The Importance of Being Totally Disconnected

Giancarlo Castellano

10th April, 2019

Giancarlo Castellano The Importance of Being Totally Disconnected

• "Totally disconnected" is a notion from point-set topology.

- "Totally disconnected" is a notion from point-set topology.
- Recall that a topological space is *connected* if it cannot be written as a disjoint union of non-empty open subsets, and *disconnected* otherwise.

- "Totally disconnected" is a notion from point-set topology.
- Recall that a topological space is *connected* if it cannot be written as a disjoint union of non-empty open subsets, and *disconnected* otherwise.

• \mathbb{R} is connected.

- "Totally disconnected" is a notion from point-set topology.
- Recall that a topological space is *connected* if it cannot be written as a disjoint union of non-empty open subsets, and *disconnected* otherwise.

- \mathbb{R} is connected.
- \mathbb{Q} is disconnected.

- "Totally disconnected" is a notion from point-set topology.
- Recall that a topological space is *connected* if it cannot be written as a disjoint union of non-empty open subsets, and *disconnected* otherwise.
- A space is disconnected iff it has some proper subset which is both open and closed (=: *clopen*).

- \mathbb{R} is connected.
- \mathbb{Q} is disconnected.

- "Totally disconnected" is a notion from point-set topology.
- Recall that a topological space is *connected* if it cannot be written as a disjoint union of non-empty open subsets, and *disconnected* otherwise.
- A space is disconnected iff it has some proper subset which is both open and closed (=: *clopen*).

- \mathbb{R} is connected.
- \mathbb{Q} is disconnected.
- A space is *totally disconnected* if around each point one can find arbitrarily small clopen sets.

• The title is inspired by *The Importance of Being Ernest*, a play by Oscar Wilde.

- The title is inspired by *The Importance of Being Ernest*, a play by Oscar Wilde.
- The play is about how it is important to be *earnest* (= serious), but the play itself is not at all serious.

- The title is inspired by *The Importance of Being Ernest*, a play by Oscar Wilde.
- The play is about how it is important to be *earnest* (= serious), but the play itself is not at all serious.
- Similarly, this talk is not very serious.

- The title is inspired by *The Importance of Being Ernest*, a play by Oscar Wilde.
- The play is about how it is important to be *earnest* (= serious), but the play itself is not at all serious.
- Similarly, this talk is not very serious. But hopefully it is not *totally* disconnected.

 \ldots my geometry homework from middle school on the Pythagorean theorem.

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

• (9,40,41);

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

• (9,40,41);

•
$$\left(q, \frac{q^2-1}{2}, \frac{q^2+1}{2}\right)$$
 for q odd;

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

• (9,40,41);

•
$$\left(q, \frac{q^2-1}{2}, \frac{q^2+1}{2}\right)$$
 for q odd;

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

•
$$\left(q, \frac{q^2-1}{2}, \frac{q^2+1}{2}\right)$$
 for q odd;

Do not restrict to integers:

(8, 15, 17)

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

•
$$\left(q, \frac{q^2-1}{2}, \frac{q^2+1}{2}\right)$$
 for q odd;

Do not restrict to integers:

$$(8,15,17) \rightsquigarrow \left(4,\frac{15}{2},\frac{17}{2}\right)$$

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

- (3,4,5);
- (5, 12, 13);
- (7,24,25);

• (9,40,41);

•
$$\left(q, \frac{q^2-1}{2}, \frac{q^2+1}{2}\right)$$
 for q odd

Do not restrict to integers:

$$(8, 15, 17) \rightsquigarrow \left(4, \frac{15}{2}, \frac{17}{2}\right) = \left(q, \frac{q^2-1}{2}, \frac{q^2+1}{2}\right)$$
 with $q = 4$

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples Commonly encountered Pythagorean triples: • (3,4,5); • (9,40,41);• (5,12,13); • $\left(q,\frac{q^2-1}{2},\frac{q^2+1}{2}\right)$ for q odd; • (8,15,17).

Do not restrict to integers:

$$(8,15,17) \rightsquigarrow \left(4,\frac{15}{2},\frac{17}{2}\right) = \left(q,\frac{q^2-1}{2},\frac{q^2+1}{2}\right)$$
 with $q = 4$.

Thus, every triple (a, b, c) of rational numbers with $a^2 + b^2 = c^2$ is of the above form up to scaling.

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

• (3,4,5);• (5,12,13);• (7,24,25);• (9,40,41);• $\left(q,\frac{q^2-1}{2},\frac{q^2+1}{2}\right)$ for q odd; • (8,15,17).

Do not restrict to integers:

$$(8,15,17) \rightsquigarrow \left(4,\frac{15}{2},\frac{17}{2}\right) = \left(q,\frac{q^2-1}{2},\frac{q^2+1}{2}\right)$$
 with $q = 4$.

Thus, every triple (a, b, c) of rational numbers with $a^2 + b^2 = c^2$ is of the above form up to scaling.

 \rightsquigarrow classification of integer solutions.

 \ldots my geometry homework from middle school on the Pythagorean theorem.

Examples

Commonly encountered Pythagorean triples:

• (3,4,5); • (5,12,13); • (7,24,25); • (9,40,41); • $\left(q,\frac{q^2-1}{2},\frac{q^2+1}{2}\right)$ for q odd; • (8,15,17).

Do not restrict to integers:

$$(8,15,17) \rightsquigarrow \left(4,\frac{15}{2},\frac{17}{2}\right) = \left(q,\frac{q^2-1}{2},\frac{q^2+1}{2}\right)$$
 with $q = 4$.

Thus, every triple (a, b, c) of rational numbers with $a^2 + b^2 = c^2$ is of the above form up to scaling.

 \rightsquigarrow classification of integer solutions. \rightsquigarrow classification of Pythagorean triples.

Back then	Now
I	

_	Back then	Now	
	Solutions over $\mathbb Z$		

Back then	Now
Solutions over $\mathbb Z$	Solutions over \mathbb{Q} (nicer theory)

Back then	Now
Solutions over $\mathbb Z$	Solutions over \mathbb{Q} (nicer theory)
Easy concrete example: $x^2 + y^2 = z^2$	

Back then	Now
Solutions over $\mathbb Z$	Solutions over $\mathbb Q$ (nicer theory)
Easy concrete example: $x^2 + y^2 = z^2$	General question: $p(x_1, \dots, x_n) = 0$ quadratic equation with coefficients in \mathbb{Z}

Back then	Now
Solutions over $\mathbb Z$	Solutions over ${\mathbb Q}$ (nicer theory)
Easy concrete example: $x^2 + y^2 = z^2$	General question: $p(x_1, \dots, x_n) = 0$ quadratic equation with coefficients in \mathbb{Z}
Child who should watch more TV	

С

Back then	Now
Solutions over $\mathbb Z$	Solutions over $\mathbb Q$ (nicer theory)
Easy concrete example: $x^2 + y^2 = z^2$	General question: $p(x_1, \ldots, x_n) = 0$ quadratic equation with coefficients in \mathbb{Z}
hild who should watch more TV	PhD student who should watch less TV

Back then	Now
Solutions over $\mathbb Z$	Solutions over $\mathbb Q$ (nicer theory)
Easy concrete example: $x^2 + y^2 = z^2$	General question: $p(x_1, \ldots, x_n) = 0$ quadratic equation with coefficients in \mathbb{Z}
Child who should watch more TV	PhD student who should watch less TV
	Finding <i>real</i> solutions is much easier

Back then	Now
Solutions over $\mathbb Z$	Solutions over ${\mathbb Q}$ (nicer theory)
Easy concrete example: $x^2 + y^2 = z^2$	General question: $p(x_1, \ldots, x_n) = 0$ quadratic equation with coefficients in \mathbb{Z}
Child who should watch more TV	PhD student who should watch less TV
No idea what a real number is	Finding <i>real</i> solutions is much easier

Task

Find solutions of

$$x^2 + y^2 = z^2.$$

 $\text{ over } \mathbb{R}.$

Task

Find solutions of

$$x^2 + y^2 = z^2.$$

 $\text{ over } \mathbb{R}.$

Solution

Pick any $x, y \in \mathbb{R}$, then

$$x^2 + y^2 = z^2$$
Task

Find solutions of

$$x^2 + y^2 = z^2.$$

 $\text{ over } \mathbb{R}.$

Solution

Pick any $x, y \in \mathbb{R}$, then

$$0 \le x^2 + y^2 = z^2$$

Giancarlo Castellano The Importance of Being Totally Disconnected

Task

Find solutions of

$$x^2 + y^2 = z^2.$$

over \mathbb{R} .

Solution

Pick any $x, y \in \mathbb{R}$, then

$$0 \le x^2 + y^2 = z^2$$

always has a solution $(x, y, \sqrt{x^2 + y^2})$.

Task

Find solutions of

$$x^2 + y^2 = z^2.$$

over \mathbb{R} .

Solution

Pick any $x, y \in \mathbb{R}$, then

$$\mathbf{0} \le x^2 + y^2 = z^2$$

always has a solution $(x, y, \sqrt{x^2 + y^2})$. This is because x is a square in $\mathbb{R} \iff x > 0$.

Quite hard

$$x ext{ is a square in } \mathbb{Q} \implies x \ge 0$$

but not \Leftarrow

$$x ext{ is a square in } \mathbb{Q} \implies x \ge 0$$

but not \Leftarrow

Theorem (Fundamental Theorem of Arithmetic)

Let m be a nonzero integer. Then

$$m = \pm \prod_{p} p^{v_p}$$

for unique natural numbers $v_p = v_p(m)$. (The product is finite.)

$$x ext{ is a square in } \mathbb{Q} \implies x \ge 0$$

but not \Leftarrow

Theorem (Fundamental Theorem of Arithmetic)

Let x be a nonzero rational number. Then

$$\mathbf{x} = \pm \prod_{p} p^{\mathbf{v}_{p}}$$

for unique integers $v_p = v_p(x)$. (The product is finite.)

$$x ext{ is a square in } \mathbb{Q} \implies x \ge 0$$

but not \Leftarrow

Theorem (Fundamental Theorem of Arithmetic)

Let x be a nonzero rational number. Then

$$\mathbf{x} = \pm \prod_{p} p^{v_p}$$

for unique integers $v_p = v_p(x)$. (The product is finite.)

Corollary

Let x be a nonzero rational number. Then x is a square if and only if x > 0 and $v_p(x)$ is even for all p.

v_p can be interpreted as the order of vanishing / of a pole (cf. meromorphic functions).

Order!

- v_p can be interpreted as the order of vanishing / of a pole (cf. meromorphic functions).
- More precisely, every nonzero rational number x can be written as a "Laurent series"

Order!

- v_p can be interpreted as the order of vanishing / of a pole (cf. meromorphic functions).
- More precisely, every nonzero rational number x can be written as a "Laurent series"

$$x = \sum_{i=\nu}^{\infty} a_i p^i, \qquad \nu \in \mathbb{Z}, a_i \in \{0, \dots, p-1\},$$

where the index ν of the leading term is precisely $v_p(x)$.

Order!

- v_p can be interpreted as the order of vanishing / of a pole (cf. meromorphic functions).
- More precisely, every nonzero rational number x can be written as a "Laurent series"

$$x = \sum_{i=\nu}^{\infty} a_i p^i, \qquad \nu \in \mathbb{Z}, a_i \in \{0, \dots, p-1\},$$

where the index ν of the leading term is precisely $v_p(x)$.

• Indeed, if x = m is a positive integer, $\nu = v_p(m)$, then

$$m = a_{\nu}p^{\nu} + a_{\nu+1}p^{\nu+1} + \dots + a_{d-1}p^{d-1} + a_dp^d \qquad \text{(finite sum)}$$

with $a_i \in \{0, \dots, p-1\}$ for all *i*. (Base-*p* representation.)

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu}+\cdots+a_{d}p^{d})\cdot(b_{\ell}p^{\ell}+b_{\ell+1}p^{\ell+1}+\cdots)=1$$

Note that the order ℓ of this series is $\ell = -\nu$

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

Note that the order ℓ of this series is $\ell = -\nu = -\nu_p(m)$

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

Note that the order ℓ of this series is $\ell = -\nu = -v_p(m) = v_p(x)$.

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

Note that the order ℓ of this series is $\ell = -\nu = -v_{\rho}(m) = v_{\rho}(x)$.

• Similarly, for given $x = \sum_{i=\nu}^{\infty} a_i p^i$, the expansion of -x is given by solving for b_i in the equality

$$(a_{\nu}p^{\nu}+a_{\nu+1}p^{\nu+1}+\cdots)+(b_{\ell}p^{\ell}+b_{\ell+1}p^{\ell+1}+\cdots)=0.$$

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

Note that the order ℓ of this series is $\ell = -\nu = -v_p(m) = v_p(x)$.

• Similarly, for given $x = \sum_{i=\nu}^{\infty} a_i p^i$, the expansion of -x is given by solving for b_i in the equality

$$(a_{\nu}p^{\nu} + a_{\nu+1}p^{\nu+1} + \cdots) + (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 0.$$

Here $\ell = \nu = v_p(x) = v_p(-x).$

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

Note that the order ℓ of this series is $\ell = -\nu = -v_p(m) = v_p(x)$.

• Similarly, for given $x = \sum_{i=\nu}^{\infty} a_i p^i$, the expansion of -x is given by solving for b_i in the equality

$$(a_{\nu}p^{\nu}+a_{\nu+1}p^{\nu+1}+\cdots)+(b_{\ell}p^{\ell}+b_{\ell+1}p^{\ell+1}+\cdots)=0.$$

Here
$$\ell = \nu = v_p(x) = v_p(-x)$$
.

Examples

$$-1 = (p-1) + (p-1)p + (p-1)p^2 + \cdots$$

• We can then write $x = \frac{1}{m}$ as a Laurent series $\sum_{i=\ell}^{\infty} b_i p^i$ by comparing coefficients of p^i in the equality

$$(a_{\nu}p^{\nu} + \cdots + a_{d}p^{d}) \cdot (b_{\ell}p^{\ell} + b_{\ell+1}p^{\ell+1} + \cdots) = 1$$

Note that the order ℓ of this series is $\ell = -\nu = -v_p(m) = v_p(x)$.

• Similarly, for given $x = \sum_{i=\nu}^{\infty} a_i p^i$, the expansion of -x is given by solving for b_i in the equality

$$(a_{\nu}p^{\nu}+a_{\nu+1}p^{\nu+1}+\cdots)+(b_{\ell}p^{\ell}+b_{\ell+1}p^{\ell+1}+\cdots)=0.$$

Here
$$\ell = \nu = v_p(x) = v_p(-x)$$
.

Examples

$$-1 = (p-1) + (p-1)p + (p-1)p^2 + \cdots = (p-1) \cdot \frac{1}{1-p}.$$

In summary, we have proved:

In summary, we have proved:

Lemma

Let p a prime. Then every rational number can be written as a "Laurent series"

$$\sum_{i=
u}^{\infty}a_i
ho^i,\qquad
u\in\mathbb{Z},a_i\in\{0,\dots,p-1\}$$
 (*)

where the expansion is either finite or periodic.

In summary, we have proved:

Lemma

Let p a prime. Then every rational number can be written as a "Laurent series"

$$\sum_{i=\nu}^{\infty} a_i p^i, \qquad \nu \in \mathbb{Z}, a_i \in \{0, \dots, p-1\}$$
 (*)

where the expansion is either finite or periodic.

(Cf.: Every rational number can be written as $\sum_{i=\nu}^{\infty} c_i \varepsilon^i$ with, say, $\varepsilon = 1/10$, $c_i \in \{0, \dots, 9\}$, with expansion either finite or periodic.

In summary, we have proved:

Lemma

Let p a prime. Then every rational number can be written as a "Laurent series"

$$\sum_{i=\nu}^{\infty} a_i p^i, \qquad \nu \in \mathbb{Z}, a_i \in \{0, \dots, p-1\}$$
 (*)

where the expansion is either finite or periodic.

(Cf.: Every rational number can be written as $\sum_{i=\nu}^{\infty} c_i \varepsilon^i$ with, say, $\varepsilon = 1/10$, $c_i \in \{0, \dots, 9\}$, with expansion either finite or periodic. Allowing for arbitrary expansions yields the reals.)

In summary, we have proved:

Lemma

Let p a prime. Then every rational number can be written as a "Laurent series"

$$\sum_{i=\nu}^{\infty} a_i p^i, \qquad \nu \in \mathbb{Z}, a_i \in \{0, \dots, p-1\}$$
 (*)

where the expansion is either finite or periodic.

(Cf.: Every rational number can be written as $\sum_{i=\nu}^{\infty} c_i \varepsilon^i$ with, say, $\varepsilon = 1/10$, $c_i \in \{0, \dots, 9\}$, with expansion either finite or periodic. Allowing for arbitrary expansions yields the reals.)

Definition

Let p be a prime. Then the expressions of the form (*) form the field of p-adic numbers, denoted \mathbb{Q}_p .

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We were trying to find a correct interpretation of the exponents v_p .

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We were trying to find a correct interpretation of the exponents v_p .

Definition

For x in \mathbb{Q}_p , $x \neq 0$,

 $v_p(x) :=$ smallest index in the *p*-adic expansion of *x*.

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We were trying to find a correct interpretation of the exponents v_p .

Definition

For x in \mathbb{Q}_p , $x \neq 0$,

 $v_p(x) :=$ smallest index in the *p*-adic expansion of *x*.

Observe: If x in \mathbb{Q}_p is a nonzero square, then $v_p(x)$ is even.

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We were trying to find a correct interpretation of the exponents v_p .

Definition

For x in \mathbb{Q}_p , $x \neq 0$,

 $v_p(x) :=$ smallest index in the *p*-adic expansion of *x*.

Observe: If x in \mathbb{Q}_p is a nonzero square, then $v_p(x)$ is even. So our previous corollary becomes:

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We were trying to find a correct interpretation of the exponents v_p .

Definition

For x in \mathbb{Q}_p , $x \neq 0$,

 $v_p(x) :=$ smallest index in the *p*-adic expansion of *x*.

Observe: If x in \mathbb{Q}_p is a nonzero square, then $v_p(x)$ is even. So our previous corollary becomes:

Proposition

A nonzero rational number $x \in \mathbb{Q}$ is a square if and only if it is a square in \mathbb{R} and in each \mathbb{Q}_p .

We just defined a field \mathbb{Q}_p for each prime p, whose elements look like "Laurent series" in the "variable" p.

We were trying to find a correct interpretation of the exponents v_p .

Definition

For x in \mathbb{Q}_p , $x \neq 0$,

 $v_p(x) :=$ smallest index in the *p*-adic expansion of *x*.

Observe: If x in \mathbb{Q}_p is a nonzero square, then $v_p(x)$ is even. So our previous corollary becomes:

Proposition

A nonzero rational number $x \in \mathbb{Q}$ is a square if and only if it is a square in \mathbb{R} and in each \mathbb{Q}_p .

This result is an example of what is called a local-global principle.

Roughly speaking, a *local-global principle* is a theorem of the form "statement P is true over \mathbb{Q} if and only if it is true over each \mathbb{Q}_p and over \mathbb{R} ".

Roughly speaking, a *local-global principle* is a theorem of the form "statement P is true over \mathbb{Q} if and only if it is true over each \mathbb{Q}_p and over \mathbb{R} ".

The terminology "local-global" can be explained as follows:

Roughly speaking, a *local-global principle* is a theorem of the form "statement P is true over \mathbb{Q} if and only if it is true over each \mathbb{Q}_p and over \mathbb{R} ".

The terminology "local-global" can be explained as follows:

• What pertains to \mathbb{Q}_p is "local" because you "focus" on one prime and forget the others.

Roughly speaking, a *local-global principle* is a theorem of the form "statement P is true over \mathbb{Q} if and only if it is true over each \mathbb{Q}_p and over \mathbb{R} ".

The terminology "local-global" can be explained as follows:

- What pertains to \mathbb{Q}_p is "local" because you "focus" on one prime and forget the others.
- What pertains to $\mathbb Q$ is "global" because in $\mathbb Q$ you see "the whole picture" (all primes at once).
Definition

Roughly speaking, a *local-global principle* is a theorem of the form "statement P is true over \mathbb{Q} if and only if it is true over each \mathbb{Q}_p and over \mathbb{R} ".

The terminology "local-global" can be explained as follows:

• What pertains to \mathbb{Q}_p is "local" because you "focus" on one prime and forget the others.

• What pertains to $\mathbb Q$ is "global" because in $\mathbb Q$ you see "the whole picture" (all primes at once).

The relevance of local-global principles is that many problems are easier to solve "locally" than "globally".

Definition

Roughly speaking, a *local-global principle* is a theorem of the form "statement P is true over \mathbb{Q} if and only if it is true over each \mathbb{Q}_p and over \mathbb{R} ".

The terminology "local-global" can be explained as follows:

• What pertains to \mathbb{Q}_p is "local" because you "focus" on one prime and forget the others.

• What pertains to $\mathbb Q$ is "global" because in $\mathbb Q$ you see "the whole picture" (all primes at once).

The relevance of local-global principles is that many problems are easier to solve "locally" than "globally". Whenever a local-global principle holds, the local study yields global information.

To illustrate a local-global principle, consider quadratic equations with coefficients in \mathbb{Q} :

 $q(x_1,\ldots,x_n)=0.$

To illustrate a local-global principle, consider quadratic equations with coefficients in \mathbb{Q} :

$$q(x_1,\ldots,x_n)=0.$$

We shall restrict* to *q* homogeneous; this means that all monomials have degree 2.

To illustrate a local-global principle, consider quadratic equations with coefficients in \mathbb{Q} :

$$q(x_1,\ldots,x_n)=0.$$

We shall restrict^{*} to q homogeneous; this means that all monomials have degree 2. In other words, q is a quadratic form,

$$q(x_1,\ldots,x_n)=(x_1,\ldots,x_n)A\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}\qquad \forall (x_1,\ldots,x_n).$$

To illustrate a local-global principle, consider quadratic equations with coefficients in \mathbb{Q} :

$$q(x_1,\ldots,x_n)=0.$$

We shall restrict* to q homogeneous; this means that all monomials have degree 2. In other words, q is a quadratic form,

$$q(x_1,\ldots,x_n)=(x_1,\ldots,x_n)A\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}\qquad \forall (x_1,\ldots,x_n).$$

In this case, we look for *nontrivial* solutions, i.e., we discard the solution $(x_1, \ldots, x_n) = (0, \ldots, 0)$.

Two must-know things on quadratic forms (over any* field):

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change.

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

(2) By scaling the variables, one can "get rid of squares in the coefficients".

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

(2) By scaling the variables, one can "get rid of squares in the coefficients". This is dependent on the ground field.

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

(2) By scaling the variables, one can "get rid of squares in the coefficients". This is dependent on the ground field.

Examples

Consider

$$q(x, y, z, w) = x^{2} + \frac{1}{4}y^{2} + \frac{1}{2}z^{2} - w^{2}.$$

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

(2) By scaling the variables, one can "get rid of squares in the coefficients". This is dependent on the ground field.

Examples

Consider

$$q(x, y, z, w) = x^{2} + \frac{1}{4}y^{2} + \frac{1}{2}z^{2} - w^{2}.$$

• Put $Y = \frac{y}{2} \rightsquigarrow$ the second coefficient becomes 1.

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

(2) By scaling the variables, one can "get rid of squares in the coefficients". This is dependent on the ground field.

Examples

Consider

$$q(x, y, z, w) = x^{2} + \frac{1}{4}y^{2} + \frac{1}{2}z^{2} - w^{2}.$$

- Put $Y = \frac{y}{2} \rightsquigarrow$ the second coefficient becomes 1.
- (E.g. over \mathbb{R}): Put $Z = \frac{z}{\sqrt{2}} \rightsquigarrow$ the third coefficient becomes 1.

Two must-know things on quadratic forms (over any* field): (1) One can always assume q is in *diagonal form* $q(x_1, ..., x_n) = \sum a_i x_i^2$, up to a coordinate change. (Think of "completing the square".)

(2) By scaling the variables, one can "get rid of squares in the coefficients". This is dependent on the ground field.

Examples

Consider

$$q(x, y, z, w) = x^{2} + \frac{1}{4}y^{2} + \frac{1}{2}z^{2} - w^{2}.$$

- Put $Y = \frac{y}{2} \rightsquigarrow$ the second coefficient becomes 1.
- (E.g. over \mathbb{R}): Put $Z = \frac{z}{\sqrt{2}} \rightsquigarrow$ the third coefficient becomes 1.
- (E.g. over \mathbb{C}): Put $W = iw \rightsquigarrow$ the fourth coefficient becomes 1.

More formally, the last observation tells us:

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"),

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each *i*, $a_i \in \mathcal{R}$ or $a_i = 0$.

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each *i*, $a_i \in \mathcal{R}$ or $a_i = 0$.

Example

(1) Over \mathbb{R} , the coefficients can be chosen to be in $\{+1, -1, 0\}$. (Sylvester's law of inertia)

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each *i*, $a_i \in \mathcal{R}$ or $a_i = 0$.

Example

(1) Over \mathbb{R} , the coefficients can be chosen to be in $\{+1, -1, 0\}$. (Sylvester's law of inertia)

(2) Over $\mathbb{Q},$ we have $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}=\ldots$

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each i, $a_i \in \mathcal{R}$ or $a_i = 0$.

Example

(1) Over \mathbb{R} , the coefficients can be chosen to be in $\{+1, -1, 0\}$. (Sylvester's law of inertia)

(2) Over \mathbb{Q} , we have $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2} = \dots$???

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each i, $a_i \in \mathcal{R}$ or $a_i = 0$.

Example

(1) Over \mathbb{R} , the coefficients can be chosen to be in $\{+1, -1, 0\}$. (Sylvester's law of inertia)

(2) Over \mathbb{Q} , we have $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2} = \dots$??? (infinite)

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each i, $a_i \in \mathcal{R}$ or $a_i = 0$.

Example

(1) Over \mathbb{R} , the coefficients can be chosen to be in $\{+1, -1, 0\}$. (Sylvester's law of inertia)

- (2) Over \mathbb{Q} , we have $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2} = \dots$??? (infinite)
- (3) Over $K = \mathbb{Q}_p$, we have

More formally, the last observation tells us: If we choose a system of representatives \mathcal{R} for the quotient set $K^{\times}/K^{\times 2}$ ("nonzero elements modulo squares"), then any quadratic form over K can be put in the form

$$q(x_1,\ldots,x_n)=\sum a_i x_i^2$$

where, for each i, $a_i \in \mathcal{R}$ or $a_i = 0$.

Example

(1) Over \mathbb{R} , the coefficients can be chosen to be in $\{+1, -1, 0\}$. (Sylvester's law of inertia)

- (2) Over \mathbb{Q} , we have $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2} = \dots$??? (infinite)
- (3) Over $K = \mathbb{Q}_p$, we have

$$\mathcal{K}^{\times}/\mathcal{K}^{\times 2}$$
 has cardinality = $\begin{cases} 4, & p \neq 2, \\ 8, & p = 2. \end{cases}$

Remark

(1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p".

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

	even order	odd order
$a_{ u}$ square mod p		
$a_ u$ nonsquare mod p		

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

	even order	odd order
$a_{ u}$ square mod p	1	
$a_{ u}$ nonsquare mod p		

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

	even order	odd order
$a_{ u}$ square mod p	1	р
$a_ u$ nonsquare mod p		

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

	even order	odd order
$a_{ u}$ square mod p	1	р
$a_ u$ nonsquare mod p	и	

Remark

- (1) If x is a square in \mathbb{Q}_p , then its order $v_p(x)$ is even.
- (2) When squaring, the leading coefficient gets "squared up to multiples of p". The map

{leading coefficient of x} \mapsto {leading coefficient of x^2 }

is a 2-to-1-map on the set $\{1, \ldots, p-1\}$.

	even order	odd order
$a_{ u}$ square mod p	1	р
$a_{ u}$ nonsquare mod p	и	иp

Quadratic forms over \mathbb{Q}_p , $p \neq 2$

Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

Quadratic forms over \mathbb{Q}_p , $p \neq 2$

Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

We say that $q(x_1, \ldots, x_n)$ represents an element *a* of the ground field if the equation $q(x_1, \ldots, x_n) = a$ has a (nontrivial) solution.
Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

We say that $q(x_1, \ldots, x_n)$ represents an element *a* of the ground field if the equation $q(x_1, \ldots, x_n) = a$ has a (nontrivial) solution.

Theorem

Let $q(x_1,\ldots,x_n) = \sum a_i x_i^2$.

(1) If n = 2 and a_1 , a_2 have order 0, then q represents 1.

Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

We say that $q(x_1, \ldots, x_n)$ represents an element *a* of the ground field if the equation $q(x_1, \ldots, x_n) = a$ has a (nontrivial) solution.

Theorem

Let $q(x_1, \ldots, x_n) = \sum a_i x_i^2$.

(1) If n = 2 and a₁, a₂ have order 0, then q represents 1. (all squares)

Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

We say that $q(x_1, \ldots, x_n)$ represents an element *a* of the ground field if the equation $q(x_1, \ldots, x_n) = a$ has a (nontrivial) solution.

Theorem

Let
$$q(x_1,\ldots,x_n) = \sum a_i x_i^2$$
.

- (1) If n = 2 and a₁, a₂ have order 0, then q represents 1. (all squares)
- (2) If n = 3 and a_1 , a_2 , a_3 have order 0, then q represents 0. By the general theory, it represents <u>all</u> elements of \mathbb{Q}_p .

Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

We say that $q(x_1, ..., x_n)$ represents an element *a* of the ground field if the equation $q(x_1, ..., x_n) = a$ has a (nontrivial) solution.

Theorem

Let
$$q(x_1,\ldots,x_n) = \sum a_i x_i^2$$
.

- (1) If n = 2 and a₁, a₂ have order 0, then q represents 1. (all squares)
- (2) If n = 3 and a_1 , a_2 , a_3 have order 0, then q represents 0. By the general theory, it represents <u>all</u> elements of \mathbb{Q}_p .
- (3) If n = 4 and all a_i are nonzero, then q represents <u>all</u> elements of \mathbb{Q}_p <u>except</u> in the case where each coefficient belongs to a different class in $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times 2}$. In this case, it represents all <u>nonzero</u> elements.

Fundamental technique: Solve for the 0-th coefficient and pull back up. (Hensel's Lemma)

We say that $q(x_1, \ldots, x_n)$ represents an element *a* of the ground field if the equation $q(x_1, \ldots, x_n) = a$ has a (nontrivial) solution.

Theorem

Let
$$q(x_1,\ldots,x_n) = \sum a_i x_i^2$$
.

- (1) If n = 2 and a₁, a₂ have order 0, then q represents 1. (all squares)
- (2) If n = 3 and a_1 , a_2 , a_3 have order 0, then q represents 0. By the general theory, it represents <u>all</u> elements of \mathbb{Q}_p .
- (3) If n = 4 and all a_i are nonzero, then q represents <u>all</u> elements of \mathbb{Q}_p <u>except</u> in the case where each coefficient belongs to a different class in $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times 2}$. In this case, it represents all <u>nonzero</u> elements.

(4) If $n \ge 5$, then q represents <u>all</u> elements of \mathbb{Q}_p .

The Theorem of Minkowski and Hasse

The most famous instance of a local-global principle is the Theorem of Minkowski and Hasse on quadratic forms.

The most famous instance of a local-global principle is the Theorem of Minkowski and Hasse on quadratic forms.

Theorem (Theorem of Minkowski and Hasse)

A quadratic form over \mathbb{Q} in any number of variables represents 0 if and only if it does so over each \mathbb{Q}_p and over \mathbb{R} .

The most famous instance of a local-global principle is the Theorem of Minkowski and Hasse on quadratic forms.

Theorem (Theorem of Minkowski and Hasse)

A quadratic form over \mathbb{Q} in any number of variables represents 0 if and only if it does so over each \mathbb{Q}_p and over \mathbb{R} .

Corollary

A quadratic form as above represents a ∈ Q if and only if it does so over each Q_p and over R.

The most famous instance of a local-global principle is the Theorem of Minkowski and Hasse on quadratic forms.

Theorem (Theorem of Minkowski and Hasse)

A quadratic form over \mathbb{Q} in any number of variables represents 0 if and only if it does so over each \mathbb{Q}_p and over \mathbb{R} .

Corollary

- A quadratic form as above represents a ∈ Q if and only if it does so over each Q_p and over R.
- (2) Two quadratic forms over Q are "the same" (isomorphic) if and only if they are "the same" over every Q_p and over ℝ (which is trivial to check).

And now for something totally disconnected...

And now for something totally disconnected... (i.e., some drawings on the blackboard explaining the topology of \mathbb{Q}_p)

Thank you for your attention!