this section by addressing the issue of “duality” between divisors that

we mentioned at the beginning of this section. Let D ∈ D be a divisor, and let



M = M(D) ⊂ AK . Then M is an an open, linearly compact O-module by Prop. 1,

where O is as in Thm 1.(ii).

Now by the above claims (2) and (3’), the annihilator M ′ ⊂ AK is linearly

compact since it is isomorphic to the dual of the quotient AK/M , which is discrete

since M is open. By a “dual” argument, M ′ is open since M is linearly compact.

Finally, M ′ is again an O-module: if o ∈ O and n ∈ M ′, i.e. χ(Mn) = 0, then

χ
(
M(on)

)
= χ

(
(oM)n

)
= 0 since M is an O-module, so on ∈ M ′. Thus, by Prop.

1.(ii), M ′ = M(D̃) for some divisor D̃ ∈ D.

In particular (put M = O), there is a unique divisor W ∈ D with M(−W ) = O′

(mind the sign change). W shall be called the canonical divisor associated to the

field character χ. Note that M(D)′ = M(−W −D) for all divisors D ∈ D.

1.4. Statement and proof

We finally use the knowledge we have gained in the last three sections to state and

prove the algebraic RRT. We henceforth use the notation l(D) := dimF L(D) for a

divisor D on X; it was proved in §2 that l(D) is finite for any D. Furthermore, we

shall make free use of the observations (O1)-(O4) at the beginning of this chapter

and the notations introduced there.

Theorem 2 (Riemann-Roch Theorem for smooth projective curves). Let X be a

smooth projective curve over F , and let K = F (X) be the field of rational functions

on F . Then there exist a non-negative integer g and a divisor W on X such that,

for any divisor D ∈ D,

l(D) = degD + 1− g + l(W −D).

Proof. Fix a nonzero character χ : AK → F which is trivial on K and let W be

the canonical divisor associated to χ, see §3. The non-negative integer g := l(W )

is independent of χ: if χ̂ is as in Rmk.(4’) and Ŵ is the corresponding canonical

divisor, then W and Ŵ differ by the principal divisor div(a), where a is also as in

Rmk.(4’), thus l(W ) = l(Ŵ ) by (O4).

Now let D be an arbitrary divisor on X. Then L(W −D) = M(D−W )∩K, so,

by claim (2) of §3, Rmk.(4) and the discussion thereafter,

L(W −D) ∼=
(
AK/

(
M(D −W ) ∩K

)′)∗
=
(
AK/

(
M(D −W )′ +K ′

))∗
=
(
AK/

(
M(−D) +K

))∗
.

Analogously, L(W ) is isomorphic to the dual of AK/(O+K). We set M := M(−D).



Then, using Lemma 1 and claims (g), (g’) and (h) from §1, we obtain

l(W −D)− g = dimF L(W −D)− dimF L(W )

= dimF

(
AK/(M +K)

)
− dimF

(
AK/(O +K)

)
= λAK/K

(
AK/K, (M +K)/K

)
− λAK/K

(
AK/K, (O +K)/K

)
= λAK/K

(
(O +K)/K, (M +K)/K

)
= λAK/K

(
O/(O ∩K),M/(M ∩K)

)
= λAK (O,M)− λK(O ∩K,M ∩K).

By Rmk.(3), the minuend is deg(−D) = −degD. As for the subtrahend, this is

dimF (O ∩K)− dimF (M ∩K) = 1− dimF (M ∩K) since (O1) implies O ∩K = F ,

cf. also Appendix A. Thus, the proof is complete.

Remark. (5) If the constant field F of K is finite, then AK is a locally compact

ring and so we can prove the Riemann-Roch theorem using a Haar measure µ on

AK instead of the function λAK . This is the approach followed in Weil’s book [2].

As a matter of fact, Weil’s formulation of the Riemann-Roch Theorem is stronger,

being a statement on “coherent systems of lattices” belonging to finite-dimensional

vector spaces E over K, and the usual Riemann-Roch Theorem is a reinterpretation

of the special case E = K.

(5’) Since AK is also locally compact if K is an algebraic number field, one may

wonder to what extent the Riemann-Roch Theorem can be rephrased or altered so

as to hold over algebraic number fields as well. Those who wish to put an end to

their wondering are referred to [6, p. 264], but we take the liberty of spoiling the

surprise: there does exist a version of the Riemann-Roch Theorem which also holds

over number fields, it is stronger than the original result and it relies on the definition

of the Fourier transform on AK ; indeed may be regarded as a multiplicative analogue

of the (adelic) Poisson summation formula. �

The nonnegative integer g in the statement of the theorem is called the (arith-

metic) genus of X and only depends on X (and F ). It is invariant in the sense that,

if C is a curve which is birationally equivalent to X, then their genera coincide.

For an arbitrary smooth projective curve X over an algebraically closed field F ,

it is known, see [3], that there exists a plane curve C which is birationally equivalent

to X and all whose singular points are ordinary multiple points. If C is the vanishing

set of h(x, y) ∈ F [x, y], then the common genus of X and C equals

(n− 1)(n− 2)

2
−

∑
P∈X multiple point

rP (rP − 1)

2
,

where n is the degree of a h and rP is the multiplicity of P , cf. also Appendix B.

In particular, any conic ( = smooth quadratic plane curve) over F has genus 0, and

any smooth cubic curve over F has genus 1.



To conclude the chapter, we now present a surprisingly straight-forward applic-

ation of the Riemann-Roch Theorem. First, we shall need a corollary.

Corollary 1. If D is a divisor with degD > 2g − 2, then l(D) = degD + 1− g.

Proof. Plugging in D = W in the statement of the Riemann-Roch Theorem, we

obtain degW = 2g−2, so we have to prove that, if deg(W−D) < 0, then l(W−D) =

0. But this is clear: if some f ∈ K× were in L(W − D), then we would find that

div(f) > D−W component-wise and hence 0 = deg(div(f)) > deg(D−W ) > 0.

Now consider a smooth projective curve X over F , and suppose that the genus

of X is 1. Such a curve is called an elliptic curve over F .

By the corollary, for any divisor D with degD > 0 we have l(D) = degD. In

particular, for any point P ∈ X, we have l(n · P ) = n if n ≥ 1. (As for n = 0, we

have l(D) = l(0) = 1 since F is algebraically closed in K = F (X) by assumption.)

Accordingly, L(1 · P ) = F . Next, we obtain l(2 · P ) = deg(2 · P ) = 2, so L(2 · P )

can be identified with F ⊕ Fx for some x; necessarily ordP (x) = −2, for otherwise

x ∈ L(1 · P ) = F .

Analogously, L(3 · P ) = F ⊕ Fx⊕ Fy where ordP (y) = −3. Then by comparing

orders we find: L(4 · P ) = span(1, x, y, x2) and L(5 · P ) = span(1, x, y, x2, xy).

For n = 6 things get interesting, since all seven functions 1, x, y, x2, xy, x3, y2 ∈
K have a pole of order ≤ 6 at P , but l(D) = 6. Thus, we obtain a linear dependence

relation between these seven monomials, i.e. a cubic equation in two variables. An

equation of this form is called a Weierstraß equation and it describes the curve X

in the sense that X is precisely the set of points (x, y) whose coordinates satisfy the

equation. If the characteristic of F is neither 2 nor 3, then we can make a change of

coordinates and rewrite this equation in the form

y2 = 4x3 −Ax−B,

where the cubic polynomial on the right-hand side has no multiple roots, or equi-

valently its discriminant A3 − 27B2 is nonzero.

2. The complex Riemann-Roch Theorem

In this chapter, we briefly discuss the complex version of the Riemann-Roch The-

orem. Accordingly, we consider a compact connected Riemann surface X and the

field K =M(X) of meromorphic functions on X. We quickly review these concepts

before formulating the statement of the complex RRT.

Recall that an n-dimensional complex manifold is a (topological) manifold with

an atlas of charts to the open unit disk in Cn. A 1-dimensional complex manifold is

obviously a 2-dimensional real manifold and is hence called a Riemann surface.

Example. (1) Any smooth irreducible projective curve over C can be given the



structure of a compact Riemann surface. The prototypical example of this is 1-

dimensional complex projective space P1(C), i.e. the Riemann sphere. �

Just as there is a natural notion of smooth maps between smooth real manifolds,

there is also an obvious definition of holomorphic and even meromorphic maps on

complex manifolds. The meromorphic maps X → C on a connected Riemann surface

X form a field, which we denote by K =M(X).

Remark. (1) With the above definitions, meromorphic maps X → C are the same

as holomorphic maps from X to the Riemann sphere P1(C) = C ∪ {∞}.
(2) If X is a compact connected Riemann surface, then M(X) is actually an

algebraic function field in one variable over C, see e.g. [8, p. 36]. �

Let D be the free abelian group on X. As we did in the algebraic version, we can

associate to each f ∈ K× a divisor div(f) =
∑

ordP (f)P . Recall that ordP (f) ≥ 0

if and only if f is holomorphic at P , so, by a form of Liouville’s Theorem, a function

f with ordP (f) = 0 for all P is necessarily a constant f ∈ C, f 6= 0.

Futhermore, for a divisor D =
∑
nPP ∈ D, we set7 degD =

∑
nP . Then, by

compactness of X, it must hold that deg
(
div(f)

)
= 0 for any f ∈ K×.

Finally, let us remark that L(D), see the introduction, is the set {f ∈ K : f = 0

or div(f) ≥ −D}, where by ≥ we mean that the inequality holds at every P . We

again denote l(D) := dimC L(D).

The statement of the complex Riemann-Roch Theorem is as follows:

Theorem 3. Let X, K and D as above. Then there exist a non-negative integer g

and a divisor W ∈ D on X such that, for all divisors D ∈ D,

l(D) = degD + 1− g + l(W −D).

As was the case for the algebraic RRT, the genus g is an intrinsic invariant of

the Riemann surface X. It has the following topological interpretation: as a real

manifold, the compact connected Riemann surface X is homoeomorphic to a sphere

with a finite number of “handles”, and this number is precisely g. In particular, a

compact connected Riemann surface of genus 0 is homoeomorphic to a (real) sphere,

the obvious example being P1(C), cf. Rmk.(1). Another interesting case is g = 1,

where X is homoeomorphic to a torus.

It is sensible to spend a few words on the canonical divisor W . In the complex-

analytic case, canonical divisors are obtained from meromorphic 1-forms on X,

which locally around each point P ∈ X are given by f dz for some meromorphic

function f = fP defined locally around P and some local coordinate z = zP . For

a nonzero meromorphic 1-form ω on X, the formal sum div(ω) := ordP (fP )P is a

divisor on X, the canonical divisor associated to ω. But the space Ω of meromorphic

7Thus, degP = 1 for any point P . This is, in a way, consistent with definition of deg from Chapter 1
since F = C is algebraically closed.



1-forms on X is a one-dimensional K-vector space, because one can show that if

ω, ω′ ∈ Ω are nonzero, then there exists a nonzero meromorphic function f on X

such that fω = ω′. Since div(fω) = div(f) + div(ω), canonical divisors are well-

defined up to a principal divisor, again cf. Chapter 1.

Remark. (3) Let ω be a nonzero meromorphic 1-form on X, and let W = div(ω)

the corresponding canonical divisor. Then f 7→ fω is a complex-linear isomorphism

of L(W − D) onto the space I(D) := {ω ∈ Ω : ω = 0 or div(ω) ≥ D}, where

again ≥ means that the inequality holds at each place P . In particular, the space of

holomorphic 1-forms on X has dimension dimC I(0) = l(W ) = g. �

Review of proofs. There exist several different proofs of the complex Riemann-Roch

Theorem. A direct proof is possible, see e.g. [9]. On the other hand, one of the

most conceptual proofs relies on reinterpreting the various quantities that appear in

the formula as dimensions of cohomology groups and then applying Serre’s duality

theorem, see e.g. [8].

It is also possible to reduce the complex-analytic RRT to the algebraic version.

First, one has to embed X into some projective space PN (C) via a so-called “very

ample line bundle”. The usual criterion for a line bundle to be very ample follows

from (some version of) the Riemann-Roch Theorem itself, but it is also possible to

bypass this by applying the theory of elliptic PDEs, see [10]. Next, Chow’s Theorem

shows that the image of X in PN (C) is algebraic, i.e. a vanishing set of polynomials;

this result can in turn be proved in a simple way by applying the Remmert-Stein

Theorem. Then K and g reprise their exact roles from Chapter 1.

We conclude this chapter by giving a glimpse into the theory of elliptic functions.

Recall that a lattice Λ in the complex plane C is a discrete subgroup of rank 2;

in other words, Λ = Zω1 ⊕ Zω2 where ω1, ω2 ∈ C are R-linearly independent. The

quotient X = C/Λ can be equipped with the structure of a (1-dimensional) complex

manifold. If we imagine this quotient as a fundamental parallelogram {aω1 + bω2 :

a, b ∈ R, 0 ≤ a, b < 1} where parallel sides have been identified with each other,

then it is clear that, topologically, C/Λ is a torus and so its genus if 1. Following the

above sketch of proof, together with the discussion at the end of Chapter 1, we find

functions x, y ∈ K =M(X) such that X is given by the equation y2 = 4x3−Ax−B.

Indeed, we can take

A = 60G4(Λ) := 60
∑

06=l∈Λ

1

l4
,

B = 140G6(Λ) := 140
∑

06=l∈Λ

1

l6
,

x = ℘ : z 7→ 1

z2
+
∑

0 6=l∈Λ

(
1

(z − l)2
− 1

l2

)
,

y = ℘′ : z 7→ −2
∑
l∈Λ

1

(z − l)3
.



It is well-known that any meromorphic function on X, i.e. any meromorphic function

on C which is periodic with respect to Λ, is a rational function in ℘ and ℘′. But the

equation (℘′)2 = 4℘3 − A℘ − B shows that ℘ and ℘′ are algebraically dependent

over C, and so K =M(X) is indeed an algebraic function field in one variable over

C, in accordance with Rmk.(2).

3. Modular forms

In this final chapter, we briefly review some aspects of the theory of modular forms

and sketch how the Riemann-Roch Theorem can be used to compute the dimensions

of spaces of modular forms.

3.1. Modular groups

Recall that a modular group is a subgroup of SL2(Z) of finite index. In particular,

SL2(Z) itself is called the full modular group. The key observation for us is that any

modular group Γ acts on C ∪ {∞} as follows: if γ =
(
a b
c d

)
and z ∈ C, then

γ · z :=
az + b

cz + d
∈ C ∪ {∞}.

Clearly γ · z ∈ R ∪ {∞} if and only if z ∈ R ∪ {∞}. If this is not the case then

an easy computation shows that =(γ · z)=(z) > 0, where =(w) := w−w̄
2i denotes the

imaginary part of w ∈ C. Therefore, we may restrict the above action to the upper

half-plane H := {z ∈ C : =(z) > 0}.

Remark. (1) A point x ∈ R ∪ {∞} is called a parabolic point, or a cusp, of Γ if

there exists some γ ∈ Γ such that γ · x = x and tr(γ)2 = 4 det(γ), where tr(γ) and

det(γ) denote the trace and the determinant of γ respectively.

If, for instance, Γ = Γ0(N) := {
(
a b
c d

)
∈ SL2(Z) : N |c} for some N ∈ Z, then

x =∞ is always a cusp of Γ since γ =
(

1 1
0 1

)
satisfies (i) and (ii).

(2) A point z ∈ H is called an elliptic point of Γ if there exists some γ ∈ Γ such

that γ · z = z and tr(γ)2 < 4 det(γ).

Consider for instance the full modular group Γ = SL2(Z). Then z = i and

z = ρ = e2πi/3 are elliptic points of Γ: take γ =
(

0 −1
1 0

)
and γ =

(
1 −1
1 0

)
respectively.

(3) For any modular group Γ and any z ∈ H, we define the order of z as the

index of Z(Γ) in Γz, where Z(Γ) = Γ ∩ {±
(

1 0
0 1

)
} is the center of Γ and Γz is the

stabilizer of z. It can be shown that this index is finite, and that it is > 1 if and

only if z is an elliptic point of Γ.

(3’) Let Γ = SL2(Z). Then it is easy to verify that i and ρ have order 2 and 3

respectively, cf. Rmk.(2). �

It is a standard fact that the orbit space YΓ = Γ \H can be given the structure

of a Hausdorff topological space. This space is not compact in general, but it can be

compactified by adding finitely many points. More precisely, for a fixed Γ we denote



by H∗ the union of H with the cusps of Γ, see Rmk.(1) for the definition, and then

check that XΓ := Γ \ H∗ is the disjoint union of YΓ with a finite (!) set of orbits

coming from the cusps of Γ, which are themselves called the (inequivalent) cusps of

XΓ. Again, XΓ has the structure of a Hausdorff space, and indeed it can be equipped

with the structure of a compact (1-dimensional) complex manifold.

Let K = M(XΓ) be the field of meromorphic functions on XΓ, as in Chapter

2, and let πΓ denote the canonical projection of H onto Γ \ H ⊆ XΓ. For ϕ ∈ K,

the composition f = ϕ ◦ πΓ is a meromorphic function on H, and the fact that ϕ

is meromorphic at the cusps translates into a condition on the behaviour of f(z)

as z ∈ H approaches a cusp x ∈ R ∪ {∞} of Γ, which is also phrased as f being

“meromorphic at the cusp x”. We illustrate this in a special but representative case.

For this paragraph, consider the full modular group Γ = SL2(Z) and the cusp

x =∞ of Γ, cf. Rmk.(1). Since γ =
(

1 1
0 1

)
∈ Γ and f(γ · z) = f(z + 1), we infer that

f(z + 1) = f(z) for all z ∈ H. As a real periodic function, f has a Fourier series

expansion f(z) =
∑
n∈Z(e2πiz)n, and the map f̃ : q = e2πiz 7→ f(z) is a well-defined

meromorphic function on the punctured open unit disk {q : 0 < |q| < 1}. Then f

being meromorphic at x amounts to f̃ having a meromorphic continuation to q = 0.

(Analogously, f is called holomorphic at the cusp x if f̃ extends holomorphically to

q = 0, and is said to vanish at x if f̃(0) = 0.)

In summary, a meromorphic function on XΓ induces a meromorphic function f

on H which satisfies f(γ · z) = z for all γ and all z and which is “meromorphic at

all cusps of Γ”. Such a function will be called a modular function of weight 0 for Γ.

Conversely, it is not hard to show that, if f is a modular function of weight 0 for Γ,

then there exists some ϕ ∈M(XΓ) such that f = ϕ ◦ πΓ.

3.2. Modular forms and Riemann-Roch

Let Γ be a modular group as in §1, k be an integer and f be a meromorphic function

on H which is also meromorphic at each cusp of Γ, again see §1. Then f is called a

modular function of weight k for Γ if

f(γ · z) = (cz + d)kf(z) for all z ∈ H, γ =
(
a b
c d

)
∈ Γ.

Example. (1) Let z ∈ H, and let Λ = Z + zZ denote the lattice spanned by 1 and

z in C. For k ∈ 2Z, k ≥ 4 we define

Gk(z) := Gk(Λ) =
∑

(m,n)∈Z2\{(0,0)}

1

(m+ nz)k
,

cf. Chapter 2. If ω1, ω2 ∈ C are another Z-basis for Λ, i.e. Λ = ω1Z + ω2Z, then

there exists some γ =
(
a b
c d

)
∈ SL2(Z) ⊂ SL2(C) such that

(
ω1
ω2

)
= γ( z1 ). But then

Gk(Λ) = ω−k2 Gk(Z + τZ), where τ = ω1

ω2
= az+b

cz+d = γ · z. In other words,

Gk(γ · z) = (cz + d)kGk(z) for all z ∈ H, γ =
(
a b
c d

)
∈ Γ,



i.e., Gk is a modular function of weight k for Γ = SL2(Z). �

Remark. (4) If f and g are modular functions of weight k and l respectively, then

fg is a modular function of weight k + l. �

The modular functions of weight k form a complex vector space, which we denote

Ak(Γ). We further write

Mk(Γ) := {f ∈ Ak(Γ) : f is holomorphic on H and at each cusp of Γ},

Sk(Γ) := {f ∈Mk(Γ) : f vanishes at each cusp of Γ}

and call the elements of Mk and Sk modular forms and cusp forms respectively.

Example. (2) The Eisenstein series Gk for k ∈ 2Z, k ≥ 4 from Ex.(1) are actually

modular forms of weight k for Γ = SL2(Z), and hence for every modular group

Γ ⊂ SL2(Z). In particular, Mk(Γ) is nonzero for k ∈ 2Z, k ≥ 4.

(3) The modular discriminant ∆ : z 7→
(
60G4(z)

)3 − (140G6(z)
)2

is a modular

form of weight 12 for the full modular group. This form is holomorphic on H and a

direct computation using Gk(∞) = 2ζ(k) shows that ∆ vanishes at the cusp ∞.

(3’) The j-invariant z 7→ 123 (60G4(z))
3

∆(z) is a modular function of weight 0 for the

full modular group. It is holomorphic on all H but it has a pole at ∞, so it is not a

modular form. �

Fix a modular group Γ and an even integer k ≥ 4. In the next few paragraphs, we

sketch how one can compute the dimensions of Mk(Γ) and Sk(Γ) over C using the

Riemann-Roch Theorem.

One way to do this is to first associate to each nonzero f ∈ Mk(Γ) a divisor

with rational coefficients div(f0), i.e. an element
∑
P∈Γ νP (f)P of the free Q-vector

space ⊕P∈XΓ
Q. The precise definition of the rational number νP (f) depends on

whether P is a cusp, an elliptic point or neither, cf. §1, and becomes natural once

one identifies the elements of Ak(Γ) with differentials of degree m = k
2 on XΓ, see

[12]. The information we shall need on νP is that f ∈Mk(Γ) if and only if νP (f) ≥ 0

for all P , and that f vanishes at a cusp P if and only if νP (f) ≥ 1.

Let D denote the divisor bdiv(f0)c := bνP (f0)cP , where b·c is the floor function.

Then D is a divisor on XΓ in the usual sense. We claim that Mk(Γ) ∼= L(D).

First, we observe that, by Ex.(2), Mk(Γ) contains a nonzero element f0, and

by Rmk.(4), f 7→ f/f0 is an isomorphism of Ak(Γ) with A0(Γ), which in turn

is isomorphic to K = M(XΓ) by §1. Next we check that the elements of Mk(Γ)

correspond precisely to the maps f ∈ K such that either f = 0 or div(f) ≥ −div(f0)

component-wise, and then essentially deduce the claim from the definition of the

floor function. Similarly, one proves that Sk(Γ) is isomorphic to L(D−P1− ...−Pt)
where P1, ..., Pt are the inequivalent cusps of Γ, see §1.

In order to apply the Riemann-Roch theorem, we need to determine the genus of

XΓ. This is done by applying the Riemann-Hurwitz formula to the branched covering



XΓ 7→ XΓ(1), where Γ(1) = SL2(Z). Without digressing too far, let us simply remark

that the Riemann-Hurwitz formula relates the genus of XΓ to the genus of XΓ(1),

which is known to be 0, and involves computing how many points of XΓ are mapped

to cusps or elliptic points of XΓ(1). The formula yields

g = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
,

where: µ is the index of Γ/Z(Γ) in PSL2(Z), cf. Rmk.(2); ν2 and ν3 are the numbers

of (inequivalent) elliptic points of Γ of order 2 and 3, respectively8; and ν∞ is the

number of (inequivalent) cusps of Γ, cf. Rmk.(1), (2) and (3).

Remark. (5) Not unlike the Riemann-Roch theorem, the Riemann-Hurwitz formula

can be proved both for a smooth projective curve X over an algebraically closed field

F (the branched covering being X → P1(F )) and for branched coverings of compact

Riemann surfaces. The algebraic version can be derived from the Riemann-Roch

theorem itself, see [3, Problem 8.36], while the complex version can be proved directly

by triangulating both surfaces and keeping in mind that the Euler characteristic χ

of a compact Riemann surface is related to its genus g via χ = 2− 2g. �

The Riemann-Roch theorem now yields:

dimSk(Γ) = (k − 1)(g − 1) +

(
k

2
− 1

)
t+

k

2

r∑
i=1

(
1− 1

ei

)
,

dimMk(Γ) = dimSk(Γ) + t,

where: t = ν∞ is the number of (inequivalent) cusps of XΓ; r = ν2 +ν3 is the number

of (inequivalent) elliptic points of Γ; ei denotes the order of the i-th elliptic point,

cf. Rmk.(2)-(3) from §1. A more explicit formula can be obtained if Γ = Γ0(N) :=

{γ =
(
a b
c d

)
∈ SL2(Z) : N |c} for some N ∈ Z, in which case the quantities µ, ν2, ν3

and ν∞ depend solely on N and can be explicitly computed, see [13], yielding

dimSk(XΓ) =
k − 1

12
N
∏
p|N

(
1 +

1

p

)
− 1

2
ν∞(N)

+

(
1 +

k

4
+

⌊
k

4

⌋)
ν2(N) +

(
1 +

k

3
+

⌊
k

3

⌋)
ν3(N).

Remark. (6) The case k = 2 is best treated separately but is also extraordinarily

interesting in itself. It follows from a fact that was mentioned earlier that the ele-

ments f of A2(Γ) can be identified with differentials on XΓ of degree 1, i.e. with

meromorphic 1-forms ωf on XΓ, and that in particular S2(Γ) is isomorphic to the

space of holomorphic 1-forms on XΓ. Thus, dimS2(Γ) equals the genus g of XΓ by

Rmk.(3) of Chapter 2.

8It is well-known, and we shall tacitly use it in the next computations, that XΓ only has finitely many
elliptic points, and that their orders are either 2 or 3.



Using the formula for the genus of Γ given above, together with the formulas

for ν2(N), ν3(N), ν∞(N) found in the references, one can directly compute that

dimS2

(
Γ0(N)

)
= 0 for N < 11, and in particular for N = 2. This fact was used to

show that Fermat’s Last Theorem follows from the modularity theorem for semistable

elliptic curves, which was established by Andrew Wiles and Roger Taylor in 1995.

For suppose that there exists a nontrivial solution (a, b, c) ∈ Z3 to the equation

ap + bp = cp for some prime p ≥ 5. Then y2 = x(x− ap)(x + bp) is a smooth cubic

plane curve over Q, hence an elliptic curve, see Chapter 1, and it can be checked to be

semistable, so by the modularity theorem it must correspond to a nonzero element

f of S2

(
Γ0(N)

)
for some even N . By a theorem of Ribet, formerly known as the “ε

conjecture”, f must already lie in S2

(
Γ0(2)

)
, the sought-after contradiction. �



Appendix A. Valuation theory

Here are gathered some of the most basic definitions and results of valuation theory

which are used in the main text.

A.1. Two examples

We begin with two examples, discussed parallelly. Let A denote either the ring Z of

(so-called rational) integers or a polynomial ring F [t] in one variable t over a field

F , and let K denote the field of fractions of A, i.e. either K = Q or K = F (t) for

some field F .

In both cases, A is known to be Euclidean: for A = Z, a Euclidean function

on A is given by the modulus |n| := max{n,−n}, while for A = F [t] we can take∣∣p(t)∣∣ := qdeg p where q is any9 integer greater than 1. This map |·| can be extended

to a map K → R≥0, again denoted |·|, given by

|x| =

0 if x = 0,

|a| /|b| if x = a/b for a, b ∈ A, b 6= 0;

it is positive-definite, multiplicative and satisfies the triangle inequality, i.e.:

(A1) |x| = 0 if and only if x = 0;

(A2) |xy| = |x||y| for all x, y ∈ K;

(A3) |x+ y| ≤|x|+|y| for all x, y ∈ K;

in other words, it is an absolute value on K. In the case K = F (t) we even have the

strong triangle inequality

(A3’) |x+ y| ≤ max{|x| , |y|} for all x, y ∈ K.

Now let P be defined as follows: if A = Z, then P = {2, 3, 5, ...} is the set of prime

numbers; if A = F [t], then P is the set of monic irreducible polynomials π(t) ∈ F [t].

Since A is Euclidean, it is a UFD, and so each 0 6= a ∈ A can be written as a product

ε
∏
π∈P π

vπ(a), where ε ∈ A∗, vπ(a) ∈ Z≥0 and vπ(a) = 0 for almost all π, i.e., the

product is finite. For π ∈ P and x ∈ K, set

vπ(x) =

∞ if x = 0,

vπ(a)− vπ(b) if x = a/b for a, b ∈ A, b 6= 0.

The map vπ is a normalized discrete valuation on K, i.e. a surjective map from K×

to Z, extended via vπ(0) =∞, satisfying

(V1) vπ(xy) = vπ(x) + vπ(y) for all x, y ∈ K;

(V2) vπ(x+ y) ≥ min{vπ(x), vπ(y)} for all x, y ∈ K.

Accordingly, for each π ∈ P the map x 7→ |x|π := |π|−vπ(x)
satisfies (A1), (A2) and

9If F is a finite field, then the canonical choice for q is the cardinality of F .



(A3’). It follows at once from the definitions that the product formula

|x|∞ ·
∏
π∈P

|x|π = 1 ∀x ∈ K×

holds, where |·|∞ denotes the Euclidean function |·|. Moreover, in the case K = F (t),

we can define deg(∞) := 1 as well as v∞(a/b) := deg(b)− deg(a) for a, b ∈ A, b 6= 0;

then, after taking logarithms to the base q, the product formula reads:∑
P∈P∪{∞}

vP (x) deg(P ) = 0 ∀x ∈ K×. (1)

A.2. The general theory

At this point, it is convenient to introduce the concept of places of a field. A place

of a field K is commonly defined as an equivalence class of absolute values on K,

where two absolute values |·|, |·|′ on K are equivalent if there exists a ρ ∈ R>0 such

that |x|′ = |x|ρ for all x ∈ K. Since two absolute values on K are equivalent if and

only if they induce10 the same topology on K, by a place of K we shall often mean

a topology on K which is induced by some absolute value. In either case, a valued

field is a pair (K,P ) where K is a field and P is a place of K.

Example. (0) The trivial place on any field K is the discrete topology, i.e. the

topology in which singletons are open. It is induced by the trivial absolute value |·|
given by |x| = 1 for x 6= 0.

(1) The standard, “Euclidean” topology on R is a place of R, induced by the

standard absolute value. Similarly for the standard topology on C.

(2) Let A,K,P be as in §1. If π, π′ ∈ P ∪ {∞} are distinct, then |π|π < 1 but

|π|π′ = 1, thus π and π′ induce different places of K. �

Remark. (1) Keep the notations from Ex.(2). It is a theorem of Ostrowski that, if

P is a nontrivial place of K = Q, then P comes from some π ∈ P ∪ {∞}.
Analogously, if P is a nontrivial place of K = F (t) which is trivial on F , i.e.

whose restriction to F is the trivial place (see also (ii) below), then it can be shown

that P comes from some π ∈ P ∪ {∞}. �

Let (K,P ) be a valued field, and let |·| be an absolute value on K belonging to

P . By the definition of a place, the following are well-defined, i.e. independent of |·|:
(i) the subsets O(P ) := {x ∈ K : |x| ≤ 1} and m(P ) := {x ∈ K : |x| < 1} of K;

(ii) the “restriction” of P to any subfield K ′ ⊆ K, i.e. the subspace topology;

(iii) the set CS(K,P ) of sequences inK which are Cauchy with respect to the metric

(x, y) 7→|x− y|, equipped with component-wise addition and multiplication;

(iv) the field KP defined as the quotient of CS(K,P ) by its maximal ideal n :=

{(xn) ∈ CS(K,P ) : |xn|
n→∞−−−−→ 0};

10The topology induced by |·| is the one generated by the “open balls” Br(x) := {y ∈ K : |x− y| < r},
where x ∈ K, r ∈ R>0.



(v) the place P on KP induced by |·| : KP → R≥0, x 7→ lim|xn| where (xn) is an

arbitrary element of CS(K,P ) with limxn = x.

The valued field (KP , P ) is called the completion of (K,P ), cf. the well-known

construction for general metric spaces.

Example. (2) Again, let A,K,P be as in §1, and consider a place π ∈ P. Then the

completion Kπ is given11 by the “formal Laurent series field”

Kπ :=


∞∑
i=n

aiπ
i : n ∈ Z, |ai|∞ < |π|∞ ∀i

 ,

and the place on Kπ is the one induced by the normalized discrete valuation

ordπ

 ∞∑
i=n

aiπ
i

 := inf{i ∈ Z : ai 6= 0}.

When K = Q and π is a positive prime integer p, it is customary to denote Kπ by

Qp. The elements of Qp are called p-adic numbers.

(2’) If K = F (t) and π =∞, then one quickly checks that the completion K∞ is

precisely the Laurent series field F ((1/t)). On the other hand, if K = Q and π =∞
then the completion Q∞ is clearly R, cf. Ex.(1). �

Remark. (2) Ex.(2) is a special case of the following situation: let (K,P ) be a

valued field, |·| be an absolute value on K which induces P , and suppose that |·| =

C−v(·) for some real constant C > 1 and a normalized discrete valuation v on K.

Let |·| also denote the extension of |·| to KP as in (v) above. Then x 7→ − log |x|
logC is a

normalized discrete valuation ordP on KP whose restriction to K is precisely v.

(3) Let |·| be a nontrivial absolute value on an field K and P the corresponding

place of K. If |·| satisfies the strong triangle inequality (A3’) from §1, then O(P ) ⊂ K
as defined above is a ring. Moreover,m(P ) is a maximal ideal ofO(P ), so the quotient

O(P )/m(P ) =: FP is a field, the residue field of K at P .

Conversely, suppose that O(P ) is a ring. Then, since 1 ∈ O(P ), the ring O(P )

contains the image of the canonical ring map Z → K, 1 7→ 1, and it can be shown

that this implies the strong triangle inequality for |·|. In this case, both the place P

and the absolute value |·| are called non-archimedean.

Finally, if O(P ) is Noetherian, then it is already a PID, and there is a unique

normalized discrete valuation ordP on K such that |·| = C−ordP (·) for some real

constant C > 1. Then P is called a discrete place, and |·| is called a discrete absolute

value. �

11If K = F (t) and π ∈ P, then any p(t) ∈ F [t] can be written as a polynomial a0 +a1π+ ...+akπ
k with

|ai|∞ < |π|∞ for all i: this is just Euclidean division. If, instead, A = Z, then this is also possible if a ≥ 0,
while for a < 0 we only have a “formal power series expansion”, e.g. −1 = (π−1)+(π−1)π+(π−1)π2+...
(cf. geometric series). In either case, K embeds densely into Kπ.



A.3. Number fields and function fields

Again let A,K,P as in §1, and let L be a field containing a copy of K so that L/K

is a finite-degree field extension. In the case K = Q, L is called an algebraic number

field ; otherwise, if K = F (t), then L is called an algebraic function field in one

variable over F , or a function field over F for short.

Remark. (4) If L is a function field over F and x ∈ L is transcendental over F ,

then it is not hard to show that [L : F (x)] is finite. �

Let L be a number field and let OL denote the integral closure of Z in L. Then

OL is a Dedekind domain, i.e., every nonzero ideal I of OL can be written uniquely

as a finite product
∏

pvp(I) of prime ideals. As in §1, we obtain a normalized discrete

valuation vp on L for each nonzero prime ideal p ⊂ A, and a corresponding absolute

value |·|p := (Np)−vp(·), where Np denotes the cardinality of OL/p.

On the other hand, L has n = [L : Q] distinct embeddings σ1, ..., σn into C. The

product formula
n∏
i=1

∣∣σi(x)
∣∣
C ·
∏
p

|x|p = 1 ∀x ∈ L×

holds, where |·|C is just the standard absolute value on C, and every nontrivial place

of L is induced either by some p or by some σi, cf. Rmk.(1).

If L is a function field over F and we fix some t such that [L : F (t)] < ∞, then

the above proof carries over to L with almost no modifications. In particular, let

X = XL denote the set of nontrivial places Q of L which are trivial on F . Then:

• for every Q ∈ X there is a canonical absolute value |·|Q belonging to Q;

• for every x ∈ L×, it holds that |x|Q = 1 for almost all Q ∈ X;

• the product formula holds:∏
Q∈X
|x|Q = 1 ∀x ∈ L×.

In the sequel, we make some observations and partially provide new proofs for the

above. To that end, we record the following general facts from valuation theory (that

were also implicitly used in the proof for number fields):

(F1) For a finite extension L/K and a place P of K, the number r of places Q of L

whose restriction to K is precisely P satisfies 1 ≤ r ≤ n.

(F2) Let Q be a non-archimedean place, cf. Rmk.(3), and let A ⊆ L be a subring

whose field of fractions is L. If A ⊆ O(Q) and α ∈ L is integral over A, then

α ∈ O(Q).

We remark that (F1) is well-known for separable extensions, but is valid in the

general case, see e.g. [16], and (F2) is not especially tricky.

Now let L be a function field over F , and let X = XL denote the set of nontrivial

places Q of L which are trivial on F . Then each place Q ∈ X is discrete, in particular

non-archimedean, where the definitions are as in Rmk.(3). (This is not hard to see



once one has some familiarity with valuation theory.) We henceforth denote the

normalized discrete valuation corresponding to Q ∈ X by ordQ.

(F3) If x ∈ L is transcendental over F , then there is at least one Q ∈ X with

x ∈ m(Q) and at least one Q′ ∈ X with x 6∈ O(Q′). Moreover, there are only

finitely many of either type.

(F4) If F ′ denotes the algebraic closure of F in K, then F ′ =
⋂
Q∈X O(Q).

(F5) For each Q ∈ X, the field extension FQ/F has finite degree.

(F6) The degree of the extension F ′/F is finite, where F ′ is as in (F4).

The proofs are as follows. To show (F3), let K = F (x) ⊂ L, and observe that

there is exactly one place π ∈ P ∪ {∞} on F (x) with x ∈ m(π), namely the place

corresponding to the irreducible polynomial x ∈ F [x], and exactly one place π with

x 6∈ O(π), namely π =∞. The claim now follows from (F1) and Rmk.(4).

We now turn to (F4). If x× ∈ L is algebraic over F , then applying (F2) to both x

and x−1 yields that ordQ(x) = 0 for all Q ∈ X, and in particular F ⊆
⋂
Q∈X O(Q),

while the reverse inclusion follows from (F3).

To prove (F5), let 0 6= x ∈ m(Q). Then, by the proof of (F4), x must be tran-

scendental over F , so [L : F (x)] is finite by Rmk.(4). Now let z1, ..., zn ∈ O(Q), then

it is not hard to show that z1, ..., zn are F (x)-linearly independent if their images un-

der the canonical projection O(Q)→ O(Q)/m(Q) = FQ are F -linearly independent,

hence [FQ : F ] ≤ [L : F (x)] <∞.

Finally, we set out to prove (F6). But for any Q ∈ X we observe that F ′ ⊆ O(Q)

and {0} = F ′ ∩m(Q), so F ′ embeds in FQ and the claim follows from (F5).

Remark. (5) Let F ′ be as in (F4). Then, by (F6), L is again an algebraic function

field in one variable over F ′, so upon replacing F by F ′ if necessary we may always

assume that the ground field F of a function field L is algebraically closed in L. �

Now if for Q ∈ X we define degQ := [FQ : F ], then |·|Q := (qdegQ)−ordQ(·) is the

canonical absolute value mentioned earlier in this section, and so the product formula

holds for L. Taking logarithms to the base q, we obtain
∑
Q∈X ordQ(x) degQ = 0

for all x ∈ L×. The reader is referred to [16] for a complete and direct proof of this

equation which does not rely on the analogy with algebraic number fields.



Appendix B. Projective geometry

Here we would like to spend a few words on projective geometry, including a sketch

of the proof of the observation at the beginning of Chapter 1.

First of all, recall that the n-dimensional projective space Pn(F ) over a field F is,

in a way, regular n-dimensional space enlarged with some “points at infinity”. More

rigorously, Pn(F ) is a set of points [v0 : ... : vn] with (v0, ..., vn) 6= (0, ..., 0), subject

to the condition that [v0 : ... : vn] = [λv0 : ... : λvn] for all λ ∈ F×; the points with

v0 6= 0 can be written as [1 : v1

v0
: ... : vn

v0
] and thus form a copy of Fn inside Pn(F ),

while the points with v0 = 0 are the “points at infinity”.

A subset X of Pn(F ) is called a (projective) variety if there exist homogeneous

polynomials Fj(x0, ..., xn), j = 1, ..., r with coefficients in F such that X = {[v0 : ... :

vn] : Fj(v0, ..., vn) = 0 for all j}; this is indeed well-defined by homogeneity of the

Fj ’s. The points of X with v0 6= 0 can be regarded as a subset of Fn which is again

defined by polynomial equations, i.e. as an affine subvariety of Fn, and conversely

every affine variety can be embedded into a projective one by homogenizing the

polynomials which define it.

We now want to define rational functions on X. Let f, g be polynomials in n+ 1

variables over F , homogeneous of the same degree. Then the map X → F ∪ {∞},
P = [v0 : v1 : ...vn] 7→ f(v0, ..., vn)/g(v0, ..., vn) is well-defined, provided that g does

not vanish identically on X. A map of this form is called a rational function on X,

and the field of rational functions on X is denoted F (X). The dimension of X is

defined as the transcendence degree of F (X); in particular, X is a projective curve,

i.e. 1-dimensional, if and only if F (X) is a function field in one variable as defined

in Chapter 1 or Appendix A.

A projective variety X is smooth if for each point P ∈ X there exists a normal-

ized discrete valuation ordP on F (X), trivial on F , such that for each x ∈ F (X),

ordP (x) ≥ 0 if and only if x = f
g where g(P ) 6= 0.

Remark. The motivation for the definition of smoothness is the following: consider

an affine plane curve C over an algebraically closed field F , i.e. the vanishing set

in F 2 of a polynomial f(x, y) in two variables over F . We again have a concept of

a field of rational functions F (C), whose elements are maps C → F ∪ {∞} of the

form g/h where g, h ∈ K[x, y] and h is not identically zero on C. More precisely, if g

and h can be chosen so that h does not vanish at P ∈ C, then the rational function

is said to be defined at P .

For a point P = (a, b) ∈ F 2 we can write any polynomial g(x, y) as a polynomial

in the variables x− a and y − b,

g(x, y) = c00 +c10(x−a)+c01(y−b)+c20(x−a)2 +c11(x−a)(y−b)+c02(y−b)2 + ...;

we define the multiplicity of g at P as the smallest integer n for which there exists

some k with ck,n−k 6= 0. Moreover, for another polynomial h(x, y), the intersection

number of g and h at P is defined as the multiplicity of g − h at P .



Now, P ∈ C if and only if the multiplicity m of f at P is positive. If P is a

simple point of C, i.e. m = 1, then the assignment g 7→ “intersection number of f

and g at P”, which makes sense whenever g is defined at P , can be extended to a

normalized discrete valuation on F (C).

Conversely, suppose that P is a multiple point of C, i.e. m > 1. Then, since F is

algebraically closed, the homogeneous polynomial

cm0(x− a)m + cm−1,1(x− a)m−1(y − b) + ...+ c0m(y − b)m

splits as a product of m linear factors L1(x, y), ..., Lm(x, y). Note that the intersec-

tion number of f and Li is clearly one for each i, while the intersection number of f

and
∏
Li is necessarily > m, so ordP defined as above is not a normalized discrete

valuation on F (X). �

Now let X be a smooth projective curve over F and F (X) denote its field of

fractions, and suppose that F is an algebraically closed field. Then (see [3]):

• Every nontrivial place Q of F (X) which is trivial on F is induced by a valuation

ordP for some P ∈ X;

• If K is an algebraic function field in one variable over F , then there exists a

smooth projective curve X over F with K = F (X).

We sketch the proof of the first claim. As was hinted at in Appendix A, Q must

be discrete, so there exists a (unique) normalized discrete valuation ord associated

to Q. Moreover, we have argued earlier that Pn(F ) contains a copy An of Fn, and

we shall henceforth denote by C the affine curve obtained as An∩X. By a couple of

technical results, one can choose An so that the coordinate ring F [C] of C embeds

into F (X) and ord(x) ≥ 0 for all x ∈ F [C]. But then p = {x ∈ F [C] : ord(x) > 0} is

a nonzero prime ideal of F [C], hence it corresponds to a proper irreducible subvariety

of C, i.e. to a point P ∈ C. Thus ord = ordP and the claim is proved.



Appendix C. Locally compact groups

Recall that a topological group is a group G (whose operation we denote as multi-

plication) equipped with a topology τ such that the maps

(i) G×G→ G, (g, h) 7→ gh,

(ii) G→ G, g 7→ g−1

are continuous in the topology τ (of course G×G is to be equipped with the product

topology). A topological group G will be called locally compact if the topology is

Hausdorff and if each point has a compact neighbourhood.

Example. (1) Consider R with the Euclidean topology. Then the additive group

(R,+) is a locally compact topological group. The same holds for the additive group

of Rn or Cn for all n ≥ 1. �

C1. The Haar measure

Recall that a measure on a set X is a function µ :M(µ)→ [0,∞] where:

• M(µ) is a σ-algebra on X, i.e. a subset of the power set of X which contains

∅ and is closed under taking complements and countable unions;

• µ maps ∅ to 0 and is countably additive in the sense that µ
(⋃∞

n=1An
)

=∑∞
n=1 µ(An) whenever the subsets An ∈M(µ) are pairwise disjoint.

The elements of M(µ) are called the measurable subsets of X.

If X is a (Hausdorff) topological space and µ is a measure on X, then it is often

desirable that every open subset of X be measurable, in which case µ is called a

Borel measure. A Borel measure µ on X is called inner regular if it is compatible

in a certain precise sense with approximation “from below” by compact measurable

subsets, and outer regular if it is similarly compatible with approximation “from

above” by open subsets.

It is a well-known theorem of Haar that if G is a locally compact group, then

there exists a nonzero regular Borel measure µ on G such that:

(i) every compact subset K of G is measurable and µ(K) <∞;

(ii) µ is left-invariant, i.e. µ(gA) = µ(g) for any A ⊆ G and g ∈ G.

Any such measure is called a Haar measure on G. Furthermore, if µ and µ′ are Haar

measures on G, then µ′ = κµ for some κ ∈ R>0, so one sometimes speaks of “the”

Haar measure on G.

Example. (2) Let µ be the function which assigns to each compact interval [a1, b1]×
... × [an, bn] ⊂ Rn its n-dimensional volume (b1 − a1) · · · (bn − an). Then µ can be

extended to a regular Borel measure λ on Rn which is additionally “complete” in a

certain precise sense; λ is called the n-dimensional Lebesgue measure. It is immediate

that λ is a Haar measure for the locally compact additive group (Rn,+), normalized

in such a way that the n-dimensional cube of side length 1 has volume 1. �

Remark. (1) If H is a closed normal subgroup of a locally compact group G, then

both H and G/H are locally compact groups. It is then known that one can choose



Haar measures on G, H and G/H so that µG = µH · µG/H , i.e. so that

µG(A) = µH(A ∩H) µG/H
(
A/(A ∩H)

)
for all A ⊆ G. �

C2. Pontrjagin duality

For this subsection, we fix an abelian topological group G, denoted additively.

Let T = U(1) denote the circle group, i.e. the group of complex numbers with

modulus equal to 1. The continuous group homomorphisms χ : G → T together

with the pointwise operations (χ+ψ)(g) = χ(g)ψ(g) form an abelian group, denoted

G∗. We equip G∗ with the compact-open topology, i.e. the topology generated by the

subsets {χ ∈ G∗ : χ(K) ⊂ U}, where K runs over the compact subsets of G and U

runs over the open subsets of T. Then G∗ turns into a topological group.

One can prove that, if G is discrete, compact or locally compact, then G∗ is

compact, discrete or locally compact, respectively. Moreover, let G and H are locally

compact abelian groups with a continuous distributive “multiplication” G×H → T,

(g, h) 7→ gh, and suppose that g 7→ (h 7→ gh) is an isomorphism G → H∗. Then

H is isomorphic to G∗ via h 7→ (g 7→ gh), and the “multiplication” is simply the

map (g, χ) 7→ χ(g). In particular, a locally compact abelian group G is (canonically)

isomorphic to its bidual (G∗)∗.

Example. (3) Let G be the additive group of the reals, and consider the character

χ ∈ G∗ given by x 7→ e2πix. Then every element of G∗ is of the form χy : x 7→ χ(xy)

for some y ∈ R, and indeed the map y 7→ χy is an isomorphism of topological groups.

In other words, R is self-dual, and so R∗ can be identified with R.

(4) Let G = Z. Then G∗ is isomorphic to T via χ 7→ χ(1).

(4’) Conversely, let G = T. To an element χ of G∗ we associate the degree of the

covering χ : T→ T, and so we obtain an isomorphism G∗
∼→ Z. �

Let us finally remark that Pontrjagin duality allows one to introduce Fourier

analysis in a very general setting. Indeed, the Fourier transform of a real-valued

function, the discrete-time Fourier transform and the Fourier series expansion of a

periodic function (i.e. a function on U(1)) can all be seen as special instances of this

general theory, cf. examples (3), (4) and (4’), respectively.

C3. Locally compact rings and fields

A topological ring is a ring R equipped with a topology τ such that

(i) the additive group of R is a topological group;

(ii) R×R→ R, (r, s) 7→ rs is continuous in the topology τ .

A topological ring R is locally compact if its additive group (R,+) is a locally

compact topological group with the given topology.



Moreover, if a topological ring R is a field K and

(i) K× → K×, x 7→ x−1 is continuous in the topology τ ,

then K is called a topological field. A locally compact field is just a topological field

that is locally compact as a topological ring.

Example. (5) Both R and C are locally compact in the Euclidean topology. More-

over, the field Qp of p-adic numbers as defined in Ex.(2) of Appendix A is locally

compact since, for each ε > 0, the ring Zp := {x ∈ Qp : ordp(x) ≥ 0} of p-

adic integers can be covered by finitely many balls of radius less than ε. The same

argument shows that, if F is a finite field, K = F (t) and π ∈ P, then Kπ as defined

in Ex.(2) of Appendix A is locally compact. �

C4. Adèle rings of number fields

Let K be a number field, and let V denote the set of nontrivial places of K. Then X

is partitioned into an infinite set Vfin of non-archimedean places, corresponding to

nonzero prime ideals of the ring of integers OK , and a finite set S∞ of archimedean

places, induced by embeddings K ↪→ C, cf. §3 of Appendix A. For each P let KP

denote the completion of K at P , and for P ∈ Vfin let ordP denote the canonical

discrete valuation on KP . Arguing as in Ex.(5), one shows that each KP is locally

compact and picks a canonical absolute value |·|P .

The adèle ring of K is defined as

AK :=

a = (aP )P ∈
∏
P∈V

KP : ordP (aP ) ≥ 0 for almost all P ∈ Vfin

 .

This is a topological ring, cf. §3, with the topology generated by subsets of the form∏
Q∈S

UQ ×
∏
P 6∈S

OP ,

where S ⊂ V is finite and contains S∞, UQ is an open subset of KQ for each Q ∈ S
and OP := {x ∈ KP : ordP (x) ≥ 0} ⊂ KP . Moreover, each KP is isomorphic (as

a topological field) to the quotient AK/mP , where mP := {a = (aP ) ∈ AK : aP =

0} ⊂ AK is a maximal ideal. Finally, since

(i) K ⊂ KP for each P , and

(ii) for each x ∈ K×, |x|P = 1 for almost all P ,

the set {(x)P = (x, x, x, ...) ∈
∏
KP : x ∈ K} is a subfield of AK isomorphic to K.

This subfield is discrete and the quotient AK/K is compact, and these properties,

together with the local compactness of AK , are essentially enough to characterize

adèle rings of so-called global fields, i.e. algebraic number fields and algebraic function

fields in one variable over a finite field F . The interested reader may wish to consult

[1] and the references listed there, especially the paper of Emil Artin and George

Whaples on the axiomatization of global fields via the product formula.
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