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Abstract

The Jordan Curve Theorem (JCT) is arguably best-known for stating an apparently

obvious fact while reportedly being quite hard to prove. The goal of this article is to

outline some of the difficulties that arise when attempting to prove the theorem, as

well as to present a very accessible proof by Carsten Thomassen (1992) which relies

on a well-known result from graph theory.

1 Definitions and statement

Before giving a precise formulation of the theorem, it is best to review the few basic

notions which appear in the statement.

Let X be a topological space. A path in X is a continuous map γ : [0, 1] → X; one

often says γ is a path from γ(0) to γ(1). The image im(γ) ⊂ X of a path γ is variously

called a curve, an arc or again a path.

A path γ is called simple if the restriction γ|[0,1) is injective, which amounts to saying

that im(γ) does not self-intersect. In the special case where X = R2 is the Euclidean

plane, the image im(γ) of a simple path γ : [0, 1] → R2 is called a Jordan curve if γ is

closed, i.e. if γ(0) = γ(1), and a Jordan arc otherwise.

Example. Let C ⊂ R2 be the ellipse with equation b2(x − x0)2 + a2(y − y0)2 = a2b2

for a, b ∈ R>0. Then C is a Jordan curve, as it is the image of γ : [0, 1] → R2, t 7→
(x0 + a cos 2πt, y0 + b sin 2πt). �

Next, recall that a topological space X is called path-connected if for any two points

x, y ∈ X there exists a path from x to y. The maximal (w.r.t. inclusion) path-connected

subsets of a space X are called the path-components of X. For instance, a line in the

plane is path-connected, while a hyperbola has precisely1 two path-components.

We are now finally ready to state the Jordan Curve Theorem.

Theorem 1. Let C ⊂ R2 be a Jordan curve. Then R2 \ C has precisely two path-

components (, and both have C as their boundary).

1Unless it degenerates to a pair of intersecting lines.
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2 The need for a proof

The reader will now probably concur that the JCT merely states an obvious geometrical

fact, namely that a non-self-intersecting curve divides the plane in an “inner” and an

“outer” region, and that the proof is bound to be straightforward. Indeed, there is an

elementary proof available whenever the Jordan curve at hand is “nice”. To illustrate

this, let us sketch the proof of the theorem in the case where C is a polygon without

self-intersections.

We first show that R2\C has at least two path-components. For each point P = (x0, y0)

of R2\C consider the half-line hP given by y = y0, x ≥ x0. We say that a half-line crosses

one of the sides of C if they intersect in precisely one point and this point is not a vertex

of C. We now call P of R2 \ C even (odd) if the number of sides hP crosses is even (odd).

Intuition, possibly coupled with a drawing, now suggests that the odd (even) points

of R2 \ C are precisely those in the inner (outer) region of C. While this will turn out to

be true, figures 1 and 2 of [3] are hopefully enough to dissuade the reader from trusting

his or her intuition, even when the curve is smooth.

What can surely be said is the following: if P is an even (odd) point and γ̃ : [0, 1]→
R2 \ C is a path in R2 \ C with P = γ̃(0), then Q = γ̃(1) is again even (odd). The

argument is familiar: consider the largest t ∈ [0, 1] such that γ̃(s) has the same parity

as P for all s < t, and show that if t < 1 then γ̃(t + ε) still has the same parity as

γ̃(t) for a small enough ε, so necessarily t = 1. It now follows that each path-component

of R2 \ C consists either entirely of odd points or entirely of even points, and it is not

hard to see that there must be at least one of each, thus R2 \ C indeed has at least two

path-components.

In order to show that the number of path-components is also at most two, consider

a disc D which only intersects one side of C, so that D ∩ C is a chord of D. Then

clearly D\(C∩D) has exactly two path-components; this follows from classical Euclidean

geometry. Now suppose there were three points P1, P2, P3 lying in distinct path-connected

components of R2 \ C. For each point Pi we construct a γ′i : [0, 1] → R2 \ C with the

following properties:

(i) γ′i(0) = Pi;

(ii) γ′i(1) ∈ D \ (C ∩ D);

(iii) γ′i(t) is “very close” to C (the distance is smaller than a fixed ε > 0) for all t

sufficiently large.

(A way to obtain γ′i is to first consider a half-line starting in Pi which intersects C, then

modify it so that the resulting path “runs parallel” to C until it lands inside D.)

Now we see by the pigeonhole principle that two of the three paths necessarily land

in the same region of D \ (C ∩ D). But this region is path-connected, so two of the Pi’s

can be joined by a path and hence lie in the same path-component of R2 \ C, which

contradicts our assumption. The proof is thus completed.
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It is easy to see that the above approach also works if the path γ : [0, 1] → R2 which

describes the given Jordan curve C = im(γ) is piecewise C1. However, the assumptions of

the JCT only require the path γ to be continuous, and calculus tells us that continuous

functions need not be differentiable at any point. Therefore, to conclude this section

we would like to offer an example of just how “nasty” Jordan curves can be, or more

precisely of how spectacularly our intuitive understanding of them fails.

Consider the square Q ⊂ R2 of side length
√

2 whose vertices lie on the coordinate

axes, and let T = F0 denote the “upper triangle”; the area of T equals 1. If we cut out a

triangle with the same vertex and same height as T but with a smaller base, the resulting

figure F1 consists of two triangles T0, T1 joined at the vertex; its area equals 1 − r1 for

some r1 ∈ ]0, 1[. We can now apply a similar process to each of T0, T1, thus obtaining a

figure F2 consisting of four triangles T00, T01, T10, T11 so that each two have at most one

vertex in common and whose combined area can be written as (1− r1)(1− r2) for some

r2 ∈ ]0, 1[. Iterating yields

A :=
⋂
i≥0
Fi =

⋃
ω∈{0,1}N

Tω.

I claim that A is a Jordan arc. Indeed, consider the map γ which sends t ∈ [0, 1] with

binary expansion2 0.t0t1t2... to the unique point of A which lies in Tt1 ∩ Tt1t2 ∩ ...; it is

easily checked to be injective and continuous. For instance, if the triangles we cut out

are chosen in an appropriate way with rj = 1/3 ∀j, then A is the so-called Koch curve,

see [5] for the rigorous description and [4] for an online simulation.

Let us now set rj = r2/j2 for all j, where r ∈ ]0, 1[. If we apply the so-called Weierstrass

factorization theorem to the function z 7→ sinπz and rearrange terms, we obtain

∞∏
j=1

(
1− r2

j2

)
=

sinπr

πr
.

Observe that the left-hand side equals the area of A for our particular choice of the

rj ’s, while the map ]0, 1[ → ]0, 1[, r 7→ sinπr/πr is bijective, therefore upon appropriate

choice of r one can obtain a Jordan arc of any given (positive) area < 1. Accordingly

we can also obtain a Jordan curve of any given positive area, e.g. by joining A with its

reflection across the x-axis. This clearly contradicts the intuitive notion of a curve as

“a line without breadth” and hopefully persuades the reader of the need for a rigorous

proof for the Jordan Curve Theorem.

2It is well-known that “some” rational numbers in [0, 1] possess two expansions; one terminates after
finitely many steps while the other does not. Here we always take the infinite expansion.
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3 Historical overview

Before we dive into the actual proof of the theorem, we briefly go over the history of the

Jordan Curve Theorem and its proofs.

It appears that the JCT was considered trivial for a long time. Only in the 19th century

did Bernhard Bolzano (1781-1848) point out that the following statement needed a proof:

Wenn eine in sich zurückkehrende Linie If a closed curve lies in a plane, and

in einer Ebene liegt, und man verbindet one joins a point of this plane which is

einen Punct derselben Ebene der von ihr enclosed by it with another point of this

eingeschlossen wird mit einem anderen plane which is not enclosed by it by a con-

Puncte dieser Ebene, der aber von ihr nicht nected arc, then this arc must cross the

eingeschlossen wird, durch eine zusammen- closed curve.

hängende Linie, so muss diese die zurück-

kehrende Linie schneiden.

The JCT in its modern form was first formulated and proved by Camille Jordan (1838-

1922) in its Cours d’Analyse (1887). Jordan claimed (without proof) that the theorem

holds for polygons without self-intersections, then showed that every closed curve can

be approximated by polygons in an appropriate sense and that the result for polygons

can be carried over to the general case.

Jordan’s proof was regarded as incomplete at his time; indeed, Jordan often men-

tions quantités infiniment petites, “infinitely small quantities”, which certainly must

have sounded non-rigorous to his contemporaries. It is often claimed that the first com-

plete proof is found in the paper Theory on plane curves in nonmetrical Analysis Situs

by Oswald Veblen (1880-1960). In the preamble, Veblen wrote:

Jordan’s explicit formulation of the fundamental theorem ... is justly regarded as a

most important step in the direction of a perfectly rigorous mathematics. This can be

confidently asserted whether we believe that perfect rigor is attainable or not. His proof,

however, is unsatisfactory to many mathematicians.

Veblen’s proof is interesting in that it does not use methods from analysis; instead, it

fits into his axiomatic approach to classical geometry, and the very concept of a Jordan

curve is axiomatised in that framework.

Since Veblen’s proof, many mathematicians have provided proofs for the JCT; here

we only mention a few of those that are considered elementary. One such proof is Edwin

E. Moise’s, published in 1977; it was shortened by Ryuji Maehara in 1984 with an

application of Brouwer’s fixed-point theorem. Another short and elementary proof is the

one by Helge Tverberg (1980), which incidentally yields a value r = r(C) so that the
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inner region of C contains a circle of radius r. In 1992, Carsten Thomassen published a

proof of the JCT which relies on graph theory; his is the approach we will follow in the

next section. Thomassen’s proof has also been rewritten into a so-called “formal proof”,

see [12].

Finally, it is worth mentioning that some results from the field of algebraic topology

provide a way to prove the Jordan Curve Theorem and the following generalisation

to higher dimensions: if a subset S of Rd, d ≥ 2 is homoeomorphic to Sd−1, then the

complement Rd\S has precisely two path-components. A proof which uses these methods

can be found e.g. in the textbook Algebraic Topology (2002) by Allen Hatcher.

4 Thomassen’s proof

In this section we present an elementary proof of the Jordan Curve Theorem, following

the paper The Jordan-Schoenflies Theorem and the Classification of Surfaces (1992) by

Carsten Thomassen.

A few preliminary observations are in order. In many steps of the proof we will use

the fact that a Jordan curve C is always a compact subset of R2; this is because C is the

continuous image of the compact interval [0, 1]. In particular, C is bounded, i.e., one can

find a ball B of finite radius with C ⊂ B.

We now proceed to show that R2 \C has at least two path-components. We begin with

a geometric construction. Since C is compact, there exist a leftmost and a rightmost

vertical line in R2 which have non-empty intersection with C; we denote these by h1 and

h2 respectively. Again by compactness, for i = 1, 2 there exists a point ui in the set hi∩C
with largest y-coordinate. The curve C now consists of two Jordan arcs from u1 to u2,

an “upper” one U and a “lower” one L, which intersect only at the endpoints. Let h be

a line “between” h1 and h2, and let v1 (v2) be the point of h ∩ U (h ∩ L) with smallest

(largest) y-coordinate. Since C does not self-intersect, these points are distinct; let u3

denote the midpoint of the segment of h joining v1 to v2.

Now let g be some horizontal line “above” C (in particular, disjoint from C) and v3

be a point on g “between” h1 and h2. We shall now show that v3, u3 ∈ R2 \ C cannot be

joined by a path in R2 \ C; it will follow that this set has at least two path-components.

So suppose there were a path joining u3 and v3 which does not intersect C. By going

along h, we can clearly join u3 to each of v1 and v2; on the other hand, by going along

the upper (or lower) arc of C we can join each of u1 and u2 to each of v1 and v2. Finally,

we join u1 (or u2) to v3 by going along h1 (or h2) and g.

We have thus joined each of the ui’s to each of the vj ’s; thus, the points u1, u2, u3,

v1, v2, v3 together with the paths joining them form a plane realisation of the so-called

complete bipartite graph K3,3. Since no two of the edges intersect except at most at the

endpoints, this graph is an embedding of K3,3 into the plane R2. But it is a well-known
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result of graph theory that K3,3 cannot be embedded in the plane. We have thus reached

the contradiction we were looking for and proved the claim that R2 \ C has at least two

path-components.

In order to show that R2 \ C has at most two path-components, we are going to use

the fact that, if A is a Jordan arc, then R2 \ A is path-connected. This, in turn, can be

shown as follows: given P,Q 6∈ A, one can construct a graph Γ so that every point of

A lies in some inner face of Γ while P and Q lie in the outer face. We shall not go into

details here; suffice it to say that Γ is obtained as the union of squares of sufficiently

small side length centred in points of A (cf. the similar concept of tubular neighbourhoods

in differential geometry).

Suppose for the sake of contradiction that u1, u2, u3 ∈ R2 \ C lie in distinct path-

components of R2 \ C, and let A1,A2,A3 be three disjoint arcs on C. By our previous

remark, R2 \ (C \ Aj) is path-connected for each j, so for each i we can find a path (in

R2 \ (C \ Aj) !) from ui to some other path-component of R2 \ C. This path necessarily

intersects C in a point pij on Aj ; we denote the path joining ui to pij by γij . Note that

by modifying some of γij ’s we can assume that no two of them intersect except at most

at the endpoints. If we now choose a point vj on each Aj , we see that it is possible to

join each ui to each vj by going along γij and Aj , so again we obtain a plane graph

isomorphic to K3,3, which is absurd. The proof of the Jordan Curve Theorem is thus

completed.
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