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Note to the Reader

This document originates with a lecture course I taught with Harald Grobner

at the University of Vienna in the spring term of 2021. During the course, my

co-lecturer and I shared informal notes with our students, while also planning

to use these as a basis for much more detailed lecture notes which would cover

and expand on the full contents of the course. Carrying out this plan in the

desired level of detail proved tremendously ambitious given my time constraints

and other engagements as a PhD student. The current version (which carries

the somewhat arbitrary version number v0.45) only fully covers the first of the

three parts that made up the course. I hope to come back to this project in

quieter times and conclude it; for now, consider it my Dune: Part One.

On a more factual note, clearly the current version is to be considered a

preliminary one in many regards. Accordingly,

“Those who read beyond this page do so at their own peril.”

Oscar Wilde . . . sort of
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Motivation and overview

Locally compact groups represent a joint cornerstone of algebra and analysis—

a trait which will be apparent throughout these notes. As a consequence, the

study of these objects may be approached from several directions, each pro-

viding its own set of motivating examples and considerations.

In this introduction we shall first focus on three “strands” of motivation, cor-

responding roughly to the three chapters of which this document is composed.

Next, we shall give an overview of the contents, and outline the make-up of

each chapter in the process. Finally, to conclude the introduction there will be

a brief discussion of the relevant literature.

A first way to motivate the study of locally compact groups is the following

consideration coming from the field of analysis. Traditionally and in most mod-

ern uses, the very term ‘analysis’ is intrinsically tied to the real field R: the

various flavours of analysis (ranging from ‘real’ or ‘complex’ analysis to func-

tional analysis, harmonic analysis and so on) are all concerned with spaces that

are obtained from R in some way (Rn, C, Cn, smooth and analytic manifolds,

topological vector spaces over R or C, . . . ), and the very properties of R seem

almost indispensable in many key points, e.g.,

• to meaningfully discuss convergence of sequences and of infinite sums (or

products) in R or C;

• to prove that any finite-dimensional vector space over R is canonically

a topological vector space over R, which is then automatically a Banach

space (with all norms being equivalent);

• to define the Lebesgue integral for functions on Rn;
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• to introduce concepts of differentiability and smoothness, test functions,

distributions, etc. on Rn and hence on real manifolds;

• to talk about Fourier transforms and Schwartz functions on Rn.

One could wonder if there even exist spaces different from R, Rn, etc. where

some of these notions and results carry over. Clearly to answer this one needs

to take into account the “least amount of structure” that is needed for the

definitions or statements to make sense.

Consider as a simple case the existence of Lebesgue measure on R. The result

can be stated as follows:

. Theorem. There exists a unique (positive) measure λ on R which sat-

isfies the following:

(i) the λ-measurable sets are precisely1 the Borel subsets of R, and every

compact set has finite measure;

(ii) λ is translation-invariant; and

(iii) λ([0, 1]) = 1.

Moreover, any nontrivial (positive) measure λ′ satisfying (i) and (ii) is a pos-

itive scalar multiple of λ.

Suppose one wanted to generalize this result in this form to more general

spaces. Such spaces would have to be equipped with both a topological struc-

ture and a group structure, which are needed to make sense of (i) and (ii),

respectively. The rest of the statement then (intuitively) suggests that, in or-

der to pin down the measure uniquely (not just up to scalars), we need at least

one subset of nonzero finite measure. Refining these observations, we arrive

at the notion of a locally compact group. One can then prove that for these

groups, there exists a nonzero translation-invariant Radon measure2, unique

up to positive real multiples, known as Haar measure. This fact is a major step

towards developing a robust theory of analysis on arbitrary locally compact

groups, and as it turns out, virtually all of the notions and results mentioned

1There is also an analogous existence-and-uniqueness result for the strictly larger σ-

algebra of Lebesgue-measurable sets; however, we do not need to get into such details here.

We will come back to this in Chapter I.
2A precise definition for our purposes is given in §4 of Chapter I. .
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above generalize to at least some class of locally compact groups (possibly with

additional structure).

A second approach that will lead us to consider locally compact groups comes

from the representation theory of groups. We shall return to this topic more

systematically in Chapter III; for the moment being, we shall content ourselves

with a partial account.

Consider, then, the following problem: given an abstract group G, one wants

to find a concrete “realization” in which the group operation is as easy as

possible to describe.

If G is finite, then one option is to realize the elements of G as permutations

of some suitable (sufficiently large) set, i.e., to embed G into some permutation

group Sn. (It is not hard to see that this is always possible.) In turn, elements

of Sn can be realized as permutation matrices, i.e. as linear transformations on

Rn (in fact, on Kn for any field K). This shows that for every finite group G and

every field K there exists a finite-dimensional vector space V over K such that

G affords a nontrivial group homomorphism ρ : G→ GL(V ); in particular, the

group operation on G can be “translated” to composition of linear maps on a

vector space, i.e. to multiplication of matrices.

A pair (V, ρ) as above (minus the finiteness assumption on G and dimV ) is

called a (K-)linear representation of the group G. For finite G and, say, K = R
or C, one can prove:

. Theorem (Maschke’s Theorem). Every K-linear representation (V, ρ)

decomposes as a direct sum of “building blocks” ( irreducible representations).

(Furthermore, although this is not part of Maschke’s theorem: under the

same assumptions, all irreducible K-linear representations of G are finite-

dimensional.)

One way to prove the above theorem relies on “averaging” functions f on

G over the group G (by summing the finitely many values f(g), g ∈ G and

dividing by |G|.) This suggests that the result could be generalized to any group

G on which one can “average”, e.g. by integrating and then dividing by the

“size” of G. Thus, one would need a group equipped with a nonzero (positive)

measure µ for which µ(G) <∞. But we saw earlier that locally compact groups

are naturally equipped with an invariant measure, called Haar measure. As we
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shall see, such a group has finite Haar measure if and only if it is compact, so

compact groups are the natural candidates for this generalization.

Of course, if one wants to bring topology into the game, then sooner or later

one also needs the representation space V to have some “sensible” topology,

and the representation needs to be continuous in a suitable sense. Once this

is all made precise, it turns out that, indeed, Maschke’s theorem, as well as

finite-dimensionality of irreducibles, generalize to (certain) continuous linear

representations of compact groups on (certain) topological vector spaces. The

representation theory of general locally compact groups is a vast and exciting

subject and we will touch upon it towards the end of these notes.

A third aspect that motivates the study of locally compact groups is their

ubiquity in modern number theory, of which we shall now give a “taste”.

As is well-known, prime numbers are at the very center of many questions

in number theory. The problem of solving simultaneous congruences modulo

powers of a fixed prime p leads one to consider so-called p-adic numbers. It

turns out that, for each prime number p, the field of p-adic numbers, denoted

by Qp, is a locally compact field and that, precisely by virtue of being locally

compact, each Qp shares many of the desirable properties of R which make

analysis possible (cf. above).

This is the most fundamental case of a much more general phenomenon.

Indeed, in number theory one is often led to consider so-called algebraic number

fields, which are, per definition, finite-degree extensions of the rational field Q.

For these fields, there is a notion which naturally generalizes that of prime

integers, namely that of prime ideals. It turns out that, again, the problem of

solving congruences “yields”, broadly speaking, locally compact fields.

The more surprising result is that we also have a converse. To wit, if we

start with a general (nondiscrete) locally compact field that is not the reals

R or the complex numbers C, then it can be of two types: either it contains

a finite subfield (meaning that the elements 1, 1 + 1, 1 + 1 + 1, . . . are not

all distinct), or, if it doesn’t, then it is obtained from some algebraic number

field by the process above. This shows that studying algebraic number fields

and studying locally compact fields are two intimately related tasks, and in

fact, several fundamental results in algebraic number theory can be recast as

topological statements involving locally compact fields or the locally compact
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adèle ring of a number field.

We are now ready to outline the topics that will be discussed in these notes.

Cf. also the Table of Contents following the introduction.

The first chapter is devoted to locally compact groups in general, and more

specifically to proving the fundamental result on existence and essential unique-

ness of the Haar integral. The reader is not assumed to have any prior familiar-

ity with locally compact groups; instead, the first section serves to introduce

the larger framework of topological groups and discuss some general results—

to the extent that they might be of use later on. It will then be easy to zero in

on locally compact groups, which is the category we are really interested in.

Since we want to talk about integration on such groups, we will then give a

brief review of measure theory to recall some fundamental notions. The next

natural step will then be to discuss invariant measures and specifically Haar

measures. Finally, and crucially, the proofs of existence and essential unique-

ness of Haar measure will be discussed. To conclude the chapter we will give an

overview of some additional results and topics that sadly lie outside the scope

of these notes; this section will be called “Vista”, which is an idea borrowed

from William Waterhouse’s book [Water].

For one paradigmatic example of a simple but powerful application of Haar

measure, we have chosen the topic of locally compact fields, which makes up

the second chapter. Again, we shall start by discussing in great generality the

concept of topological rings (fields being special rings); this will be easy, having

already built the foundations of topological groups. Next we will move on to

locally compact fields, which, simply by virtue of being locally compact, can

be shown to have remarkably powerful properties. It will also be instructive to

study vector spaces over such fields, which is where we’ll see results analogous

to the well-known ones for R or C that were mentioned above. At this point

we will introduce the field of p-adic numbers as the paradigmatic example of

what locally compact fields other than the reals or complex numbers “look

like”. Again, we will conclude the chapter with a “Vista”.

The third and largest chapter will be devoted to representation theory, the

study of realizations of abstract groups as groups of linear transformations

on vector spaces, as discussed earlier. We shall revisit the motivation and

the special case of finite groups as given earlier, and then explore the possible
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avenues of generalization. For a certain class of locally compact groups, namely

locally profinite groups, and a certain class of their representations, most of

the theory familiar from the finite-group case can be set up again without the

need to dramatically redefine many of the main concepts. This is no longer

true of general locally compact groups, which is why we will only be able to

treat some special cases in the level of detail they deserve: the representation

theory of compact groups, and that of locally compact abelian groups, which

is, essentially, and at this point perhaps surprisingly, an abstract approach to

classical Fourier analysis. Again, we will conclude with an overview of more

advanced topics and suggestions for further reading in the “Vista” section.

To conclude this introduction, it is perhaps appropriate to briefly discuss rel-

evant literature. The general structure of the account in these notes is not

unlike that of the bulk of [Folland], with additional input from [GWarner] for

the representation-theoretic part. There are two notable exceptions, namely

the two “case studies” that were most inspired by the authors’ interest in

number theory: locally compact fields on the one hand, and the representation

theory of locally profinite groups on the other. The main references used by

the authors for these topics were [FANF] and [BushHen], respectively. How-

ever, many other sources have provided some of the material and inspired

the exposition. For this reason, our policy will be to mention useful reference

works at the beginning of the section to which they are relevant, and to sug-

gest literature for further reading at the end of each chapter, in the “Vista”

section. The eager reader is therefore invited to check these parts of the notes

especially carefully. In the Preliminaries preceding Chapter I we have addi-

tionally included a compendium of the notions that are going to be used in

the document.
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Preliminaries

Foundations of mathematics We shall not need to be greatly concerned

with foundations of mathematics in these notes. Instead, we shall follow in

the honoured tradition of taking for granted that everything we say works in

Zermelo–Fraenkel set theory with the axiom of choice (ZFC) and pointing out

each instance in which we use the axiom of choice in an argument.

Set theory Familiarity with elementary set-theoretic notation, operations,

and terminology is assumed. Occasionally, terms such as family, collection or

class might be used as synonyms of “set”.

Convention. We use ⊆ as a general symbol for inclusion (not necessarily

strict); if we require an inclusion to be strict, then we shall use (, while ⊂
will sometimes be used for inclusions which are evidently strict, e.g.: Q ⊂ R
(s. below).

A (set-theoretic) function f : X → Y has Y as its codomain (or target space),

and f(X) ⊆ Y as its range or image. A function might be alternatively called

a map or a mapping in certain set phrases such as ‘continuous map’ or ‘linear

map’. This should not create confusion with the use of these same terms for the

morphisms of category theory, nor is familiarity with category theory necessary

to read these notes.

Convention. For sets X and Y , the collection of all set-theoretic functions

X → Y will be denoted by Y X whenever necessary. Thus, no distinction is

made on the formal level between tuples (yx)x∈X of elements of Y indexed by

the elements of X, on the one hand, and functions X → Y on the other.
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Pointwise operations with functions Let X and Y be sets, and suppose

that Y affords a binary operation, i.e. a set-theoretic function

Y × Y → Y

(y1, y2) 7→ y1 ∗ y2.

Then the set Y X of functions X → Y affords a pointwise version of ∗: for

elements f , g ∈ Y X , one may define f ∗ g ∈ Y X by (f ∗ g)(x) := f(x) ∗ g(x)

for all x ∈ X. Analogously, if Y affords an external binary operation, i.e. a

function

Z × Y → Y

(z, y) 7→ z � y

for some set Z, then we obtain an external binary operation Z × Y X → Y X

via the formula (z � f)(x) = z � f(x) (where z ∈ Z, f ∈ Y X , and x ranges

over the elements of X).

It is easily checked in either case that properties of the (original) binary

operation such as associativity, commutativity, etc. continue to hold true for

its pointwise version. In conclusion, if a set Y affords one or more (possibly

external) binary operation(s) which make it into a group [or a ring, or a vector

space over some field K], then, for any set X, the set Y X of functions X → Y

becomes a group [ring; K-linear space] with the pointwise operations induced

by those on Y . (Cf. also the paragraphs below for more on algebraic structures.)

Number systems Throughout these notes, the following standard notations

will be used freely:

N . . . . . . the set of natural numbers (including 0),

Z . . . . . . the integers,

Q . . . . . . the rational numbers,

R . . . . . . the reals,

C . . . . . . the complex numbers.

Each of the first four sets will always be identified with a subset of the following

one(s) in the standard way. Moreover, all of these sets will always be tacitly
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equipped with the usual operations + and ·, and all except C will always be

considered with their natural order structure. Additionally, the reals and the

complex numbers will generally be equipped with their standard topological

(metric) structure, and on either space, the notation | · | will stand for the

standard Euclidean absolute value.

Notations such as Z≥0 or R>0 should be self-explanatory. We shall also use

the common notations R∗ = R \ {0} and C∗ = C \ {0}.
We again make the reader aware of the following

Convention. N = {n ∈ Z : n ≥ 0}.

Other blackboard bold symbols Often symbols in a blackboard bold

typeface (such as N, Z, etc. from the previous paragraph) have special mean-

ings for certain authors and should therefore be used sparingly. If need be, we

shall use the following:

Fq . . . . . . the (essentially unique) finite field with cardinality q (q being a

prime power);

in a slight extension, we shall use F for a finite field whose cardinality is not

known, not specified, and/or not relevant.

Convention. We will occasionally use K to denote a field (such as a field of

coefficients, or a “ground field” in the sense of linear algebra) which is initially

completely arbitrary and which might later be specialized to some concrete

“blackboard bold field” such as F, R or C.

In the text (§1 of Chapter I), we shall introduce the notation T for the set of

complex numbers of modulus 1.

Cardinality A set is countably infinite if it admits a bijection to the nat-

ural numbers. We shall use the phrase ‘at most countable’ for sets which are

either finite or countably infinite. It might then be ambiguous to simply write

‘countable’, but hopefully this will not lead to any confusion in these notes.

(For instance, the statement “A countable union of countable sets is again

countable” is true whether ‘countable’ is taken to mean ‘countably infinite’ or

‘at most countable’.)
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Groups The definition of a group is standard. Most commonly, a group is

defined as a non-empty set together with an associative binary operation on

that set (sometimes called the group law) and a distinguished element of that

set (the neutral element) subject to certain axioms, most notably the existence

of an inverse for each element of the group.

Two main conventions are used when denoting groups: in multiplicative no-

tation, the group law is written as · or even simply as juxtaposition, the neutral

element is denoted 1, and the inverse of an element g is denoted g−1; whereas

in additive notation, one uses +, 0, and −g, respectively. Additive notation is

reserved for abelian (i.e., commutative) groups.

Convention. When denoting a general group, we will denote the group law

multiplicatively, the neutral element by e and the inverse of g by g−1. Thus, a

group is a triple (G, ·, e). Often we will simply write (G, ·) or even G in lieu of

(G, ·, e). The neutral element will also be called the identity.

Familiarity with the following notions is assumed: subgroups, left (right)

cosets of a subgroup, the index of a subgroup, normal subgroups, quotient

groups, group homomorphisms. The trivial subgroup is {e}.

Rings and fields In the absence of any explicit mention to the contrary,

all rings in these notes will be commutative with unity. Accordingly, a subring

is an additive subgroup which contains 1 and is closed under multiplication,

and an ideal—an additive subgroup which is closed under multiplication by

elements of the whole ring—is always two-sided.

By a related convention, all fields are commutative. A field is finite if and

only if it has finite cardinality. A subfield (of some ring) is a subset which is a

field with the operations inherited from the ambient ring.

Topology A topology on a set X is a family of subsets of X, called the open

sets of the topology, subject to certain axioms. Familiarity with the following

notions is assumed: base for a topology; subbase for a topology; the topology

generated by a given base (or subbase).

A topological space is a set together with a topology on it (the latter is

customarily omitted from the notation). A point of a topological space is an

element of the underlying set.
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Familiarity with the following notions is assumed: closed subsets; adherent

points of a subset; the closure of a subset; the interior of a subset. The closure

of a subset A shall be regularly denoted by A or cl(A), and the interior of A

will be A◦ or int(A).

We shall also compare pairs of topologies on the same set using the terms

‘coarser ’ and ‘finer ’. The trivial topology on a set is the coarsest possible

topology on that set; the discrete topology is the finest one. A discrete space

is a topological space whose topology is discrete.

The terms subspace topology and trace topology are synonymous.

For a point x of a topological space X, a neighbourhood of x is a subset of X

whose interior contains x. (Observe that neighbourhoods are not necessarily

open.) The family of all neighbourhoods of x is the neighbourhood system or

neighbourhood filter at x. We assume familiarity with the notion of a neigh-

bourhood basis at a point x. Moreover, for us, a local base is the same as a

neighbourhood basis (the elements of a local base need not be open).

Familiarity with the notion of continuity (at a point) of a map between topo-

logical spaces is assumed. We shall also speak of the initial and final topology

on a set with respect to a given family of maps, the most important examples

being the product topology and the quotient topology, respectively. We also ex-

pect knowledge of the terms ‘open map’, ‘closed map’, and ‘homoeomorphism’.

A bicontinuous map is a homoeomorphism.

Familiarity with the notions of first-countable and secound-countable topo-

logical spaces is assumed.

Finally, we assume familiarity with the notion of topological distinguishabil-

ity of two points. The reader is also expected to have encountered the first

few separation axioms: T0, T1, and most importantly T2, better known as the

Hausdorff condition.

Metric spaces Familiarity with metric spaces is assumed, including the fol-

lowing notions: the natural (induced) topology on a metric space; the meaning

of such terms as ‘open ball’, ‘closed ball’, ‘radius’, etc.; Cauchy sequences;

(Cauchy) completeness and the completion of a metric space. Recall that in a

complete metric space X (with metric d), a subset Y ⊆ X is closed if and only

if it is complete with respect to the restricted metric d|Y×Y .

xvi



A topological space is metrizable if there exists a metric on its underlying

set which induces the given topology on said set. Since metric spaces satisfy all

separation axioms, a metrizable topology must necessarily be Hausdorff (T2).

Compact topological spaces Familiarity with the notion of an open cover

of a topological space is assumed. Throughout these notes, a topological space

X is compact if every open cover of X has a finite subcover. (Caveat : some

authors, such as [Bourbaki-top], call these spaces quasicompact and reserve

the term ‘compact’ for quasicompact spaces which are additionally Hausdorff;

but for us, compact spaces are not necessarily Hausdorff.) The following basic

standard facts concerning compact spaces might be used without reference to

expedite several proofs throughout these notes.

• A space is compact if and only if every family of closed subsets having

the finite intersection property has non-empty intersection.

• A finite (subspace of a) topological space is always compact, and a (sub-

space of a) Hausdorff topological space is finite if and only if it is both

compact and (when equipped with the subspace topology) discrete.

• Continuous images of compact (sub-)spaces are again compact.

• A closed subspace of a compact space is itself compact; and

• a compact subspace of a Hausdorff space is necessarily closed. Hence:

• let F be a non-empty family of compact subsets of a Hausdorff space X.

Then the intersection of all elements of F is compact.

• A metric [metrizable] space is compact if and only if it is sequentially

compact, meaning that every sequence has a convergent subsequence.3

Hence:

• a compact metric space is (Cauchy) complete.

3For general (meaning: not necessarily metrizable) topological spaces, sequences are not

enough to check for compactness. Instead, we have that a topological space is compact if

and only if every net has a cluster point (or, equivalently, if and only if every net has a

convergent subnet).
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• A (subspace of a) metric space is compact if and only if it is (Cauchy)

complete and totally bounded, which means that for every ε > 0 there

exists a finite cover of that (sub-)space by open balls of radius ε.

• (Tychonoff’s theorem) An arbitrary product of compact spaces is again

compact.

(Note that the last two items are proved using the axiom of choice.)

Formal power series Let A be a commutative ring with unity. The ring of

formal power series (in one variable) with coefficients in A, variously denoted

by AJxK, AJtK or similar, is, by definition, the set AN of (set-theoretic) func-

tions N → A equipped with pointwise addition (cf. earlier paragraphs) and

multiplication given as follows: for f , g : N→ A, the product fg is determined

by the formula

(fg)(n) =
n∑
k=0

f(k)g(n− k), n ∈ N.

(It is routine to check that, with these operations, AJxK is indeed a commuta-

tive ring with 1, containing a copy of A as a subring.)

The symbol x (t, . . . ) appearing in the notation AJxK (AJtK, . . . ) stands for

the unique element of AN defined by

n 7→

1, n = 1,

0, else.

This notational convention has the following advantages.

(a) It is easily checked that, if a function a : N → A, n 7→ a(n) has finite

support, i.e. if the set {n ∈ N : a(n) 6= 0} is finite, then

a =
∑

n : a(n)6=0

a(n)xn.

(This is, of course, to be understood as an equality of elements of AJxK.)

(b) For two elements a, b as in the previous item, the product ab can be

computed simply by “collecting like terms”.
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These observations inform the following general notational convention for ar-

bitrary elements of AJxK.

Convention. When a function N → A, n 7→ a(n) = an is regarded as an

element of AJxK, it is customary to denote it by

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · · .

and to call such an element f(x) a formal4 power series (in the variable x with

coefficients in A).

With this convention, the product of two elements of AJxK can again be

computed simply by “collecting like terms”.

4The word “formal” serves as a reminder that these infinite sums are not to be understood

as limits of their sequences of partial sums; however, they can be regarded in this way for a

suitable metrizable topology on AJxK, called the (x)-adic topology, cf. Chapter II.
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Chapter I

Locally compact groups and the

Haar integral

The goal of this chapter is to introduce the eponymous protagonists of these

notes, as well as to establish the fundamental properties of Haar measure. The

first section serves as a primer on topological groups, while the specialization

to locally compact groups is deferred to §2. Next, a preparatory review of mea-

sure theory (§3) will pave the way for a discussion of invariant measures, and

Haar measures in particular, in §4. Existence and essential uniqueness of Haar

measure are the subject of sections 5 and 7, respectively, with the intervening

§6 reviewing the necessary background in integration theory. The final section

is devoted to showing how to determine left and right Haar measure on several

well-known examples of locally compact groups. To conclude the chapter we

will give an overview of some additional results and topics that sadly lie out-

side the scope of these notes; this (unnumbered) section will be called “Vista”,

which is an idea borrowed from William Waterhouse’s book [Water].

1 Generalities on topological groups

From a pragmatic point of view, this section has the main aim to lay down

some of the foundations on which the remainder of the notes will build up:

it introduces the fundamental notion of a topological group and contains key

observations which will be used many times, often implicitly, in the sequel.
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However, it was also written with the secondary intention to make the reader

acquainted with some of the more unique aspects of the theory, be it unex-

pected results or ingenious proof ideas—to omit these would be to not do the

theory justice. Still our treatment here is, by necessity, far from comprehensive.

More can be found in the the Vista at the end of this chapter, but for a truly

comprehensive account the reader is referred to [Bourbaki-top, Chapter III] or

[SWarner, Chapter I].

1.1 The central notion

1.1. We delve right in with the pivotal definition.1 A topological group is a

group (G, ·, e) together with a topology on its underlying set G such that the

two maps

G×G→ G,

(g, h) 7→ g · h,
(g.law)

and

G→ G,

g 7→ g−1,
(inv)

are continuous. (Here, it is understood that the topology on the domain G×G
of the former map is the product topology.)

1.2. Examples.

(1) It follows from standard arguments to be found in any introductory anal-

ysis book that the additive group of the reals, together with the standard

Euclidean topology on R, is a topological group. The same arguments

apply of course to the additive groups of the spaces C, Rn, Cn (for any

n ∈ N) with their respective standard topologies.

(2) Similarly, the multiplicative group of the reals, meaning the set R∗ =

R\{0} together with multiplication, is a topological group when endowed

with its standard topology. Plainly the same is true of such groups as

1The reader is reminded to consult the relevant paragraphs in the preliminary consider-

ations on p. page numbers!ff. should questions of notation or terminology arise.
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C∗ and R>0. Another example of a multiplicative group which will fea-

ture prominently later on is the so-called circle group T, which can be

described most simply as a multiplicative subgroup of C∗:

T = {z ∈ C∗ : |z| = 1}

with the topology inherited from C. The name “circle group” is easily

explained by keeping in mind that, upon identifying C with Euclidean

plane R2, the subspace T is none other than the unit circle S1 in the

plane R2. One may also think of T as the group U(1) of unitary 1 × 1-

matrices (with complex entries). The notation T comes from interpreting

the unit circle as a (one-dimensional) torus.

(3) It follows immediately from comparing the respective definitions2 that

every (real or complex) Lie group is automatically a topological group.

Thus, matrix groups such as the general linear group GL(n,R) or the

orthogonal group O(n,R) are topological groups in a natural way (for

any n ≥ 1).

In fact, the knowing reader might have realized that all examples discussed

so far, including those from items (1) and (2) above, are Lie groups. However,

the notion of a topological group is clearly much more general, as the next

examples show.

(4) Consider the additive group of Q together with its natural topology as

a subspace of R. It is easily seen to be a topological group, but it is not

a Lie group.3

(5) Any topological vector space over R or C is a topological group with

addition.

(6) Any group, when endowed with the discrete topology, becomes a topo-

logical group.

(For contrast, observe that a topological vector space over R or C is a Lie

group if and only if it is finite-dimensional, and that, by the most widespread

2We have included the definition of a Lie group in the Vista.
3The latter claim will become apparent from the discussion in §2 below; more precisely,

we shall see that all Lie groups are locally compact groups whereas Q isn’t.

3



definition of a Lie group, a discrete group is a Lie group if and only if it is at

most countable; cf. the Vista.)

Observe that all examples discussed so far (with the possible exception of

(5)) are even Hausdorff. We shall see later (see 1.19) that forgoing the Haus-

dorff property means having to deal with points that are “lumped together”

(topologically indistinguishable), so this is not only undesirable, it also hardly

ever happens in practice. For this reason, some authors reserve the term ‘topo-

logical group’ for the Hausdorff ones. By contrast, our definition in these notes

does not explicitly rule out non-Hausdorff groups, so that, for us, the following

does constitute an example of a topological group:

(7) The trivial topology (the coarsest-possible topology) makes every group

into a topological group. �

1.3. Remarks on the definition.

(1) One might wonder why the definition of a topological group features a

condition on (g.law) (as well as (inv)) but no condition on, say, the

maps

G→ G,

x 7→ g · x
and/or

G→ G,

x 7→ x · g
(*)

as g ranges over the elements of G. To answer this, recall the following

result from general topology first:

1.4. Lemma. Let X, Y and Z be topological spaces, and let f : X ×
Y → Z be a continuous map, where the domain is equipped with the

product topology. Then, for any fixed x ∈ X, the map fx : Y → Z, y 7→
f(x, y) is continuous; analogously, the map fy : X → Z, x 7→ f(x, y) is

continuous for every y ∈ Y .

(The proof is a straightforward verification and is left to the interested

reader.) It follows that continuity of (g.law) implies continuity of the

maps from (*), so that, when the former is in force, it is not necessary to

expressly require the latter. By contrast, there is only a partial converse

to this statement, as shown by [SWarner, Chapter 1, Exercise 1.10]; in

other words, imposing continuity of the maps from (*) instead of con-

tinuity of (g.law) might lead to a strictly larger class of objects. It is
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then not entirely easy to explain a priori why one choice should be more

convenient or natural than the other, except perhaps through a “cate-

gorical” lens (s. the Vista for more on this, but cf. also E.4.(c)); at this

point in time, the reader might simply have to trust that the definition

from 1.1 is the “correct” one until the theory itself has had a chance to

(hopefully) provide enough evidence for this.

(2) It is also natural to wonder whether the definition can be simplified by

omitting, say, the condition on the inversion map (inv). (I.e., whether

it automatically follows from the other condition, as is the case for Lie

groups.) In general, this is not the case: Exercise E.1 gives an example

of a group G and a topology on G such that the group law (g.law) is

continuous but the inversion map is not. (Amusingly, there also exist a

group G and a topology on G such that (inv) is continuous but (g.law)

isn’t, see [SWarner, Chapter 1, Exercise 1.3].)

�

1.5. Remark. On the surface, it might appear that the study of topological

groups is, loosely speaking, a “proper subset” of the study of abstract groups.

In actuality, the opposite is true: as was mentioned above, every abstract group

can be viewed as a Hausdorff topological group by endowing it with the discrete

topology, and so, in a sense, any result that holds for (Hausdorff) topological

groups groups also holds for all abstract groups.4 An added bonus in consider-

ing groups with their natural topologies (when available) rather than simply

as abstract groups is, of course, that the added structure makes it easier to

“tell apart” pairs of groups that are indistinguishable from a merely algebraic

viewpoint: a particularly illuminating example is explored in Exercise E.3. �

1.2 Basic properties

1.6. Having seen how many objects fall into the scope of our central defi-

nition, it is time to see some of its more direct consequences. The first result

is as simple as its ramifications are powerful, and is concerned primarily with

4Although, of course, many results might turn out to be uninteresting for discrete groups.
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the maps

lg : G→ G,

x 7→ g · x
and

rg : G→ G,

x 7→ x · g
(l&r)

(where g ranges over the elements of the group (G, ·)) that were already dis-

cussed in an earlier remark. For fixed g, these maps are called left and right

translation by g, respectively. There seem to be no standard notations in the

literature for these maps—and in fact special notation is hardly ever needed at

all: if A ⊆ G and g ∈ G, it is far more common to denote lg(A) and rg(A) by

gA and Ag, respectively. Our own choice of notation borrows somewhat from

the idea of so-called covariant and contravariant indices and should serve as a

reminder that lgh = lg ◦ lh whereas rgh = rh ◦ rg (with g, h ∈ G arbitrary).

We can now state the result:

1.7. Proposition. Let G be a topological group. Then:

(i) for any g ∈ G, both left and right translation by g define homoeomor-

phisms from G into G; and

(ii) the inversion map (s. (inv)) is a homoeomorphism from G into itself.

Proof. The second claim is immediate, since the map is clearly self-inverse and

is continuous by assumption.

As for the first claim, it was already argued above that lg and rg are con-

tinuous for any g ∈ G (the notations being as in (l&r)). But each lg is a

bijective map with inverse l−1
g = lg−1 , which is again continuous; so every lg is

a homoeomorphism, as claimed. The argument for right translations is entirely

analogous (or, alternatively, one may use the fact that rg = ν ◦ lg−1 ◦ ν, where

ν denotes the inversion map g 7→ g−1.)

There are a number of immediate corollaries, which are nevertheless well

worth writing down explicitly. The first two are direct consequences of parts

(i) and (ii) of the proposition, respectively:

1.8. Corollary. Let G be a topological group, A be a subset of G, and g a

point in G. Then the following are equivalent:

(i) A is open;
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(ii) gA is open;

(iii) Ag is open.

Moreover, the statement remains true if the word ‘open’ is replaced by ‘closed’

or ‘compact’ throughout.

(For the meaning of the notations in (ii) and (iii), see 1.6 above.)

1.9. Corollary. Let G be a topological group, A be a subset of G. Then A

is open [closed, compact] if and only if

A−1 := {a−1 : a ∈ A} ⊆ G

is open [closed, compact].

To state the next corollary, we introduce the following notation: for subsets

A, B of a group G, one writes

AB := {a · b : a ∈ A, b ∈ B} ⊆ G.

1.10. Corollary. Let G be a topological group. If A ⊆ G is open and B ⊆ G

is arbitrary, then AB and BA are open.

Proof. Write AB =
⋃
g∈B Ag and analogously for BA.

Perhaps the most striking consequence of the proposition is that a topologi-

cal group looks “locally the same” around each of its points (in more rigorous

terms, it is a homogeneous space): indeed, if g, h are arbitrary elements of the

topological group G, then there exists a homoeomorphism from G to G which

sends g to h, namely (say) lh ◦ l−1
g , or rh ◦ (rg)−1. In this connection, note the

following result.

1.11. Corollary. Let G be a topological group, U be a subset of G and g, h

be points in G. Then the following are equivalent:

(i) U is a neighbourhood of g;

(ii) hg−1U is a neighbourhood of h;

(iii) Ug−1h is a neighbourhood of h.

7



Moreover, the statement remains true if the word ‘neighbourhood’ is replaced by

‘open neighbourhood’, ‘closed neighbourhood’, ‘compact neighbourhood’, ‘com-

pact open neighbourhood’, . . . throughout.

In particular (by setting h = e), we obtain that, as U runs over the neigh-

bourhoods of e, both gU and Ug run over the neighbourhoods of g, and this

exhausts the neighbourhoods of g. This can be used to prove that a group

homomorphism between topological groups is continuous if and only if it is

continuous at the identity (this is Exercise E.5). At the same time, it points

to another major property of topological groups: to completely describe their

topology it suffices, at least morally, to describe a neighbourhood base around

the neutral element. For a precise statement and proof, see e.g. [SWarner,

Chapter 1, Corollary 1.5]; for an important special case which will feature in

our discussion of locally compact fields in Chapter II, see Exercise E.6.

1.3 Local bases at the identity

1.12. As a natural continuation to the preceding discussion, our next task will

be to investigate the system of neighbourhoods of the identity in a topological

group. To that purpose, it is convenient to introduce the following definition:

a subset A of a group G is said to be symmetric if it has the property that

A−1 = A (the notation being as in 1.9). The reason for the terminology is

apparent if one considers the familiar group (R,+): plainly, a subset of this

group is symmetric in the above sense if and only if it is symmetric around 0

in the usual geometric sense.

1.13. Remark. Clearly all subgroups are examples of symmetric subsets, but

the converse is not true: think e.g. of (−1, 1) ⊂ R. In fact, it is easy to see that,

in R, no neighbourhood U of the neutral element can be a subgroup except for

R itself. This is true in any connected group; see the Vista for more on this. �

The importance of symmetric subsets and particularly symmetric neighbour-

hoods is made apparent by the following result.

1.14. Proposition. Let G be a topological group. Then:

(i) The symmetric open neighbourhoods of the identity e form a local base at

e. In other words, for every neighbourhood U of e there exists a symmetric

open neighbourhood V such that V ⊆ U .
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(ii) For every neighbourhood U of e there exists a symmetric open neighbour-

hood W such that WW ⊆ U .

Proof. To show the first claim, let U be a neighbourhood of e. Without loss

of generality, U can be taken to be open in G. But then V = U ∩U−1 has the

sought-after property (cf. 1.9).

As for the second claim, let U be again an arbitrary neighbourhood of the

identity. Then continuity of the group operation (the map from (g.law)) at

(e, e) guarantees the existence of a neighbourhood W̃ such that W̃W̃ ⊆ U . By

(i) we may then take a symmetric open neighbourhood W ⊆ W̃ , and we have

WW ⊆ U a fortiori.

1.4 Constructions

The previous result concludes our study of the neighbourhood system at the

identity for the moment. In the next result, we focus on constructions with

topological groups instead.

1.15. Proposition.

(i) A subgroup of a topological group, when equipped with the subset topology,

is again a topological group.

(ii) An arbitrary product of topological groups is a topological group with the

product topology.

(iii) A quotient of a topological group G by a normal subgroup H is again a

topological group with the quotient topology. The canonical map πH : G�

G/H, g 7→ gH is continuous and open. If the subgroup is open, then the

quotient is discrete.

For the duration of the proof, we will resort to the following notations: for

any group G, the inversion map (cf. (inv)) will be denoted by νG, and the map

describing the group law (cf. (g.law)) will be denoted by µG. We shall also

write qG for the map µG ◦ (idG × νG), i.e.,

qG : G×G→ G,

(g, h) 7→ g · h−1.
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With these notations, we have the following auxiliary result which will simplify

the proof of the proposition:

1.16. Lemma. Let G be a group and let a topology be given on G. In order

for both µG and νG to be continuous, it is necessary and sufficient that qG =

µG ◦ (idG × νG) be continuous.

Proof of the lemma. This is Exercise E.2.

Proof of the proposition. For the first claim, let H be a subgroup of the topo-

logical group G. Then µH is none other5 than the restriction of µG to H ×H,

and analogously νH = νG|H . Thus, their continuity follows from the continuity

of the “unrestricted” maps µG and νG (which holds by assumption) together

with the definition of the subspace topology.

For the second claim, let (Gα)α∈A be a (non-empty) family of topological

groups, and set G :=
∏

α∈AGα. By 1.16, it suffices to show that q = qG is

continuous; by that same reason, we may use that for each α the map qα := qGα
is continuous.

To prove the claim, recall that the product topology on G is, by definition,

the initial topology with respect to the various projections G → Gα; in other

words, q is continuous if and only if πα ◦ q is continuous for all α, where πα
is the projection to the “α-th” factor. But πα is a group homomorphism, so

πα ◦ q = qα ◦ (πα×πα); we already argued that the first map on the right-hand

side is continuous, and it is not hard to check (by standard point-set topology)

that the same holds for the second map.

Finally, consider the third claim. First of all, the quotient G/H = {gH : g ∈
G} is indeed a group with the operation gH · g′H := (gg′)H, because H was

assumed normal.

Next, consider the map πH . The quotient topology is the final topology with

respect to this map, which makes πH automatically continuous. The definition

of the quotient topology also entails that A ⊆ G/H is open if and only if

π−1
H (A) is open in G; it follows that πH is an open map, because if U is open

in G, then π−1
H (πH(U)) = UH is also open in G by 1.10, hence πH(U) itself is

open.

5Actually, the restrictions of µG and νG a priori map into G, but since H is a subgroup,

their range is actually H, so their codomain can taken to be H.
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Next, one proves that G/H is indeed a topological group. As was the case

for products, we may use 1.16 to reduce to the following: use continuity of qG
to infer continuity of qG/H . The decisive step is now to realize that qG/H ◦(πH×
πH) = πH ◦ q and use the readily-seen continuity of πH × πH .

As for the very last assertion, this follows easily from the openness of πH .

Indeed, if H is open in G, then πH(H) is open in G/H. But πH(H) is none

other than the trivial subgroup of G/H, so by 1.7 all singletons in G/H are

open, which was to be shown.

1.17. Examples.

(1) Clearly, for any n ≥ 1, the topological group (Rn,+) is none other than

the n-fold product of the topological group (R,+) with itself. The same

holds true if one replaces R by C.

(2) In 1.2, we already considered Q ⊂ R and T ⊂ C∗ as subgroups with the

subspace topology.

Now consider the inclusion Z ⊂ R. Then the subspace topology on Z is

precisely the discrete topology.

(3) The above proposition implies in particular that the quotient R/Z is

a topological group. Indeed, this group is isomorphic (as a topological

group!) to the circle group T introduced in 1.2.(2); in other words, there

exists a map R/Z → T which is both a group homomorphism and a

homoeomorphism (namely, the map which sends the coset x+Z to e2πix).

�

1.5 Open and closed subgroups

The next result lists some of the most striking products of the interaction

between the group structure and the topological structure on a topological

group.

1.18. Proposition.

(i) Let H be a [normal] subgroup of a topological group G. Then its closure

is again a [normal] subgroup.

(ii) Open subgroups of a topological group G are automatically closed.
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(iii) A closed subgroup of a topological group G which is of finite index is

automatically open.

(iv) An open subgroup inside a compact group is of finite index and is itself

compact.

Proof. Fill in proof of first claim, cf. [SWarner, Chapter I, Thm. 2.1].

For the second and third claims, recall that, if H is a subgroup of a group

G, then G is the union of the left cosets gH as g ranges over the elements of

G. On the other hand, H =
⋃
g∈H gH, and so the complement of H in G is

simply the union of the remaining cosets, i.e., G \H =
⋃
g/∈H gH. Thus, if G

is a topological group and H is an open subgroup, then the complement of H

is the union of sets of the form gH and hence itself open (cf. 1.8). Similarly, if

H is closed and of finite index then its complement can be written as a finite

union of translates of the closed set H, and is hence again closed.

Finally, suppose U is an open subgroup of a compact group K. Then one

may write K =
⋃
k∈K kU . This is an open cover of K, so, by compactness,

there is a finite subcover: K =
⋃n
i=1 kiU . Thus {k1, . . . , kn} contains a system

of representatives for K modulo U , hence [K : U ] ≤ n <∞. The last assertion

follows from (ii) together with the well-known fact that a closed subset of a

compact space is again compact.

Some of the most noteworthy implications of these easy statements are on

connectedness, as discussed in the Vista.

1.6 Hausdorff groups

To conclude this section, we want to focus on the Hausdorff property for topo-

logical groups. Earlier, we remarked that all groups encountered in practice are

Hausdorff, and in fact, starting in the next section we will impose the Haus-

dorff condition on all groups we want to study. So it is worthwhile asking how

much of a restriction this actually is. The relevant result is:

1.19. Proposition.

(i) A topological group is Hausdorff if and only if it is T0, and this is the

case if and only if the trivial subgroup is closed.
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(ii) For every topological group G there exist a Hausdorff group G′ and a

surjective group homomorphism π : G � G′ such that every continuous

map G→ X to a T0 topological space X factors uniquely through π.

Observe that part (ii) reads like a universal property, and indeed, it quickly

implies that G′ is unique up to isomorphism of topological groups.

To prove the proposition, we start with some preparations which are relevant

to both claims.

1.20. Lemma. In every topological group G, there exists a closed normal sub-

group N such that:

(i) {g} = gN for every g ∈ G; and

(ii) in order for two points g, h ∈ G to be topologically indistinguishable, it

is necessary and sufficient that they lie in the same N-coset.

Proof of the lemma. Plugging g = e into the first claim, we see that the only

possible choice for N is N = {e}. This is indeed a closed normal subgroup of

G by 1.18.(i) (because {e} is normal in G). Upon invoking 1.8, we see that

{g} =
⋂

F closed
g∈F

F =
⋂

C closed
e∈C

gC = g ·
⋂

C closed
e∈C

C = g · {e}

for any g ∈ G, whence the claim.

As for (ii), this now follows immediately from (i) if we recall that two points

x and y of a topological space X are topologically indistinguishable if and only

if the singletons {x} and {y} have the same closure in X.

Proof of the proposition. Clearly in a Hausdorff group all points are closed, so

in particular the trivial subgroup is closed. On the other hand, if {e} is closed

then all singletons are closed (by 1.8), which in turn implies the T0 condition.

Hence, the nontrivial part of the first claim lies in showing that a T0 group is

automatically Hausdorff.

So suppose that G is T0, let g, h ∈ G be distinct, and set x = g−1h. Then x

and e are distinct, hence topologically distinguishable. We shall now use the

lemma to infer that e /∈ {x}.
For suppose that e ∈ {x}. Then {e} ⊆ {x}, i.e., by the above lemma,

eN ⊆ xN . But N -cosets are either disjoint or identical, so it would follow that
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{e} = eN = xN = {x}, i.e., e and x are topologically indistinguishable, a

contradiction.

Thus, e /∈ {x}. This means that e is not an adherent point of the single-

ton {x}; accordingly, there exists some neighbourhood U of e which does not

contain x. By 1.14, there exists a symmetric open neighbourhood V of e such

that V V ⊆ U . Then gV and hV are disjoint, because otherwise there would

exist elements v1, v2 ∈ V such that gv1 = hv2, but then x = g−1h = v1v
−1
2 ∈

V V −1 = V V ⊆ U , a contradiction. Since g and h were arbitrary, this proves

that G is Hausdorff.

To prove (ii), let X be an arbitrary T0 space and ϕ be a continuous map

from G to X. Then ϕ(g) = ϕ(h) whenever g and h are topologically indis-

tinguishable; in other words, ϕ is constant on N -cosets, where N is as in the

previous lemma. But then ϕ factors uniquely through the quotient G/N , which

is Hausdorff by Exercise E.7. Hence, we can take G′ and π to be the quotient

G/N and the quotient map G� G/N , respectively.

The final result of this section has the purpose of showing that common

constructions do not lead outside of the category of Hausdorff groups. Its proof

is easy and left as an exercise (E.7).

1.21. Proposition.

(i) Subgroups of Hausdorff groups are again Hausdorff.

(ii) Arbitrary products of Hausdorff groups are again Hausdorff.

(iii) A quotient of a Hausdorff group by a closed normal subgroup is again

Hausdorff.

1.22. Remark. Recall that the Hausdorff property and the T0 property fit

into the larger range of so-called separation axioms. In the Vista, the reader

will find further discussion concerning separation axioms for topological groups

as well as another property that separation axioms are famously related to,

namely metrizability. �

2 Locally compact groups

In this section, we first discuss the notion of local compactness for general

topological spaces, addressing some of the different conventions that exist in
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the literature. Next, we specialize to locally compact groups, showing that this

category encompasses all Lie groups—and thus many of the examples from

the previous section—as well as other, as-yet-unseen types of groups. In this

connection, we shift our focus to those locally compact groups which are, in a

sense, “furthest away” from being Lie groups, called locally profinite groups—

we will see more and more examples of these throughout these notes, and their

distinctive qualities (even among locally compact groups) will ultimately earn

them a dedicated section in the final chapter.

2.1 Local compactness in general

2.1. As was hinted at above, usage of the phrase ‘locally compact’ can vary

in the literature. Firstly, just as with the term ‘compact’, some authors require

locally compact spaces to be Hausdorff whereas others do not. The qualifier

‘locally’ complicates matters further: often, ‘locally P ’ (where P denotes some

property of topological spaces) means, by definition, that each point of the

space at hand has a local base consisting of subsets with the property P ,

but sometimes, e.g. with ‘locally Euclidean’, one may more concisely (and yet

equivalently) require that each point have at least one open neighbourhood

with the property P . Thus, we see that either of the following conditions—

possibly in conjunction with the requirement that X be Hausdorff—could be

a natural candidate for defining ‘local compactness’ for a topological space X:

(LC1) Every point of X has a compact neighbourhood.

(LC2) Every point of X has a local base of compact neighbourhoods.

Both of these conditions can indeed be found in the literature, and in fact, they

are not the only ones. Some authors work with either of the following, which

are obtained by swapping the word ‘compact’ out for ‘relatively compact’.6

(LC3) Every point of X has a relatively compact neighbourhood.

(LC4) Every point of X has a local base of relatively compact neighbourhoods.

Clearly, (LC1) is the least restrictive of these as well as the easiest to verify in

practice; for this reason, in these notes, a topological space X will be called

6Recall that a subset of a topological space X is relatively compact if its closure in X is

compact.

15



locally compact if and only if it satisfies (LC1) from above. However, this

condition shall rarely appear on its own; our focus will be almost exclusively on

spaces which are locally compact Hausdorff (or LCH for short), i.e., spaces that

are both Hausdorff and satisfy (LC1). Not only are such spaces clearly “nicer”

to work with; adding the assumption of “Hausdorfness” has the pleasant side

effect that it resolves the ambiguity in the definition of local compactness,

meaning that there is no disagreement across the literature around the meaning

of the phrase ‘locally compact Hausdorff space’. This is the content of the

following result:

2.2. Proposition. For a Hausdorff space X, (LC1)–(LC4) are equivalent.

Proof. First, it is apparent that for any X (not necessarily Hausdorff!), we

have the implications (LC4) =⇒ (LC3) =⇒ (LC1) and (LC2) =⇒ (LC1). (It

is in fact also true for any X that (LC3) implies (LC4), but we shall not need

this.)

From now on, let X be Hausdorff. Then compact subsets of X are closed

and in particular relatively compact, so that now (LC1) implies (LC3) and

(LC2) implies (LC4). In summary, (LC2) is now the strongest of all four,

with (LC1) being the weakest. We shall now close the circle by showing that

(LC1) in turn implies (LC2). To do this, we use the fact that, in a Hausdorff

space X satisfying (LC1), every point has a local base consisting of closed

neighbourhoods; this will be addressed in the Vista below.

Thus, let X be a Hausdorff space satisfying (LC1), and let x be any point

in X. Then x has both a compact neighbourhood K (directly by (LC1)) and a

local base B of closed neighbourhoods (by the aforementioned result). To prove

that X satisfies (LC2), we need to exhibit a neighbourhood basis around x

consisting of compact subsets. To that end, consider {C ∩K : C ∈ B}. Clearly

this is again a neighbourhood basis around x. But it is also easy to see that

each C ∩K is compact in X: first, since X is Hausdorff, K is closed, so C ∩K
is also closed (in X) if C is; but then C∩K is a closed subspace of the compact

space K, hence again compact, as claimed.

2.3. Locally compact Hausdorff spaces form a well-behaved and well-studied

class of topological spaces (cf. the Vista for some results of topological interest),

which is however also comfortably “large”—it is easily checked to contain:

16



(1) all discrete spaces;

(2) compact Hausdorff spaces (since compact spaces trivially satisfy (LC1));

(3) Euclidean space of any (finite) dimension; and hence

(4) any locally Euclidean Hausdorff space, and so in particular all (real or

complex) manifolds.

We shall later find other examples of such spaces by means of the following

general result:

2.4. Proposition. Let X be a locally compact Hausdorff space. Then all

closed subsets of X and all open subsets of X are again locally compact in the

subspace topology.

Proof. Fill in this proof! Cf. e.g. SE1887556.

2.2 Local compactness for groups

2.5. The entirety of the above discussion applies to general topological spaces,

so it is now time to bring the focus back onto topological groups. Clearly it

is meaningful to talk about locally compact Hausdorff topological groups—

meaning, of course, topological groups whose underlying topological spaces

are LCH. However, it is important to note that the predominant convention

in the literature is to drop the word ‘Hausdorff’ as though it were implied by

either ‘locally compact’ or ‘topological group’ (even when the author’s defini-

tions would not imply this). In other words, a topological group is usually said

to be locally compact if (and only if) its topology is locally compact as well

as Hausdorff. We shall adhere to this seemingly universal convention in these

notes too; in this section and all sections to come, ‘locally compact group’ is

always to be understood as a shorthand for ‘locally compact Hausdorff topo-

logical group’.

2.6. Examples. The following are examples of locally compact groups:

(1) the additive groups of R and C, and in fact of Rn and Cn (for any n ∈ N);

(2) the multiplicative groups R∗, R>0, C∗ and T (the circle group) considered

in 1.2.(2);

17

https://math.stackexchange.com/questions/1887556/closed-and-open-subsets-of-locally-compact-hausdorff-space-are-locally-compact


(3) all Lie groups;

(4) all discrete groups;

(5) all compact Hausdorff topological groups.

In fact, most of these claims follow directly from the discussion in 2.3. (For (2),

use 1.18, or view (2) as a subcase of (3).) Alternatively, they can be inferred

immediately (with the possible exception of (3)) from the following result:

2.7. Lemma. For a Hausdorff topological group G, the following are equiva-

lent:

(i) G is locally compact;

(ii) G has at least one compact subset with non-empty interior;

(iii) the neutral element of G has a compact neighbourhood.

Proof. Use 1.8 and 1.11.

Further examples of locally compact groups will be discussed in the next

subsection, and with the introduction of locally compact fields in Chapter II,

we will be able to produce even more. For the moment, let us simply mention

(expanding on the case (3) of Lie groups above) that groups defined by poly-

nomial equations over a nondiscrete locally compact field can be topologized in

a canonical way, turning them into locally compact groups. (See §3 of Chapter

II for a particularly important class of examples.) �

2.8. Non-examples.

(1) The additive group of Q (topologized as in 1.2) is not locally compact.

We argue by contradiction: suppose that Q were locally compact. Then

in particular 0 ∈ Q would have a compact neighbourhood K. Because the

topology on Q (and hence on K) is induced by the standard Euclidean

metric on R, it follows that K is sequentially compact. We shall obtain

a contradiction by exhibiting a sequence in K that has no convergent

subsequence in K.

First, pick an open neighbourhood U of 0 contained in K. Then U can

be written as V ∩Q for some open neighbourhood V of 0 in R. Now pick

an irrational number α ∈ V and a sequence x1, x2, . . . such that:
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• each term xn lies in V ;

• each term xn is rational; and

• the sequence converges to α.

Then (xn)n≥1 is a sequence in U , but no subsequence of U has a limit

in U , and this is the desired contradiction. In fact, this argument proves

that a subset of Q with non-empty interior cannot be compact (this

would, however, also follow from 2.7).

(2) A topological vector space over R or C is neither locally compact nor

Hausdorff in general; more concretely, such a space can never be locally

compact if it is infinite-dimensional over the ground field (in this regard,

cf. also §3 of Chapter II.) Thus, readers acquainted with some functional

analysis may take their favourite infinite-dimensional Banach (or Hilbert,

or Fréchet) space as an additional example of a Hausdorff group which

is not locally compact. �

Up until this point, it might appear that the split between locally compact

groups and all other topological groups runs along the exact same line as the

split between Lie groups and all other topological groups. In other words, we

have so far failed to provide a single concrete example of a locally compact

group—or indeed of a compact Hausdorff group—which is not already a Lie

group (except for, say, “an uncountable group with the discrete topology”,

which is artificial and ultimately uninteresting). The examples presented in the

next subsection will fill this gap. Before devoting ourselves to these, however,

it is appropriate to provide one easy general result on how locally compact

groups behave under fundamental topological constructions.

2.9. Proposition.

(i) A closed subgroup of a locally compact group is LCH with the subspace

topology.

(ii) A quotient of a locally compact group by a closed normal subgroup is

again locally compact.

(iii) Finite products of locally compact groups are again locally compact.

2.10. Remark.
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(1) The first claim of the proposition fails if the subgroup is not closed (as

we saw with Q ⊂ R). In fact, [SWarner, Chapter I, Corollary 2.4] shows

that, in a Hausdorff group, a locally compact subgroup is necessarily

closed.

(2) Compare the last claim of the proposition with Tychonoff’s theorem,

which states that arbitrary products of compact spaces are again com-

pact. Tychonoff’s theorem implies that arbitrary products of locally com-

pact spaces, when equipped with the box topology, are again locally com-

pact; however, the more useful topology on a product is generally the

product topology, and with this latter topology, arbitrary products of

locally compact spaces are not themselves locally compact in general. �

Proof of 2.9. (a) follows from 2.4.

(b) is e.g. [SWarner, Chapter I, Thm. 3.22.(1)].

As for (c), cf. (2) in the above remark.

2.3 Locally profinite groups

We have remarked earlier that, so far, all our concrete examples of locally

compact groups also happen to be Lie groups, and that this subsection will fill

this gap.

2.11. We warm up by working out an example that should be understandable

without much background and will pop up several times in the future. Let A

be an abelian group, denoted additively, and consider

G = AN

= {(an)n∈N : an ∈ A for all n ∈ N}
= {f : f is a set-theoretic function N→ A}.

(The equality of the three sets on the right-hand side is essentially a matter of

definition and does not hide any deep claims; hopefully having several possible

realizations on the page will facilitate understanding rather than hinder it.)

NaturallyG admits a binary operation, namely termwise/pointwise addition,

which turns it into an abelian group. On the other hand, G also admits a fairly

natural topology, which can be described equivalently in any of the following

ways (the verification of the equivalence is left to the interested reader):
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(i) the topology induced by the metric

d((an)n∈N, (bn)n∈N) = 2− inf{n : an 6=bn}

(with the conventions inf ∅ =∞ and 2−∞ = 0);

(ii) the topology in which, for any x = (an)n∈N ∈ G, a subset U ⊆ G is a

neighbourhood of x if and only if U contains a set of the form

{y = (bn)n∈N ∈ G : an = bn for all n ≤ N}

for some natural number N ;

(iii) the topology induced on G as in Exercise E.6 by the following family of

subgroups:

Σ = {Hn : n ∈ N},

where, for n ∈ N,

Hn := {(an)n∈N : a0 = a1 = · · · = an = 0};

(iv) the coarsest topology with respect to which all of the “truncation maps”

G→ An,

(an)n∈N 7→ (a0, a1, . . . , an−1)

(where n ranges over the positive integers) are continuous, each An being

equipped with the discrete topology;

(v) the product topology, where each factor A is, again, equipped with the

the discrete topology.

It is easy to see that this topology makes G into a Hausdorff topological group.

It should be about as easy (see Exercises E.8 and E.9) to check that G has the

following properties:

(ZD) every point in G has a neighbourhood basis consisting of neighbourhoods

which are both open and closed in G;

(TD) the only non-empty connected subsets of G are the singletons {x}, x ∈ G.
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(See 2.12 below for a more detailed discussion of these.) Either property demon-

strates that G is “very far” from connectedness: it should be easy to see that a

topological space satisfying (ZD) cannot at the same time be locally connected

unless its topology is discrete (and our G is clearly not discrete). In particular,

G cannot possibly be a Lie group. On the other hand, if A is a finite group,

then G is locally compact and in fact even compact (s. Exercise E.10). Thus,

our goal of showing that the class of locally compact groups is strictly larger

than that of Lie groups has been attained.

2.12. Remark. The labels (ZD) and (TD) used above are suggestive of the

names that are sometimes given to these properties in the more general con-

text of point-set topology, namely zero-dimensional and totally disconnected,

respectively. (Unfortunately, there is no complete agreement in the literature

over the terminology.) It is the point of the already-referenced Exercise E.9

that a T1 space which satisfies (ZD) also automatically satisfies (TD). The

converse is not true in general, but we are in luck:

2.13. Proposition. A locally compact Hausdorff space which satisfies (TD)

also automatically satisfies (ZD).

(The proof is not very involved, see MO37392; also, in the context of locally

compact groups there is a refinement, see 2.20 below.) This puts us in a position

to use the phrase ‘totally disconnected ’ to mean either of the properties (ZD)

and (TD) so long as we are discussing LCH spaces (and hence in particular

when we are discussing locally compact groups). �

2.14. A topological group which is compact, Hausdorff and is totally discon-

nected (see the preceding remark) is called a profinite group. The deeper reason

for this terminology lies in the following result:

2.15. Proposition. For a topological group G, the following are equivalent:

(i) G is compact, Hausdorff and totally disconnected;

(ii) G is, algebraically and topologically, the projective limit of an inverse

system of finite (discrete) groups.

We shall not prove this result in full, nor will we need to understand projec-

tive limits in full generality—readers who are already acquainted with them
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will however have no difficulties in verifying that, if A is discrete, then G = AN

is indeed the projective limit of the groups Gi = Ai, i ≥ 1, with the “projec-

tions” given by truncation maps. (Indeed, this is precisely the content of (iv)

from 2.11 above.)

2.16. Remark. Some readers might be familiar with projective limits from one

of the common definitions of the ring Zp of p-adic integers. We will define this

object in a slightly different fashion in Chapter II.

Readers might also be aware that the Galois group of a Galois extension

E/F (possibly of infinite degree) can be viewed as the projective limit of

the Galois groups Gal(F ′/F ) as F ′ runs over those intermediate fields F ⊆
F ′ ⊆ E which are of finite degree and Galois over the ground field F . Having

equipped each of the finite groups Gal(F ′/F ) with the discrete topology, one

obtains a corresponding projective limit topology on G = Gal(E/F ), which

is then called the Krull topology and clearly (either by definition or by the

preceding proposition) turns G into a profinite group. Curiously, it has been

shown ([Water2]) that every profinite group arises as the Galois group of some

Galois extension. �

2.17. By analogy with the preceding definition, a topological group which

is locally compact, Hausdorff and totally disconnected will be called a locally

profinite group. (For some authors, such groups are called t.d. groups instead,

where clearly “t.d.” is short for “totally disconnected”.) The remainder of this

subsection will be devoted to them, in preparation for the larger and larger

role they will play later on.

2.18. Observation. On an imaginary scale ranking all locally compact groups

by their connectedness properties, locally profinite groups are intuitively7 at

one extreme, with (connected) Lie groups at the other end of the spectrum. �

2.19. Remark. The choice of wording ‘locally profinite’ might seem at odds

with the usual meaning of the qualifier ‘locally’ in point-set topology (cf. also

the discussion at the beginning of this section), but is also somewhat justified

in retrospect by the following powerful result. �
7Technically, a countable discrete group would be both locally profinite and a (zero-

dimensional) Lie group, ruining the analogy.
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2.20. Theorem (van Dantzig). For a Hausdorff topological group G, the fol-

lowing are equivalent:

(i) G is a locally profinite group;

(ii) the identity element e in G has a neighbourhood basis consisting of com-

pact open subgroups.

Sketch of proof. Fill in this proof!

2.21. Examples.

(1) Clearly, all discrete groups and all profinite groups are locally profinite.

(2) More importantly, in Chapter II we will make the acquaintance of two

infinite families of nondiscrete totally disconnected locally compact fields.

(3) A host of other examples will be available once we have looked at locally

compact fields more systematically. In fact, we have mentioned that a

group defined by analytic or polynomial equations over a nondiscrete

locally compact field is canonically a locally compact group. We will see

that, if the base field is totally disconnected (cf. 2.12), then so is the

group, making it locally profinite. �

Finally, we conclude the section with a basic result concerning operations

with locally profinite groups. Its proof is easy and is left as an exercise (E.11);

in fact, the bulk is proved already in 2.9.

2.22. Proposition.

(i) A closed subgroup of a locally profinite group is again locally profinite.

(ii) A finite product of locally profinite groups is again locally profinite.

(iii) The quotient of a locally profinite group by a closed normal subgroup is

again locally profinite.

3 Review of measure theory

As was hinted at before, the main result of this chapter will be the existence

and essential uniqueness, on every locally compact group, of a certain measure

known as Haar measure. Thus, the next step is to recall some generalities on
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measures. We use the term “recall” because we expect our typical reader to

have a nonnegligible background in mathematical analysis, to the extent that

they have seen a construction of Lebesgue measure and the definitions of the

Lebesgue integral and of Lebesgue spaces (so-called Lp spaces) fleshed out in

previous courses; however, we have resolved to write this section as well as

§6 in such a way as to benefit readers who might not fit this description, by

giving what is essentially a soft introduction to measure and integration theory.

(Readers who feel confident about their measure-theoretic background might

therefore consider skipping ahead to §4.) Regrettably, a truly self-contained

treatment is not feasible for the scope of this course: in some instances, it will

be inevitable to refer to works such as [Rudin], [Folland2], [Cohn], [Halmos] or

(for readers fluent in German) [Elst], which feature a far more systematic and

comprehensive treatment.

3.1 Conceptual introduction and outer measures

3.1. From a conceptual viewpoint, measure theory is a way of formalizing

a notion of “size” for subsets of a certain set. (More accurately, “size” ought

rather to be understood in a geometric sense—such as quantifying an area or

a volume—than in the already-familiar sense of cardinality.) The formalism of

measure theory is especially fruitful insofar as it provides a rigorous basis both

for a general theory of integration (as we will see below) and for the modern

mathematical (axiomatic) approach to probability theory; in this light, one

can perhaps start to appreciate why the automatic existence of Haar measure

on any locally compact group is a noteworthy fact.

The intuitive concept of “size” is made rigorous by the mathematical notion

of a measure. As a first step towards a formal definition of this notion, it is

helpful to isolate some properties of “size” (of subsets of a fixed set) that its

rigorous counterpart is expected to fulfill.

For instance, measures of sets should be given by nonnegative real numbers

(or infinity), with the empty set being assigned measure 0. (We might express

this by saying that such a measure is “positive”.) Moreover, if we have an

inclusion A ⊆ B of (sub-)sets then naturally we expect the “smaller” set A

to have measure less than or equal to that of B—i.e., the measure should be

monotonic (or monotone). Finally, if a set can be written as a union (finite or
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at most countably infinite8) of a family of its subsets (possibly overlapping with

each other), then clearly its measure should be less than or equal to the total

sum of the measures of the sets which cover it; moreover, if the union is disjoint,

then we should expect actual equality to hold. These last two conditions are

known as countable subadditivity and countable additivity, respectively.

The first important realization at this point is that a positive, monotonic,

countably subadditive function taking subsets of a fixed set X to nonnegative

real numbers (possibly extended to include +∞) need not be countably addi-

tive in general. In order to obtain a function with all four properties, one often

has to give up the ambition of being able to measure all subsets of X and

instead specify which subsets should be “measurable” and restrict to those.

Thus, it could be said that the notion of “size” can be formalized in two dif-

ferent ways; however, in actuality, only one notion—the one with countable

additivity built into the definition—is graced with the “true” title of a mea-

sure, whereas the other notion is considered ancillary. Nevertheless, since it is

this latter notion which can be defined with less preparations, this is the one

that we shall consider first.

3.2. By definition, an outer measure on a set X is a function µ∗ : P(X) →
[0,∞], where P(X) denotes the power set of X, which satisfies the following

properties:

(a) µ∗(∅) = 0;

(b) if A, B1, B2, . . . are subsets of X such that A ⊆
⋃∞
i=1Bi, then µ∗(A) ≤∑∞

i=1 µ
∗(Bi).

Thus, in the language of the previous paragraph, outer measures are precisely

those functions that are positive, monotonic and countably subadditive (but

not necessarily countably additive).

3.3. Examples. As will become clear from the discussion in §3.3, examples

of measures and of outer measures are, in a sense, interchangeable. (More pre-

cisely, any measure yields an outer measure by extension and any outer mea-

8Allowing for countable set operations turns out to be key, if perhaps not intuitive at

first glance; for instance, it makes it possible to consider (increasing or decreasing) sequences

of sets and to interpret countable (sub-)additivity as a certain form of continuity, cf. e.g.

[Halmos, p. 38, Theorems D and E].
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sure yields a measure by restriction.) Nonetheless, it is instructive to provide

a concrete nontrivial example at this point.

To this end, consider the set X = R, and letH ⊂ P(X) denote the collection

of bounded half-open intervals in R of the form (a, b]. For any I = (a, b] ∈ H,

we shall denote the length b − a of the interval I by `(I). Now, for A ⊆ R
arbitrary, set

λ∗(A) := inf

{
∞∑
n=1

`(In) :
(In)n≥1 is a countable

H-cover of A

}
. (out.meas.)

(Of course, (In)n≥1 being a countable H-cover of A means that each In is in H
and that A ⊆

⋃
n≥1 In. Moreover, as usual, inf ∅ = inf {∞} = ∞.) Then it is

readily checked (cf. also the remark below) that λ∗ is an outer measure on R
and that λ∗ extends ` in the sense that λ∗(I) = `(I) for all I ∈ H. For reasons

that will become clear soon, λ∗ is known as Lebesgue outer measure on R. �

3.4. Remark.

(1) Observe that, in the above example, λ∗(A) is determined by approxi-

mating A “from the outside” (or “from above”) by countable covers of

intervals. This might give some retroactive insight into the nomenclature

“outer measure”.

(2) The above example is merely a concrete instance of a much more general

phenomenon: for any set X, any collection H ⊆ P(X) containing ∅ and

any function ` : H → [0,∞] such that `(∅) = 0, (out.meas.) defines an

outer measure on X (s. [Folland2, Prop. 1.10]). A sufficient condition for

the resulting outer measure to extend the original function ` is that the

collection H be a so-called semiring, which means that

(a) ∅ ∈ H,

(b) H is closed under finite intersections, and

(c) for A, B ∈ H, the set-theoretic difference A \ B can be written as

a finite disjoint union of sets in H,

and that the function ` be positive and countably additive on H.9 It is

9For a proof of this statement, see e.g. [Elst, Kap. II, Satz 4.5a)–b)], or alternatively

[Folland2, Prop. 1.13a]—in the latter source, the assertion is proved for an algebra rather

than for a semiring, but the necessary modification is straightforward.

27



easily seen that both halves of this condition are satisfied in the above

example. �

3.2 Measurable spaces

3.5. As was hinted at in the introductory paragraph 3.1, countable addi-

tivity typically comes at the price of giving up measurability of all sets. In

practice, this means that, unlike outer measures, a “proper” (countably addi-

tive) measure on a set X is not a priori defined on the entirety of the power

set P(X), but only on a certain subset (which needs to be specified together

with the measure). Accordingly, the question arises as to which collections of

subsets of X—i.e., which subsets of P(X)—qualify as potential domains for a

measure.

The answer is encapsulated in the notion of a measurable space. By this, we

mean a pair (X,A) consisting of a set X and a collection A ⊆ P(X) of subsets

of X with the following properties:

(a) ∅, X ∈ A;

(b) A is closed under complementation: if A ∈ A, then X \ A ∈ A;

(c) A is closed under countable unions: if A1, A2, . . . ∈ A, then
⋃∞
i=1Ai ∈ A.

(That is, the collection A is a σ-algebra—please note that some authors use

the term ‘σ-field’ instead.) The elements of A are called the A-measurable (or

simply measurable, if A is understood) subsets of X.

3.6. Remark. By combining (b) and (c) from the previous paragraph, we see

that a σ-algebraA is automatically closed under countable intersections; taking

into account (a) then allows us to conclude that A is also closed under finite

unions and finite intersections, and hence (again by (b)) also set differences.

In particular, every σ-algebra is a semiring as defined in 3.4. �

3.7. Examples. Clearly, for any set X, the following are σ-algebras:

(a) the whole power set P(X);

(b) the trivial σ-algebra {∅, X};

(c) {∅, A,X \ A,X} whenever A is any (proper non-empty) subset of X.
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Moreover, arbitrary intersections of σ-algebras are again σ-algebras. It then

easily follows that, for any set X and any collection E ⊆ P(X) of subsets of

X, there exists a smallest σ-algebra which contains E , denoted σ(E) and called

the σ-algebra generated by E .

The most important application of this construction, at least for our pur-

poses, is the following. If X is a topological space, then the natural choice

of a σ-algebra on X is the one generated by the collection O of open sets,

in symbols σ(O). This σ-algebra is called the Borel-σ-algebra of X and will

be denoted BX ; its sets are called Borel sets. Note that, because BX is closed

under complementation, it also contains the collection of closed subsets of X

(i.e.: closed sets are Borel) and is in fact generated by it. �

3.8. Caveat. Apparently, some authors define the Borel-σ-algebra of a topo-

logical space as the σ-algebra generated by the collection of compact (rather

than open) sets. In general, neither σ-algebra need be contained in the other,

see E.12. On the other hand, it is important to note that, in a Hausdorff

topological space, compact subsets are automatically closed and hence (by the

previous example) Borel. �

3.9. Remark. In the special case X = R (with the usual Euclidean topology),

several systems of generators for the Borel-σ-algebra are known. In fact, it is

easy to see that BR is generated by any of the following:

(1) the collection of open bounded intervals;

(2) the collection of closed bounded intervals;

(3) the collection H of bounded intervals of the form (a, b], as in 3.3;

(4) the collection of bounded intervals of the form [a, b);

(5) the collection of intervals of the form (−∞, b);

(6) the collection of intervals of the form (−∞, b];

and the list goes on (see e.g. [Folland2, Prop. 1.2]). This abundance of equiv-

alent descriptions for BR is especially useful when checking measurability of

functions (s. 6.24.(6) below). �
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3.3 Measures

3.10. We are now in a position to give the fundamental definition of this

section. A (positive) measure10 on a measurable space (X,A) is a function

µ : A → [0,∞] which satisfies the following properties:

(a) µ(∅) = 0;

(b) if A1, A2, . . . are elements of A such that Ai ∩ Aj = ∅ whenever i 6= j,

then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

(I.e., a measure on (X,A) is a positive, countably additive function on A.) A

measure space is a triple (X,A, µ) where (X,A) is a measurable space and µ

is a measure on (X,A).

3.11. Remarks on the definition.

(1) A measure is clearly automatically finitely additive in the sense that the

measure of a finite disjoint union of measurable sets is the sum of the

individual measures.

(2) Because (by the arguments in 3.6) a σ-algebra A contains the set differ-

ence B \ A whenever A, B ∈ A, it readily follows that a measure on A
is automatically monotonic on A.

It should also be easy to see that every countable union
⋃∞
i=1Ai of A-

measurable sets can be rewritten as a countable disjoint union
⋃∞
i=1A

′
i,

where µ(A′i) ≤ µ(Ai) for all i ≥ 1. From this we infer that a measure on

A is also automatically countably subadditive on A.

(3) The above statements apply more generally to semirings; more precisely,

a positive, countably additive function on a semiring (cf. 3.4) is automati-

cally monotonic and countably subadditive on its domain. The arguments

for this are easy modifications of the ones given above for σ-algebras.

(4) The definition of a measure given supra is at odds with the one used

by some authors, most notably [Bourbaki]. For a discussion of how to

reconcile these two perspectives, see 7.23.(3). �
10There also exist so-called signed measures, complex measures, . . . ; however, in this note,

the word “measure”, when used without qualifiers, will always stand for “positive measure”.
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3.12. Examples. On any measurable space (X,A), we have the following triv-

ial examples of measures:

(1) the zero measure (also known as the trivial measure), which sends every

A ∈ A to 0.

(2) the function which sends ∅ to 0 and every non-empty A ∈ A to ∞.

A more interesting example is counting measure, which is obtained by setting

µ(A) equal to the cardinality of A when A is finite and µ(A) =∞ else.

Another example of a very different flavour is given by Dirac measures. For

every x ∈ X, the Dirac measure in x is the function A → [0,∞] defined as

follows:

A 7→

1, x ∈ A,
0, x /∈ A.

(The reader eager to get some more practice with the newly-introduced

notions is of course welcome to check that each of the above does indeed

define a measure.)

Finally, most readers are probably aware of the existence of Lebesgue mea-

sure. One possible route to its construction will be reviewed at the end of this

subsection, but the contents of the following sections will also allow us to con-

struct Lebesgue measure in a different and independent way as Haar measure

on the locally compact group (R,+). �

3.13. Admittedly, the examples discussed in the previous paragraph might

not be enough to convince a skeptic encountering measure theory for the first

time of its usefulness. This has to do with the fact that many truly interesting

examples of measures (including Haar measure) are obtained through a non-

obvious procedure which involves outer measures. We will now shed some light

on the core step of this procedure.

Let µ∗ be an outer measure on a set X. A subset A ⊆ X is called µ∗-

measurable (in the sense of Carathéodory) if

∀Q ⊆ X : µ∗(Q) = µ∗(Q ∩ A) + µ∗(Q \ A).

While the definition has been said to be “not in the least intuitive”11 (but cf.

11This is taken from an often-quoted passage in E. Hewitt and K. Stromberg’s book Real

and Abstract Analysis.
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also e.g. [Halmos, §11, p. 44] or [Folland2, p. 29] for some tentative motivation),

it provides us with the following powerful result, which we state without proof

(see e.g. [Folland2, Carathéodory’s Theorem 1.11, p. 29]).

3.14. Theorem. Given an outer measure µ∗ on a set X, the µ∗-measurable

sets form a σ-algebra M(µ∗) ⊆ P(X), and the restriction of µ∗ to this σ-

algebra is countably additive, i.e., a measure on (X,M(µ∗)).

3.15. One major application of this result is the “extension” of positive,

countably additive functions to suitably large collection of sets starting from

smaller ones. More verbosely, let X be a set, H ⊆ P(X) be a semiring (cf. 3.4),

and ` : H → [0,∞] be positive and countably additive on H—then, as was dis-

cussed in 3.4, the formula (out.meas.) yields an outer measure µ∗ on X, and

µ∗(A) = `(A) for all A ∈ H. We now have the following assertion12, which can

be seen as a “coordinate result” to the preceding theorem: every set A ∈ H
is µ∗-measurable in the sense of Carathéodory. (I.e., in the notation of the

theorem, H ⊆ M(µ∗).) It follows that M(µ∗) already contains the σ-algebra

σ(H) generated by H. (This is simply by definition of the latter, s. 3.7.) But

then the theorem—together with the fact that µ∗ extends `—guarantees that

the restriction of µ∗ to σ(H) is an extension of ` to σ(H). In other words, by

this procedure we can obtain measures in the proper sense of the word (i.e.,

whose domain is a σ-algebra) even when the initial function ` was not given

on enough sets to meet this requirement.

3.16. Parenthetical. In the preceding discussion, it is natural to ask “what

happens” whenH is already a σ-algebra A to begin with (and hence ` is already

a measure µ). In this case, there is clearly no gain in extending ` = µ to

σ(H) = σ(A), since the latter is simply A. Nevertheless M(µ∗) is still a σ-

algebra which contains A and µ∗|M(µ∗) is still a measure which extends µ.

So the domain of any given measure can potentially be enlarged. (However,

[Folland2, Chapter 1, Exercise 20b, p. 32] shows that repeating this procedure

will not result in an even larger extension; in fact, it can be seen thatM(µ∗) is

already the largest σ-algebra which contains A and on which µ∗ is a measure.)

The extension µ∗|M(µ∗) incidentally has a more concrete description as the

12Cf. e.g. [Elst, Kap. II, Satz 4.5a)], or alternatively [Folland2, Prop. 1.13b], with the same

caveat as in footnote 9.
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saturation of the completion of µ, see [Folland2, Chapter 1, Exercise 22, p. 32].

�

3.17. Examples. To conclude this section, we put together the insights of the

last few paragraphs and come back to Lebesgue measure, arguably the most

important example of a measure and yet the only one that, in accordance with

our decision to “start from scratch”, we have not been able to say much about

so far.

Thus, let X = R and resume the notations `,H and λ∗ (Lebesgue outer mea-

sure) from 3.3. Applying 3.14 to λ∗ yields a measure space (X,M(λ∗), λ∗|M(λ∗)),

and by the preceding remark, together with 3.9.(3), the σ-algebraM(λ∗) con-

tains the Borel-σ-algebra BR = σ(H) of R. One calls the elements of M(λ∗)

the Lebesgue-measurable subsets of R and the restriction λ∗|M(λ∗) Lebesgue

measure on R. There are several helpful characterizations of Lebesgue mea-

surability for a subset E ⊆ R, see e.g. [Elst, Kap. II, Satz 7.4] and [Folland2,

Thm. 1.19].

Lebesgue measure is also the unique extension of our initial length function `

to a measure on σ(H) = BR. This follows from the following celebrated theorem

of Carathéodory ([Elst, Kap. II, Kor. 5.7], or [Folland2, Theorem 1.14] with

the same caveat as in footnote 9)—together with the simple observation that

the real line can be written as a countable union of intervals of finite length.

3.18. Proposition. Let (X,A) be a measurable space, A = σ(H) for a semir-

ing H, and ` : H → [0,∞] be a positive, countably additive function on H.

Suppose that

(∗) X can be written as a countable union
⋃
n≥1En where each En belongs

to H and `(En) <∞ for all n ≥ 1.

Then ` admits a unique extension to a measure on σ(H) = A.

(One often says that ` is σ-finite, or that X is σ-finite for `, if condition (*)

is met.)

Finally, the following properties of Lebesgue measure (denoted λ in what fol-

lows for the sake of conciseness) are easily established.

(1) λ is translation-invariant in the sense that, if E ⊆ R is Lebesgue-

measurable, x is a real number and x+E denotes the (left) translate of
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E by x (see 1.6 for the notation and recall that R is denoted additively),

then x+ E is again Lebesgue-measurable with λ(x+ E) = λ(E).

(In fact, this is immediate from the fact that ` has the same property on

H and from (out.meas.).)

(2) (As was already noted above,) Every Borel set is Lebesgue-measurable;

moreover, any bounded Borel set (and in particular every compact set)

has finite measure, i.e., it holds true that λ(B) < ∞ whenever B ∈ BR
is bounded.

These observations provide us with a perfect segue into the next section. �

4 Haar measure

In the last section, we devoted a lot of attention to Lebesgue measure on the

real line, recalling how it can be constructed and some of its fundamental

properties. At the end of the section, we made two easy observations which

will become especially important to us in the immediate future: we noted

that Lebesgue measure is translation-invariant and that it is finite on bounded

measurable sets and hence in particular on compact sets.

Clearly these are properties of measures which can be investigated, and in-

deed defined, much more generally than just for the real line. As a matter of

fact, given a measure space (X,A, µ), translation-invariance as formulated in

3.17 can be made sense of whenever the underlying set X is equipped with

a group structure13, and the condition of finiteness on compact sets only re-

quires a topological structure on X with the property that compact sets are

measurable. It might then be natural to want to look into these properties,

both separately and jointly, i.e. when the underlying set is, say, a topological

group. In the course of §4.2 it will become apparent that there is much to

be gained from restricting to locally compact Hausdorff topologies, which we

introduced in §2; accordingly, the entire section will ultimately “converge” to

the pivotal definition of Haar measure on a locally compact group, which will

be the main focus of the rest of the chapter.

13Or, more generally, when X is acted on by a group, cf. footnote 14 below.
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For bibliographical remarks, we refer to the individual subsections, esp. re-

marks 4.2.(1), 4.9, 4.14 and the introductory paragraph of §4.3.

4.1 Invariant measures

4.1. Let G be a group, A ⊆ P(G) be a σ-algebra of subsets of G. Suppose

that A is left-invariant in the sense that, for every A-measurable subset E ⊆ G

and every g ∈ G, the left translate gE of E by g is again A-measurable. A

measure µ on the measurable space (G,A) will then be said to be left-invariant

if µ(gE) = µ(E) for all E ∈ A and all g ∈ G. (Naturally, there is an entirely

analogous definition for the notion of right-invariance, obtained by swapping

out gE for Eg throughout.)

4.2. Remarks on the definition.

(1) It is perhaps appropriate to warn the reader that the above definition

cannot be found word for word in any of the major references for these

notes; more precisely, the assumption it features on the σ-algebra A
(the domain of the prospective invariant measure µ) is not commonly

found elsewhere, even though it is clearly necessary to ensure that the

expression µ(gE) [or µ(Eg) for right-invariance] is always meaningful (or

“well-defined”) when E is A-measurable and g is an element of G.

This discrepancy can easily be explained as follows. (We shall only ad-

dress left-invariance in the following paragraphs, but everything applies

mutatis mutandis to the right-invariant counterparts as well.) In most14

of the sources for this note, the definition of a left-invariant measure ap-

pears only in connection with Haar measure; in this particular context,

G is given as a topological group and the σ-algebra A is typically taken

to be the Borel-σ-algebra BG of G (as introduced in 3.7). But then the

assumption on A is automatically verified (this is E.15) and so there

is no need to introduce a general notion of a “left-invariant σ-algebra”.

14Bourbaki’s definition [Bourbaki, Chapter VII, §1, no. 1, Definition 1.a)] is an exception

to this statement; in fact, it is, in some respects, even more general than ours, since it

applies to measures on spaces which are acted on by a group, rather than just measures

on groups. On the other hand, it was already mentioned in 3.11 that measures are defined

differently in Bourbaki’s books (in particular, they are only defined on locally compact

Hausdorff topological spaces), cf. also 7.23.(3).
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(To our knowledge, this terminology is only used in one of the sources,

namely in the last few paragraphs of [Joys, Chapter 7].)

(2) The assumption of left-invariance [right-invariance] of a σ-algebra A can

also be equivalently phrased as the requirement that the left translation

map lg [the right translation map rg] be a measurable map from (G,A)

to (G,A) for every g ∈ G. (For more on left and right translation maps,

see 1.6; for a definition of the notion of a measurable map, see e.g. 6.19

below.) �

Before moving on to examples, we make two easy observations about passing

from left-invariant σ-algebras and measures to right-invariant ones.

4.3. Let G be an abelian group. Then

(i) a σ-algebra A ⊆ P(G) is left-invariant if and only if it is right-invariant,

and if either holds, then

(ii) a measure µ on (G,A) is left-invariant if and only if it is right-invariant.

(This is simply because, if G is abelian, then gE = Eg for any E ∈ A and any

g ∈ G.)

4.4. Now let G be any group (not necessarily abelian). We introduce two ad

hoc items of notation: for a σ-algebra A ⊆ P(G), let A∨ ⊆ P(G) denote the

set

A∨ := {E−1 : E ∈ A}

(s. 1.9 for the notation), and for a measure µ on (G,A), let µ∨ denote the

function A∨ → [0,∞] given by

µ∨(E) := µ(E−1).

Then the following are easily checked (E.16):

(i) For every σ-algebra A ⊆ P(G), the set A∨ is again a σ-algebra, and

(A∨)∨ = A.

(ii) A σ-algebraA ⊆ P(G) is left-invariant if and only ifA∨ is right-invariant,

and viceversa.
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(iii) If A ⊆ P(G) is a σ-algebra and µ is a measure on (G,A), then µ∨ is a

measure on (G,A∨), and (µ∨)∨ = µ.

(iv) IfA ⊆ P(G) is a left-invariant [right-invariant] σ-algebra, then a measure

µ on (G,A) is left-invariant [right-invariant] if and only if the correspond-

ing measure µ∨ on (G,A∨) is right-invariant [left-invariant].

4.5. Examples.

(1) Examples of left- or right-invariant σ-algebras are easily found: for in-

stance, for any group G, both the largest and the smallest σ-algebra

on G are left- and right-invariant. A nontrivial example is given by the

Borel-σ-algebra on any topological group G, cf. E.15, or by the Lebesgue-

σ-algebra on R as discussed in 3.17.

(2) Let G be any group and let A denote the power set P(G) of G. Then

the following examples of measures we encountered in 3.12 are both left-

and right-invariant on (G,A):

(a) the zero measure;

(b) the measure µ defined by µ(∅) = 0 and µ(E) = ∞ for every non-

empty E ∈ A;

(c) counting measure.

(3) Clearly any positive scalar multiple of a (left- or right-)invariant measure

is again invariant. In more detail, whenever µ is a left-invariant measure

on (G,A) and c is a positive real number, the map A → [0,∞] given by

A 7→ cµ(A) is again a left-invariant measure on A. (And of course there’s

an entirely analogous statement for right-invariant measures.) �

4.6. The above examples show that invariance is not as restrictive a condi-

tion as one might think, and that on any group there exist several invariant

measures. It is then difficult to argue, on a purely algebraic basis, why Lebesgue

measure is more suited to the real line than, say, counting measure; clearly ge-

ometrical/topological considerations play a more important role in picking out

the “proper” invariant measure in this context. These considerations will be

explored in the next subsection.
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4.2 Radon measures

This subsection is devoted to investigating measures on topological spaces,

especially those which can be considered to be “well-behaved” with respect to

the given topological structure. The ultimate product of this discussion will

be the introduction of Radon measures, a notion of such importance that we

have taken plenty of care in giving a precise definition (4.13) and contrasting it

with other definitions found in the literature (4.14). In an attempt to provide

motivation and justification for our particular choice of definition, we shall

present a general result (4.8) which will also find important applications in

later sections.

4.7. Drawing inspiration, once again, from Lebesgue measure on the real line

(see 3.17 for more details), there are two very natural conditions to impose on

measures on a topological space X, namely:

(a) that it should be defined “at least” on all open and all closed subsets15

of X, and

(b) that the measure of compact subsets be finite—assuming, of course, that

compact subsets of X are indeed measurable.

While these conditions might immediately appear reasonable, it is by far not

immediate, given a (Hausdorff) topological space X, to produce a measure on

it which satisfies both properties—except of course for the zero measure. In

fact, putting aside our motivating example of Lebesgue measure on the real

line (whose very existence is, as we know, anything but trivial), there is only

one other nontrivial example we can offer right away: if the space X is discrete,

then it is easily checked (this is E.17) that counting measure has the required

properties. (In contrast, counting measure clearly fails to satisfy (b) on, say,

X = R.)

In light of our discussion of extensions of measures in §3, the following tenta-

tive strategy might seem appealing: first assign, to each compact subset of the

given space X, a nonnegative (finite!) real number; then, extend the assignment

to the Borel-σ-algebra BX by the standard technique explored in 3.15. The re-

sulting measure would then indeed have both of the desired properties (a) and

15Equivalently, this can be phrased as the condition that the σ-algebra of measurable sets

should contain the Borel-σ-algebra BX of X, cf. 3.7.
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(b). There are, however, some obvious issues: firstly, the compact subsets of

X do not necessarily generate the Borel-σ-algebra (cf. 3.8), and secondly, they

do not even form a semiring in general! (This is checked immediately even

for X = R.) From this we deduce that obtaining a measure on all Borel sets

from just the compact ones, if at all possible, would need a different kind of

technique, and that the resulting measure might not be a true extension in the

sense of 3.15.

Fortunately for us, there is a partial result which will be sufficient for our

purposes. Loosely speaking, it says that, if the space X has “sufficiently many”

compact subsets, then there is indeed a way to obtain a measure on all Borel

sets from just the compact ones, and that the thus-obtained measure will even

have some additional compatibility conditions with the given topology. More

precisely, the condition of ‘having sufficiently many compact subsets’ is made

rigorous by the property of being a locally compact Hausdorff space—which

will thus get its first real chance to shine since its introduction in §2—and the

result reads as follows.

4.8. Proposition. Let X be a locally compact Hausdorff space, and let K =

K(X) denote the collection of compact subsets of X. Further, let an assignment

h : K → R≥0 be given with the following properties:

(h1) h is monotonic on K, i.e., h(K) ≤ h(K ′) whenever K, K ′ ∈ K satisfy

K ⊆ K ′;

(h2) h is finitely subadditive on K, i.e., h(K ∪K ′) ≤ h(K) + h(K ′) for any

K, K ′ ∈ K;

(h3) h is finitely additive on K, i.e., h(K ∪K ′) = h(K) +h(K ′) whenever K,

K ′ ∈ K are disjoint.

Now define µ∗ : P(X)→ [0,∞] as follows: for any U ⊆ X open, set

µ∗(U) := sup{h(K) : K ⊆ U,K compact}, (1)

and for E ⊆ X arbitrary, set

µ∗(E) := inf{µ∗(U) : U ⊇ E,U open}. (2)

Then:
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(i) µ∗ is an outer measure.

Now let A denote the σ-algebra of µ∗-measurable sets of X. (See 3.13 and

3.14.) By 3.14 (where A was denoted by M(µ∗)), the restriction µ := µ∗|A is

a measure on (X,A). We have:

(ii) A contains the Borel-σ-algebra BX of X.

(iii) µ(K) <∞ whenever K ⊆ X is compact.

Moreover,

(iv) µ(K) ≥ h(K) for every K ∈ K.

(v) µ is inner regular on open subsets, i.e.,

µ(U) = sup{µ(K) : K ⊆ U,K compact}, U ⊆ X open.

(vi) µ is outer regular (on all measurable subsets), i.e.,

µ(E) = inf{µ(U) : U ⊇ E,U open}, E ∈ A.

The proof will be given immediately below, but first, a few observations are

in order.

4.9. Remarks on the proposition.

(1) Note that the proposition does not state that µ∗ agrees with h on K(X);

indeed, µ is not necessarily an extension of h to A ⊇ BX ⊇ K(X) in

general. (Cf. 3.8 for the last inclusion.) See [Elst, Kapitel VIII, Fortset-

zungssatz 2.4] for an amended version of this result in which the measure

µ is indeed an extension of h, provided h satisfies a certain “tightness”

property. Another important case in which µ∗ is an extension of h is

addressed in E.19 (using terminology to be introduced in 4.13 below).

(2) As a bibliographical side note, it should be noted that the above result

is not contained in any of the references as such; instead, its formulation

and proof were obtained by taking arguments which are common to the

proofs (as given e.g. in [Cohn] or [Folland2]) of two fundamental results:

existence of Haar measure on the one hand and the Riesz Representation

Theorem on the other. The same arguments can be found in [Gleason],

which largely follows [Cohn]. (However, beware that in [Gleason], it is

claimed that µ∗ is an extension of h, which, as we have argued above, is

not true in general!)
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(3) Observe that, since K(X) is not a semiring in general, one cannot in-

fer finite subadditivity from finite additivity and has to assume both

properties separately. �

Proof of 4.8. First of all, we invite the reader to verify the details of why the

assignment µ∗ : P(X)→ [0,∞] is well-defined.

To prove the first claim (i), we have to show that µ∗(∅) = 0 and that µ∗ is

monotonic and countably subadditive (cf. 3.2). The first half is straightforward

since the empty set is both compact and open and h(∅) <∞ can only be zero

by finite additivity. Monotonicity is also readily checked using monotonicity of

h, the equations (1)–(2) and basic properties of suprema and infima.

As for countable subadditivity, let {En}n≥1 be an arbitrary countable collec-

tion of subsets of X. We have to show that µ∗(
⋃
n≥1En) ≤

∑
n≥1 µ

∗(En). As

a stepping stone, we shall first assume that all En are open in X, and accord-

ingly denote them by Un instead. Then
⋃
n≥1 Un =: U is again open in X, so

µ∗(U)—the left-hand side of the inequality we want to prove—is determined

by (1). Accordingly, it suffices to prove that, whenever K ⊆ U is compact,

h(K) does not exceed
∑

n≥1 µ
∗(Un). To this end, we shall use the following

purely topological lemma ([Cohn, Lemma 7.1.9]):

4.10. Lemma. Let X be a Hausdorff space and let K be a compact subset of

X. Suppose that K is contained in the union
⋃N
n=1 Un of finitely many open

subsets Un ⊆ X. Then there exist compact subsets Kn ⊆ Un, n = 1, . . . , N ,

such that K =
⋃N
n=1Kn.

Going back to the proof of the proposition, let {Un}n≥1 be as above and K

be a compact subset of X contained in the union U =
⋃
n≥1 Un. Because K is

compact and {Un}n≥1 is an open cover of K, we deduce that there exists an

index N such that K ⊆
⋃N
n=1 Un. We can then immediately apply the lemma;

keeping the notations introduced in its statement, we obtain

h(K) = h

(
N⋃
n=1

Kn

)
≤

N∑
n=1

h(Kn) ≤
N∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(Un)

(where, in the first, second, and third inequality, we used: finite subadditivity

of h, (1), and nonnegativity of µ∗, respectively).
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Now we move on to the general case of (i), i.e., the countable collection

{En}n≥1 is arbitrary. Recall that we have to show that µ∗(
⋃
En) ≤

∑
µ∗(En);

since the inequality is trivially true if the right-hand side is∞, we can restrict

to the case that it is finite. It is then sufficient to show that, for every ε > 0,

the inequality µ∗(
⋃
En) ≤

∑
µ∗(En) + ε holds true.

Thus, let ε > 0 be fixed but arbitrary. By (2), we can pick, for each n ≥ 1,

an open set Un ⊇ En such that µ∗(Un) ≤ µ∗(En) + ε
2n

. Then, using the special

case we have already proved above, we find that

µ∗

(⋃
n≥1

En

)
≤ µ∗

(⋃
n≥1

Un

)
≤
∑
n≥1

µ∗(Un) ≤
∑
n≥1

µ∗(En) + ε,

as desired.

To prove the second claim (ii), it suffices to prove that all open subsets of X

are µ∗-measurable; in other words, we need to show that, if U ⊆ X is open

and Q ⊆ X is arbitrary, then µ∗(Q) = µ∗(Q∩U)+µ∗(Q\U). Observe that, in

fact, the inequality “≤” is automatically true by subadditivity of µ∗ (because

Q is covered by Q∩U and Q\U), so we only need to show “≥”. Hence, we can

restrict to the case µ∗(Q) < ∞, because the inequality is trivially satisfied if

µ∗(Q) =∞. Under the assumption of finiteness of µ∗(Q) we can then further

reduce the problem to showing that

µ∗(Q) + ε ≥ µ∗(Q ∩ U) + µ∗(Q \ U) (?)

for every ε > 0.

Thus, let U and Q be as above, and let ε > 0 be fixed but arbitrary. By (2),

we can pick an open V ⊇ Q such that µ∗(V ) ≤ µ∗(Q) + ε
3
; we can then ignore

Q from now on and focus on showing that

µ∗(V ) +
2

3
ε ≥ µ∗(V ∩ U) + µ∗(V \ U), (†)

from which (?) will immediately follow.

The advantage of replacing Q by an open set is that now V ∩ U is open

in X, so we can express µ∗(V ∩ U) via (1) and accordingly find a compact

set K ⊆ V ∩ U such that h(K) ≥ µ∗(V ∩ U) − ε
3
. There’s more: because

K ⊆ U , and K is closed in X, we have that V \ K is an open superset of
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V \U , therefore, again by (1), we can find a compact set L ⊆ V \K such that

h(L) ≥ µ∗(V \K)− ε
3
. By construction, K and L are even disjoint, hence (by

finite additivity of h)

h(K ∪ L) = h(K) + h(L) ≥ µ∗(V ∩ U) + µ∗(V \K)− 2

3
ε

≥ µ∗(V ∩ U) + µ∗(V \ U)− 2

3
ε

(♠)

(the last “≥” uses monotonicity of µ∗). On the other hand, K ∪ L is clearly a

compact subset of (V ∩ U) ∪ (V \ K) ⊆ V , so (1) yields µ∗(V ) ≥ h(K ∪ L).

This latter inequality together with (♠) implies (†) and hence concludes the

proof of (ii).

As a consequence of (ii), we can henceforth write µ(B) instead of µ∗(B)

whenever B is Borel and hence in particular whenever B is, say, open, closed,

or compact (cf. 3.8); clearly the two quantities are equal (as extended real

numbers) since µ is simply the restriction of µ∗. In particular this observation

retroactively justifies the use of the expression µ(K) in the statement of (iii).

We now tackle the third claim (iii). For this we need an auxiliary topological

result ([Cohn, Prop. 7.1.3]):

4.11. Lemma. In a locally compact Hausdorff space, every compact subset is

contained in a relatively compact open subset.

(Recall that a relatively compact subspace is one whose closure is compact.)

Thus, let K be an arbitrary compact subset of X; we want to show that

µ(K) < ∞. To that end, pick an open, relatively compact set U ⊇ K (this

is possible by the above lemma). Because U is compact, monotonicity of h

implies that h(K ′) ≤ h(U) for any compact set K ′ ⊆ U ; by (1), it follows that

µ(U) ≤ h(U). On the other hand, K ⊆ U , so µ(K) ≤ µ(U) by monotonicity of

the measure µ. In conclusion, we have shown that µ(K) ≤ µ(U) ≤ h(U) <∞,

as desired.

We can now devote our attention to (iv)–(vi), but these are straightforward in

comparison to the previous claims. To see why (iv) holds, let K be a compact

subset of X; then h(K) ≤ µ(U) for any U ⊇ K, by (1), and hence also
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inf{µ(U) : U ⊇ K open} ≥ h(K). But, by (2), the left-hand side is precisely

µ(K), thus proving the claim.

As for (v), fix an open subset U and observe that, by monotonicity of µ

joint with (iv), µ(K) is “squeezed” between h(K) and µ(U) whenever K ⊆ U

is compact. The claim is then immediate by (1).

Finally, (vi) is simply a reformulation of (2) since µ agrees with µ∗ on all

sets appearing in the equality.

4.12. The regularity conditions appearing in claims (v)–(vi) of the above

proposition are extremely useful and can be seen as “natural” requirements

of compatibility with the topology at hand just as much as (ii) or (iii) (which

are just (a)–(b) from 4.7) can.16 It is a standard fact (s. e.g. [Folland2, Theo-

rem 1.18]) that Lebesgue measure λ on X = R has both properties—in fact,

λ is even inner regular on all measurable sets, i.e., the equality from 4.8.(v)

holds with the open set U replaced by any Lebesgue-measurable set E ⊆ R
(and µ replaced by λ). Moreover, the same can easily be checked to hold true

for counting measure on any discrete space (this is E.18).

It is then natural to ask whether inner regularity on open sets, possibly

combined with some of the other properties listed in the proposition, is already

enough to imply inner regularity on all measurable (or at least Borel) sets. As

it turns out ([Rudin, Chapter 2, Def. 2.15]), the answer is ‘no’ in general, and

“this flaw is in the nature of things”. It follows that, if some form of inner

regularity is desired in future discussions then it might be better to stick to

the less restrictive condition, and in fact this is precisely what we do in the

following central definition.

4.13. Let X be a LCH space. In this note, a measure µ on (X,BX) will be

called a Radon measure on X if it is finite on compact subsets, inner regular

on open sets and outer regular on Borel sets. (I.e., if parts (iii), (v) and (vi)

from 4.8 hold, with A replaced by BX in (vi).)

4.14. Remarks on terminology.

16Interestingly, we shall see in 7.26 below that if the underlying space X is “sufficiently

well-behaved”, then the regularity properties (v)–(vi) are automatically satisfied for any

measure on (X,BX) which satisfies (iii).
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(1) The definition given above is the same as in [Cohn] or [Folland2] and

seems (to the authors) to be the one most suitable one to our (“Haar-

measure-related”) needs. In fact, it is precisely the one which guaran-

tees a neat existence and uniqueness statement in the upcoming Riesz

Representation Theorem (and hence in the proof of uniqueness of Haar

measure). For an overview of different conventions on the meaning of the

phrases ‘Radon measure’ and ‘Borel measure’ (the latter of which we will

judiciously steer away from in this note), see e.g. MO109505.

(2) Observe that, in our definition, a Radon measure is defined only on the

Borel sets. Again, this is to ensure “clean” uniqueness statements later

on, but it is by no means a serious restriction: it is not difficult to enlarge

the domain of a Radon measure whenever doing so is called for, s. also

E.19.

(3) In this note, we will only consider Radon measures on spaces which are

both locally compact and Hausdorff, but it is possible to give a similar

definition for general Hausdorff spaces. This can be done e.g. by changing

the condition of finiteness on compact subsets to local finiteness, which

means that every point has a neighbourhood of finite measure. Clearly

a Radon measure on a LCH space is locally finite, because compact

neighbourhoods exist around every point and they have finite measure.

Conversely, it is easily seen that, on any Hausdorff space, local finiteness

implies finiteness on compact subsets (this is E.20). It is then under-

standable why some authors use the phrase ‘local finiteness’ to refer to

the property we have called ‘finiteness on compact subsets’, but we shall

not adhere to this convention. �

We have already remarked in 4.12 above that a Radon measure (as we have

just defined it) on a LCH space X need not be inner regular on all (measurable)

subsets of X. Nevertheless, the defining properties are strong enough to yield

inner regularity on all subsets of finite measure and more generally on all σ-

finite subsets of X (cf. 3.18 for the definition of σ-finiteness). More explicitly,

4.15. Proposition. Let µ be a Radon measure on a LCH space X. Then,

whenever B ∈ BX is a countable union of Borel sets Bn, n ≥ 1, with µ(Bn) <
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∞ for all n ≥ 1, it holds that

µ(B) = inf{µ(K) : K ⊆ B compact}.

(This is [Folland2, Prop. 7.5].)

4.16. In particular, suppose that X is σ-compact, i.e. that X can be written

as a countable union of compact subsets. Then, for any Radon measure µ on

X, the measure space (X,BX , µ) is σ-finite. Since (measurable) subsets of σ-

finite Borel sets are again σ-finite, we may conclude that a Radon measure µ

on a σ-compact LCH space X is always inner regular on all Borel sets.

To conclude the subsection, we propose what is essentially a concise reformu-

lation of the important (if technical) result 4.8 in light of our latest definition:

4.17. Corollary. Let X be a LCH space. Then every h as in the statement

of 4.8 yields a Radon measure µ on X via

µ := µ∗|BX ,

where: µ∗ is as in the statement of 4.8, BX denotes as usual the Borel-σ-algebra

of X and the restriction is meaningful by 4.8.(ii).

4.3 Haar measures

If we agree that Radon measures are the “right” class of measures on (certain)

topological spaces, then we are ready to turn our attention to measures on

topological groups and synthesize the efforts of the previous two subsections

into the following pivotal definition (cf. e.g. [Folland2, Chapter 11, p. 341]).

4.18. A left Haar measure on a locally compact group is a nonzero left-

invariant Radon measure on that group. Similarly, a right Haar measure is

a nonzero right-invariant Radon measure. A Radon measure which is simul-

taneously both a left and a right Haar measure may be termed a bi-invariant

Haar measure.

4.19. Examples. It follows from what was said throughout this section so far

that Lebesgue measure—more precisely, the restriction of Lebesgue measure
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to the Borel-σ-algebra BR—is both a left and a right Haar measure on the

locally compact abelian group (R,+). Moreover, putting together E.17, E.18

and 4.5 shows that, on any discrete group, counting measure is both a left and

a right Haar measure. �

4.20. Remark.

(1) By 4.3, any left Haar measure on a locally compact abelian group is also

a right Haar measure, and viceversa. Moreover, on any (not necessarily

abelian) locally compact group, any given left Haar measure µ can be

used to obtain a right Haar measure µ∨ and viceversa, as explained in 4.4

(cf. also E.21!); as a consequence, it is perfectly acceptable to focus on

just, say, left Haar measures as far as existence and uniqueness statements

are concerned.

(2) On the topic of uniqueness, it is important to make the (easy) observation

that any positive scalar multiple (as in 4.5.(3)) of a left [right] Haar

measure is again a left [right] Haar measure on that same group. Thus,

true uniqueness of Haar measure is unattainable with our definition; the

actual statement we may (and shall) aim for is that any two left [right]

Haar measures must be proportional, i.e. a positive scalar multiple of one

another. This will be proved in 7.1. �

We defer further examples of Haar measures to later sections, and conclude

the section by mentioning a few general properties of Haar measures instead.

4.21. Proposition. Let G be a locally compact group.

(i) If U ⊆ G is a Borel set with non-empty interior, then µ(U) is strictly

positive for any left [right] Haar measure µ on G.

(ii) G is discrete if and only if, for any (hence: every) left [right] Haar

measure µ on G, the trivial subgroup has strictly positive measure, i.e.,

µ({e}) > 0.

(iii) G is compact if and only if, for any (hence: every) left [right] Haar mea-

sure µ on G, the whole group has finite measure, i.e., µ(G) <∞.

Proof. (We will only prove the claims for left Haar measures.)
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To prove the first claim (i), suppose that G has a Borel subset U with non-

empty interior such that µ(U) = 0 for some left Haar measure µ on G. We

shall show that µ must then be identically zero, contradicting the assumption

that µ is a Haar measure.

First, upon replacing U by its interior U◦ we may—and shall—assume that

U is actually open. (This is just to simplify the argument.) We then consider

an arbitrary compact set K ⊆ G. By the results of §1, the union
⋃
g∈G gU of all

left translates of U is the entire space G; in particular, the family of all these

translates is a cover of K, and so, by compactness of K, there exist finitely

many elements of G, say g1, . . . , gN , such that K ⊆
⋃N
n=1 gnU . (A similar

argument was already seen in 1.18.(iv).) By the properties of the measure µ,

we deduce that µ(K) ≤
∑N

n=1 µ(gnU) =
∑N

n=1 µ(U) = 0, hence equality must

hold; since K was arbitrary, this means that µ is zero on all compact sets.

But then, by inner regularity, we can only have µ(V ) = 0 for all open subsets

V ⊆ G, hence, by outer regularity, µ(B) = 0 for all Borel sets B ⊆ G. This is

the desired contradiction.

We now set out to prove (ii). We follow the proof of [Bourbaki, Chapter VII,

§1, no. 2, Prop. 2].

Clearly if G is discrete then {e} is open in G, so the “only if” implication

holds by (i). As for the converse, observe first of all that µ({g}) = µ({e}) > 0

for any g ∈ G by left-invariance of µ. We conclude that, if K is a compact

subset of G, then K is a finite set—because otherwise, K contains a countably

infinite set C and µ(K) ≥ µ(C) =
∑

k∈C µ({k}) =∞, contradicting finiteness

of µ on compact sets. The proof is then completed by the following observation.

4.22. Lemma. Let X be a LCH topological space. Suppose that the only com-

pact subsets of X are the finite ones. Then the topology of X is discrete.

Proof of the lemma. Neglecting the trivial case X = ∅, it suffices to pick an

arbitrary point x ∈ X and show that the singleton {x} is open in X.

To that end, let K be a compact neighbourhood of x; then, by assumption,

K is a finite set. We conclude that the subspace topology on K is the discrete

topology (because that is the only Hausdorff topology on a finite topological

space.) In particular, {x} is open in K in the subspace topology; in other
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words, {x} can be written as K ∩U for some open subset U ⊆ X. But then it

also holds that {x} = K◦ ∩ U , so {x} is open in X, as desired.

Fill in the proof of (iii)! (Cf. [Folland2, Prop. 11.4.(d)])

5 Existence of Haar measure

The entirety of this section is devoted to showing existence of a left Haar

measure (see 4.18) on any locally compact group, i.e., to proving the following

statement:

5.1. Theorem. Let G be a locally compact group. Then there exists at least

one left Haar measure µ on G.

The proof we give is the one given in [Cohn, Theorem 9.2.1], which [Joys]

attributes to André Weil. The same arguments are given in [Gleason] in an

essentially self-contained fashion (but see 4.9.(2)). This is also essentially the

same proof as in [Folland2, Theorem 11.8], [Joys, Chapter 7, §2], except that

these sources do not construct a measure per se but rather a positive linear

functional on a certain space of functions on the group at hand; cf. also the

discussion in 7.27.

5.2. Before diving into the details of the proof, we would like to present

a partial outline; more precisely, we shall give a preview of how some of the

results encountered so far will factor into the argument, thus also indicating

which steps remain to be carried out.

By 2.7, the assumption of local compactness on a topological group G means

precisely that there exists a compact subset K0 ⊆ G with non-empty interior.

Supposing that such a K0 has been fixed, we shall define a set I(G;K0) with

two fundamental properties:

(1) I(G;K0) is non-empty, and

(2) to each element of I(G;K0) there corresponds to a function h : K(G)→
R≥0 which satisfies the assumptions of 4.8, where K(G) ⊆ P(G) will

denote the collection of compact subsets of G.
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The aforementioned proposition 4.8—or rather, its corollary 4.17—will then

yield, for each such h, a Radon measure µ on G. The final, decisive step will

be to prove that any µ obtained in this way is not identically zero and is left-

invariant in the sense of 4.1; once this has been accomplished, we will have

shown that the set of left Haar measures on G is non-empty, as desired.

5.1 The Haar covering number

5.3. The first step in the proof is an observation which draws on our discus-

sion of topological groups in §1. Recall that we proved in 1.18 that, if an open

subgroup sits inside a compact one, then it must be of finite index. (Because,

loosely speaking, the translates of the smaller group will cover the larger one

and then compactness will force finiteness of the covering.) Later, in the proof

of 4.21.(i), we adapted the argument to work in a more general setting and

established that, whenever K is a compact subset of a topological group G

and U ⊆ G is open and non-empty, finitely many translates of U will suffice

to cover K. (In other words, we got rid of the assumption that U and K be

subgroups.)

Because the natural numbers form a well-ordered set, there is then, in the

above situation, even a minimal number of translates which can be taken as a

cover. It should be readily clear (see also E.22) that this minimum is a rough

estimate for the “relative size” of K with respect to U . This warrants the

following definition.

Given an arbitrary topological group G, a compact set K ⊆ G and a subset

V ⊆ G with non-empty interior, the nonnegative integer

(K : V ) := min{n ∈ N : ∃g1, . . . , gn ∈ G such that K ⊆
n⋃
i=1

giV
◦}

will be called the (left) Haar covering number of K with respect to V .

5.4. Remarks on the definition.

(1) Observe that V is not required to be open: for the definition to be mean-

ingful, it suffices that V have non-empty interior. (This is because we

take translates of the interior of V , rather than V itself.) The added

generality will be useful later.
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(2) Recall that, in this note, 0 ∈ N. It is easily checked that, if K and V are

as in the above definition, the quantity (K : V ) vanishes if and only if

K is the empty set (with no condition on V ). �

5.5. A few properties of the Haar covering number are easily checked, e.g.:

(i) it is left-invariant in the sense that, if K and V are as in the above

definition, then (gK : hV ) = (K : V ) for any g, h ∈ G;

(ii) it is monotonic in the first argument, i.e., (K1 : V ) ≤ (K2 : V ) if K1 ⊆ K2

whenever everything is defined; and

(iii) it is finitely subadditive in the first argument, i.e., (K1∪K2 : V ) ≤ (K1 :

V ) + (K2 : V ) whenever K1, K2 are arbitrary compact sets and V is as

above.

(See E.23.) It follows that, if we were to fix an open non-empty subset V ⊆ G

and set cV (K) := (K : V ) for every K ⊆ G compact, then cV would be a

nonnegative real-valued function on K(G) satisfying two of the three properties

required to apply 4.8—as well as a form of left-invariance. It is, however, easily

seen that cV fails to be finitely additive in general: if V is “too big” with respect

to two given non-empty compact subsets K1 and K2—more precisely: if some

translate of V contains the union K1 ∪K2—then clearly cV (K1 ∪K2) = 1 6=
2 = cV (K1) + cV (K2). The version of finite additivity that we do have is the

following.

5.6. Proposition. Let G be a topological group, V be an open non-empty

subset of G, and K1, K2 be compact subsets of G. Furthermore let cV be defined

as in 5.5. If K1V
−1 ∩K2V

−1 = ∅, then cV (K1 ∪K2) = cV (K1) + cV (K2).

Proof. We know from 5.5.(ii) that cV (K1∪K2) ≤ cV (K1)+cV (K2), so it remains

to prove the inequality in the opposite direction. Unravelling the definition 5.3,

this means that it suffices to show the following: if n is a natural number such

that K1 ∪K2 can be covered by n translates of V , then there exist elements

g1, . . . , gn ∈ G such that K1 ⊆
⋃k
i=1 giV and K2 ⊆

⋃n
i=k+1 giV (for some

k ∈ {1, . . . , n}).
Thus, let n be a natural number with the required property, and let g′1, . . . , g

′
n

be elements of G such that K1∪K2 ⊆
⋃n
i=1 g

′
iV . We claim that each g′iV inter-

sects at most one of the two sets K1 and K2. Indeed, if some g′iV intersected
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both, then g′i would lie in the intersection of K1V
−1 and K2V

−1, contradicting

the assumption of the proposition. Therefore, we may partition the index set

{1, . . . , n} into a disjoint union I1∪̇I2 so that Kj ⊆
⋃
i∈Ij g

′
iV for j = 1, 2.

(Unless n is minimal, there is more than one such partition.) But then clearly

the elements g1, . . . , gn we have been seeking can be obtained by suitably per-

muting17 the elements g′1, . . . , g
′
n, and this establishes the result.

5.7. The implications of the proposition are best understood as follows. Hav-

ing fixed the ambient topological group G, let U denote the family of all open

neighbourhoods of the identity in G. Then for every pair of non-empty disjoint

compact sets K1 and K2 in G, and for every U ∈ U “sufficiently small” (i.e.,

small enough that the translates K1U
−1 and K2U

−1 are still disjoint, if at all

possible), the function cU : K(G) → R≥0 would have the desired property of

finite additivity: cU(K1 ∪K2) = cU(K1) + cU(K2). However, there is—in gen-

eral18—no “universal” U which works for all pairs of compact sets. Thus, to

get a truly finitely additive function on K(G), we will have to consider, say, a

“limit” of the functions cU as U shrinks more and more. Of course, this only

makes sense if we regard the cU as existing in a space with some topological

structure that ensures the existence of (at least) one such “limit”.

As a first näıve attempt to do this, observe that each cU is a function

K(G) → R≥0, and that the space of all such functions is, at least abstractly,

none other than the product space (R≥0)K(G) =
∏

K∈K(G) R≥0. (Here, a func-

tion f is identified with the tuple (f(K))K∈K(G); cf. the equivalent descriptions

of the space AN from 2.11.) It is then meaningful to talk about convergence of

sequences, or more generally of nets19, in this product space.

Now, readers familiar with more advanced point-set topology will recognize

that {cU}U∈U is indeed a net in this product space—with the index set U being,

17In more detail: set k equal to the cardinality of I1, choose a bijection {1, . . . , k} → I1,

extend it to a bijection σ of the set {1, . . . , n} and set gi := g′σ(i) for i = 1, . . . , n.
18Of course, if the group G is discrete, there exists a “smallest” neighbourhood of the

identity (i.e. one that is included in all the others), namely U = {e}. In this case, c{e} will

be finitely additive. On the other hand, one can show that, in a Hausdorff nondiscrete group,

there is never a “smallest” neighbourhood of e!
19Familiarity with nets will not be strictly necessary to the understanding of the rest of the

proof. Nonetheless, the language of nets is particularly suitable to explaining the reasoning

behind the next step in the argument, so we shall use it in the rest of this paragraph and a

few more times in this section.
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of course, ordered by reverse inclusion. However, we cannot expect this net to

converge or even to have any cluster points (i.e.: limits of subnets), because as

U ∈ U shrinks more and more, the Haar covering number (K : U) = cU(K) of

a fixed compact K will typically become arbitrarily large. This is where local

compactness comes in in a crucial way.

5.2 The core of the argument

For the sake of simplicity, we shall now fix, for the entirety of this subsection,

a locally compact topological group G and a distinguished compact subset

K0 ⊆ G with non-empty interior. (Such a subset exists by 2.7.) We also retain

the notation U for the family of all open neighbourhoods of the identity in G

and abbreviate by K the notation K(G) introduced previously for the family

of all compact subsets of G.

5.8. The properties of the distinguished set K0 ensure that, if K and V are

as in 5.3, then both (K : K0) and (K0 : V ) are meaningful. It is then easy to

see (E.24) that (K : V ) ≤ (K : K0)(K0 : V ) for any such K and V . Using this,

we can draw an immediate conclusion from 5.6 above.

5.9. Corollary. For every U ∈ U , the assignment

K 7→ hU(K) :=
(K : U)

(K0 : U)

defines a monotonic, finitely subadditive function on K with values in R≥0,

which moreover has the following properties.

(i) hU is left-invariant in the sense that hU(gK) = hU(K) for every K ∈ K
and every g ∈ G.

(ii) Whenever K1, K2 ∈ K are such that K1U
−1 ∩K2U

−1 = ∅, one has that

hU(K1 ∪K2) = hU(K1) + hU(K2).

(iii) For every K ∈ K, the function value hU(K) is bounded above by the Haar

covering number (K : K0).

5.10. Going back to the discussion of 5.7, we can again think of each hU as a

point in the product space
∏

K∈KR≥0 (and of {hU}U∈U as a net in this space).
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But unlike earlier, now each hU(K) has an upper bound independent of U , so

hU can actually be thought of as a point in the product space∏
K∈K

[0, (K : K0)] =: X.

This space is, naturally, to be considered equipped with product topology; as

a product of compact intervals, it is then itself a compact topological space by

Tychonoff’s theorem.

5.11. We are now finally ready to define the set I(G;K0) alluded to in 5.2.

In the language of nets, I(G;K0) can be described concisely as the set of

cluster points of the net (hU)U∈U in the product space X introduced above.

An equivalent, more elementary description is:

I(G;K0) :=
⋂
V ∈U

cl({hU : U ∈ U , U ⊆ V }),

where cl denotes the closure operator in the topological space X. Observe that,

since clearly I(G;K0) ⊂ X, elements of I(G;K0) have a natural interpretation

as functions h : K → R≥0 with the additional property that h(K) ≤ (K : K0)

for every K ∈ K.

It remains, of course, to prove that I(G;K0) indeed has the properties

claimed in 5.2. This is the content of the next two results.

5.12. Proposition. The set I(G;K0) defined in the previous paragraph is

non-empty.

Proof. Since I(G;K0) is the set of cluster points of the net {hU}U∈U , the claim

is a special case of the well-known fact that, in a compact topological space,

every net has at least one cluster point. The proof given here is merely a

specialization of the standard proof of this more general fact.

For V ∈ U , let FV be shorthand for cl({hU : U ∈ U , U ⊆ V }). (Cf. 5.11.) We

claim that the family {FV }V ∈U has the finite intersection property, i.e.: when-

ever V1, . . . , Vn are elements of U (the index n being some positive integer),

the intersection
⋂n
i=1 FVi is non-empty. But this is plain to see: the element hU

with U :=
⋂n
i=1 Vi ∈ U clearly lies in

⋂n
i=1 FVi . It then follows by a well-known

characterization of compactness that the family {FV }V ∈U has itself non-empty

intersection, i.e.:
⋂
V ∈U FV 6= ∅. But the left-hand side is precisely I(G;K0),

and the proof is complete.
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5.13. Proposition. Let I(G;K0) be as above, and let h ∈ I(G;K0), viewed

as a function h : K → R≥0. (Cf. 5.11.) Then:

(i) h is monotonic, finitely subadditive and finitely additive on K;

(ii) h is left-invariant, i.e.: h(gK) = h(K) for every K ∈ K and every g ∈ G;

(iii) h(K0) = 1; in particular, h is not identically zero.

Proof. We know by 5.9 that, if h is replaced by hU (for some U ∈ U) in (i)–

(iii), then all claims hold true except for finite additivity. In order to “transfer”

these results to h, we may use the fact that h is a limit of the hU together with

the fact that the conditions of monotoniticy, invariance, etc. are continuous.

In more detail, recall that I(G;K0) sits inside the space X =
∏

K∈K[0, (K :

K0)], equipped with its natural product topology. In particular, each of the

projections pK : X → [0, (K : K0)] (where K ∈ K) is continuous. (Note that,

if we think of the elements of X as functions f : K → R≥0, then the projection

pK is given by sending f ∈ X to f(K) ∈ [0, (K : K0)] ⊂ R≥0.) This yields

continuity of several important (families of) functions X → R≥0, the easiest

example being

f 7→ f(K0)− 1 = pK0(f)− 1.

Clearly this map is constant (more precisely: identically zero) on {hU}U∈U ,

hence it is constant on {hU : U ∈ U , U ⊆ V } for every V ∈ U . Because it is

continuous, we may then conclude that it is also identically zero on the closure

cl({hU : U ∈ U , U ⊆ V }) for every V ∈ U , and hence also on I(G;K0). This

proves that h(K0) = 1 and thus establishes (iii).

The other claims (with the exception of finite additivity of h) are established

by the same argument, applied to a different function. For instance, to show

(ii), i.e. left-invariance, it suffices to note that, for each K ∈ K and each g ∈ G,

the function X → R≥0 given by

f 7→ f(K)− f(gK) = pK(f)− pgK(f)

is continuous on X and identically zero on {hU : U ∈ U}. To show finite

subadditivity, one observes that, for each pair (K1, K2) ∈ K ×K,

f 7→ f(K1) + f(K2)− f(K1 ∪K2)
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is continuous on X and takes only nonnegative values on {hU : U ∈ U}.
Similarly, to prove monotonicity, i.e. h(K1) ≤ h(K2) for K1, K2 ∈ K with

K1 ⊆ K2, the function to consider is

f 7→ f(K2)− f(K1).

It remains to prove finite additivity of h. To that end, let K1, K2 ∈ K be

disjoint. Clearly, if we can find a distinguished V ∈ U such that K1V
−1 ∩

K2V
−1 = ∅, then it will also hold that K1U

−1 ∩K2U
−1 = ∅ for every U ∈ U

such that U ⊆ V , hence: the function X → R≥0 defined by

f 7→ f(K1) + f(K2)− f(K1 ∪K2),

beside being continuous (as already established above), will be identically zero

on {hU : U ∈ U , U ⊆ V } by 5.9.(ii); the same argument as above will then

yield that f is identically zero on I(G;K0), i.e., that h is finitely additive.

It remains to find a suitable set V . This is accomplished essentially by apply-

ing the following general results ([Cohn, Prop. 7.1.1] and [Cohn, Prop. 9.1.3],

respectively).

5.14. Lemma. In a Hausdorff space X, disjoint compact sets K1 and K2 may

be separated by disjoint open neighbourhoods U1 ⊇ K1 and U2 ⊇ K2.

5.15. Lemma. Let G be a topological group, U be an open subset of G and K

be a compact subset of U . Then there exists an open neighbourhood V of the

identity of G such that KV ⊆ U .

We may apply the first lemma directly (to X = G) to obtain disjoint open

sets U1 ⊇ K1 and U2 ⊇ K2. Applying the second lemma to each pair yields

open neighbourhoods V1, V2 of the identity in G such that K1V1 ⊆ U1 and

K2V2 ⊆ U2. Then V = (V1 ∩ V2)−1 has the property that K1V
−1 ∩K2V

−1 is

empty (because K1V
−1∩K2V

−1 ⊆ K1V1∩K2V2 ⊆ U1∩U2 = ∅) and the above

arguments conclude the proof.

5.3 Conclusion of the proof

We can now complete the proof of the existence result 5.1.
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Proof of 5.1. The outline of the proof was for the most part already given in

5.2: because G is locally compact, there exists a compact subset K0 ⊆ G with

non-empty interior, which in turn gives rise to a set I(G;K0) as defined in 5.11.

By 5.12, it is possible to pick an element h ∈ I(G;K0), which by 5.13 satisfies

the assumptions (h1)–(h3) of 4.8. This latter result—or rather its corollary

4.17—then yields a Radon measure µ on G. It thus suffices to check that µ is

left-invariant and not identically zero.

To prove that µ is left-invariant, let E be a Borel set in G and g be an

element of G. Then, by outer regularity, µ(gE) is an infimum taken over all

open sets which contain gE. But (essentially by 1.8), every such open set is of

the form gU for some open U ⊇ E. Thus, to prove that µ(gE) = µ(E) it will

suffice to show that µ(gU) = µ(U) for every open set U ⊆ G and every g ∈ G.

Now, by the definition given in the statement of 4.8, µ(gU) is just the supre-

mum (in R) of the set {h(C)} where C runs over the compact subsets of gU and

h is as in the previous paragraph. But again by 1.8, every such C is of the form

gK for some compact K ⊆ U , and it was proved in 5.13 that h(gK) = h(K) for

all K ∈ K(G) and all g ∈ G. Therefore we indeed find that µ is left-invariant

on open sets and, by the previous argument, on all Borel sets.

Finally, we need to show that µ is not identically zero. By 4.8.(iv), we know

that µ(K) ≥ h(K) for any compact K ⊆ G. Applying this to our distinguished

compact set K0, we see that µ(K0) ≥ h(K0) = 1, and hence in particular

µ(K0) 6= 0, which establishes the claim.

Let us note an immediate corollary.

5.16. Corollary. On every locally compact group, there exists at least one

right Haar measure.

Proof. Let G be a locally compact group. By 5.1, there exists a left Haar

measure µ on G. Then, by 4.20.(1), µ∨ is a right Haar measure on G. (See loc.

cit. for the notation ∨.)

6 Review of integration theory

Having established that every locally compact group possesses at least one left

Haar measure, we shall turn to the question of uniqueness next. To obtain our
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central result in this direction (7.1 below), we will rely on integration theory

“à la Lebesgue” (i.e., resting in turn on measure-theoretic foundations). For

this reason, we have opted to devote to this auxiliary topic the entirety of the

present section, which thus takes on the shape of a parenthetical digression

much like §3. (In fact, we may consider this section to serve as the continuation

and conclusion of the discussion started in §3.) An additional reason to look

at integration theory so extensively may be found in the fact that spaces of

integrable functions will be among the main protagonists of Chapter III.

The interested reader is invited to consult the references given in §3 for more

on integration theory.

6.1 Introduction

6.1. The origins of integration theory lie in the following ubiquitous problem:

given a (say) continuous function f on a compact interval [a, b] ⊂ R with values

in the nonnegative real numbers, determine the area of the region A = A(f)

enclosed in the plane R2 by the graph of the function, the x-axis and the two

vertical lines x = a and x = b. (This area is traditionally known as the integral

of f from a to b and denoted by
∫ b
a
f(x) dx.)

Clearly, if the function f is of a very simple form, then its integral can be

computed easily by falling back on elementary plane geometry: for instance, if

f is constant, then the region A described in the previous paragraph is simply a

rectangle and its area is simply y(b−a), with y being the unique value attained

by f . Slightly more generally20, suppose that f is a step function, i.e., suppose

that there exist finitely many intermediate points a = x0 < x1 < · · · < xn−1 <

xn = b such that f is constant on each subinterval (xi−1, xi). (The values at

the endpoints of the subintervals are irrelevant.) Then the area of the region

A can again be determined with ease: it equals

n∑
i=1

f(ti)(xi − xi−1), (
∫
step)

where ti is any point in (xi−1, xi).

20Note that we are departing from the requirement that f should be continuous!
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6.2. Parenthetical. It is important to observe that, while the requirement

that f only assume nonnegative values is crucial to our interpretation of

(
∫
step) as the area of the region A, the formula itself makes sense much

more generally: if the nonnegativity assumption is lifted, (
∫
step) will simply

describe a signed area in general (rather than an area in the classical sense,

which would inescapably be nonnegative). In fact, one may define step func-

tions with values in C (or indeed, any real or complex vector space) in precisely

the same way as we did before, and the formula (
∫
step) remains meaningful

in this more general setting.

6.3. Now let f be an arbitrary function on [a, b] with values in the reals (or

the complex numbers, cf. 6.2). Given a tagged partition

a = x0 < t1 < x1 < · · · < xn−1 < tn < xn = b

of the interval [a, b], we may again look at the quantity (
∫
step), which we

call the Riemann sum of f associated to the partition in question. As our

readers presumably know, one says that f is Riemann-integrable if, upon taking

finer and finer (tagged) partitions of [a, b], the corresponding Riemann sums

converge to a common value, which is then called the (Riemann) integral of f

from a to b.

By making explicit reference to partitions of the domain [a, b], the Riemann

integral ultimately relies on the ordering of the reals, which does not bode well

for generalization. However, we may take a different point of view: since Rie-

mann sums are, by construction, simply integrals of suitable step functions, we

may conclude that being Riemann-integrable simply means affording arbitrar-

ily good approximations by step functions (in a suitable sense). This suggests

the following strategy:

(1) find a suitable analogue or generalization of step functions, for which the

integral is easily defined; and then

(2) extend the definition to functions which afford arbitrarily good approxi-

mations (in a suitable sense) by functions as in (1).
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6.2 The Lebesgue integral

6.4. In accordance with the strategy laid out in the previous paragraph, let

us take stock of what makes step functions especially suitable for the formula

(
∫
step).

Two observations can be made right away. Firstly, a crucial property of step

functions is that they only attain finitely many values. Additionally, if f is a

step function on a compact interval [a, b], the inverse image of each y in the

range of f is typically a bounded interval in R—more precisely, it will be a

finite disjoint union of such intervals, each of which may or may not include

its endpoints (and might in fact even consist of a single point). Regardless of

the specifics, each of these sets f−1(y) ⊆ [a, b] certainly lies in the σ-algebra

generated by the subintervals of [a, b], i.e., it is a Borel-measurable subset of

[a, b].21 In particular, the (Riemann-)integral of f can be rewritten without

making reference to any partition of [a, b], namely as follows:∫ b

a

f(x) dx =
∑
y

y · λ
(
f−1(y)

)
(with λ being, of course, Lebesgue measure; the sum is indexed by the values

in the range of f). While the appearance of Lebesgue measure is perhaps not

surprising—we are, after all, trying to measure an area by falling back on the

“lengths” of the sides of certain rectangles, and λ is merely a rigorous tool to

measure lengths—the new viewpoint has extraordinary potential for general-

ization. Indeed, as a first step, we may immediately generalize the notion of a

step function to much more general domains as follows.

6.5. Let (X,A) be a measurable space, and let f be a function on X with

values in the reals or the complex numbers.22 Then f is called a simple function

on (X,A)—or simply on X—if it satisfies the following two conditions:

(a) f only attains finitely many values; and

21Here we are implicitly using the following fact (cf. e.g. [Elst, Kapitel I, Korollar 4.6]):

if X is a topological space and Y ⊆ X is a Borel set in X, then the Borel-σ-algebra of Y

(considered as a topological space in its own right with the subspace topology) is BY =

{B ∩ Y : B ∈ BX} = {B ∈ BX : B ⊆ Y }. In particular, BY ⊆ BX if Y ⊆ X is Borel.
22In accordance with 6.2, we can—and will—treat the real- and complex-valued cases

simultaneously.
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(b) for each value y in the range of f , the inverse image f−1(y) ⊆ X is

A-measurable in X.

6.6. Remarks.

(1) Observe that the above definition does not make reference to any measure

on (X,A)!

(2) It will often be practical to identify the real-valued functions on a set X

with those complex-valued functions on X whose range is contained in

R ⊂ C. (Thus, the real-valued functions become a subset of the complex-

valued ones.) One should convince oneself that this does not have any

repercussions on the above definition: a function f : X → R is simple if

and only if it is simple when viewed as a complex-valued function. �

6.7. Examples.

(1) On any measurable space (X,A), all constant complex-valued functions

on X (and hence in particular all constant real-valued functions) are

simple.

(2) For a measurable space (X,A) and a measurable subset A ∈ A, the

indicator function 1A : X → {0, 1} ⊂ R is a simple function.

(3) Given finitely many simple functions on a common measurable space,

every (pointwise) linear combination of them is again a simple function;

in other words, the K-valued simple functions on a measurable space

(X,A) form a K-linear vector space with the obvious (pointwise) opera-

tions. (Here, we have used ‘K’ as a placeholder for either of the symbols

‘R’ and ‘C’.) In fact, it is immediate that every simple function is a finite

linear combination of indicator functions 1A, A ∈ A as per the previous

item.

(4) Let (X,A) be a measurable space, and f be a K-valued simple function

on X, with K equal to either R or C. It is readily seen that, for every

function g : K→ K, the composition g ◦ f is again a simple function on

X.

(5) The discussion carried out in 6.4 shows that every step function on a

compact interval [a, b] ⊂ R is a simple function (the domain being, of

course, equipped with its Borel-σ-algebra). On the other hand, there
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clearly exist simple functions on [a, b] which are not step functions, such

as the indicator function of the set Q ∩ [a, b]. (Cf. (2).) �

6.8. Defining the integral requires a little more care, even for such simple

functions as the ones introduced above. In fact, let us, for the sake of simplic-

ity, consider real-valued simple functions on the measurable space (X,A) =

(R,BR), equipped with Lebesgue measure λ. It is arguably clear from the dis-

cussion in 6.4 that the integral of such a function f should look like∑
y∈f(X)

y · λ
(
f−1(y)

)
. (

∫
?)

(Observe that, because the function f is assumed simple, its range f(X) is

a finite set, so the sum is finite.) A major hurdle at this point is the fact

that measures are (by design) explicitly allowed to attain the value ∞, while

calculus teaches us that many operations with∞ are inadmissible. Indeed, we

can easily manufacture examples where problems appear.

(1) Suppose that f is such that f−1(0) has infinite measure (e.g.: f is the in-

dicator function of a bounded interval.) Then (
∫

?) involves the operation

0 · ∞.

(2) Take f to be the sign function, which sends 0 to 0 and every x 6= 0 to
x
|x| . Then f is a simple function for which (

∫
?) reads ∞−∞.

These problems are not of the same nature. In fact, the former is essentially

only a matter of convention: if we agree that sets on which f is identically zero

are not supposed to contribute anything to the integral of f , regardless of how

large they are (in terms of the measure λ), then the appropriate thing to do

is to simply set 0 · ∞ := 0 in this particular context. With this convention,

the integral of 1B, with B ⊆ R Borel, is always equal to λ(B), which is indeed

both intuitive and convenient.

The potential appearance of the undefined expression∞−∞ is a more seri-

ous problem, which cannot be solved conclusively as much as circumvented by

restricting to functions for which it does not occur. Suppose, for instance, that

the (simple) function at hand happens to only attain nonnegative real values.

(In this case the function itself is said to be nonnegative.) Then surely no neg-

ative signs can occur in (
∫

?), so all operations with ∞ should be well-defined
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in the intuitive way—provided that one takes into account the convention

0 · ∞ := 0 from the preceding paragraph. Accordingly, we posit the following

definition.

6.9. Let (X,A, µ) be a measure space, and let f a [complex-valued] simple

function on (X,A). Suppose that f is nonnegative, i.e. that f(x) ∈ R≥0 for all

x ∈ X. Then the integral of f with respect to µ is defined to be∫
X

f dµ :=
∑

y∈f(X)⊂R≥0

y · µ
(
f−1(y)

)
∈ [0,∞]. (

∫
, pt. 1)

(The convention 0 · ∞ := 0 is in place.)

6.10. The following properties of the integral are checked immediately.

(0) If (X,A) is a measurable space and f = 1A is the indicator function of

a measurable set A ∈ A, then
∫
X

1A dµ = µ(A).

(1) If f is a nonnegative simple function on (X,A) and c ∈ R≥0, then∫
X
cf dµ = c

∫
X
f dµ.

(2) If f and g are nonnegative simple functions on (X,A), then
∫
X

(f +

g) dµ =
∫
X
f dµ+

∫
X
g dµ.

(3) If f and g are nonnegative simple functions on (X,A) with f ≥ g,

meaning f(x) ≥ g(x) for all x ∈ X, then
∫
X
f dµ ≥

∫
X
g dµ.

6.11. It is now time to turn to phase (2) of the strategy laid out in 6.3. Thus,

let (X,A, µ) be a measure space, and let f be a complex-valued function on X.

Because, so far, we only know how to integrate nonnegative simple functions on

X, it is only natural to start with the special case where f is itself nonnegative,

i.e., with values in R≥0. It is also clear that, while f need not be simple, it

should not be “too far removed” from simple functions—otherwise we would

not be able to apply the special case we have already worked out. All things

considered, we make the following assumption:

(SM) there exist nonnegative simple functions f1, f2, . . . such that 0 ≤ f1 ≤
f2 ≤ · · · and f(x) = limn→∞ fn(x) for all x ∈ X.

This assumption is clearly automatically satisfied for all nonnegative simple

functions on (X,A). Moreover, the set of nonnegative functions on X satisfying
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(SM) is easily seen to be closed under (finite pointwise) sums and scaling by

nonnegative real numbers.

Under the assumption (SM), and applying 6.10.(3), we obtain a monotoni-

cally nondecreasing sequence

0 ≤
∫
X

f1 dµ ≤
∫
X

f2 dµ ≤ · · · ≤ ∞;

by standard results in analysis, such a sequence must have a limit in [0,∞]. It

is, moreover, not hard to show (s. e.g. [Elst, Kapitel IV, Korollar 2.2]) that this

limit is actually independent of the choice of the sequence f1, f2, . . . ; therefore,

the following definition is meaningful:∫
X

f dµ := lim
n→∞

∫
X

fn dµ ∈ [0,∞], (fn)n≥1 as in (SM) (
∫
, pt. 2)

(and agrees with (
∫
, pt. 1) if f happens to be simple). Going back to the

introductory discussion in 6.1, this definition can be seen as crystallizing the

intuition that the area of the region A = A(f) under the graph of a generic

nonnegative function f can be determined by gradually and successively “filling

out” A by regions of a simpler form, whose area is computed as per (
∫
, pt. 1).

6.12. It is easily checked that properties (1)–(3) from 6.10 still hold true if

‘nonnegative simple function(s)’ is replaced by ‘nonnegative function(s) satis-

fying (SM)’ throughout.

6.13. Having defined the integral for a certain class of nonnegative functions,

the next step is of course to extend the definition to suitable real- and complex-

valued functions. We know from the discussion in 6.8 that this can be tricky

even for simple functions, so our task will consist first and foremost in pin-

pointing a condition, on a real- or complex-valued function f , which ensures

that the potential problems detected earlier do not arise. The functions sat-

isfying this condition (yet to be formulated) will be the Lebesgue-integrable

functions.

Thus, let (X,A, µ) be a measure space. The definition of integrability, and

indeed of the integral itself, may be given in successive stages, each building

on and extending the previous one.
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(1) A nonnegative function f on X is (Lebesgue-)integrable with respect to

µ if it satisfies (SM) from 6.11 and its integral as per (
∫
, pt. 2) is finite

(i.e., “strictly less than ∞”).

(2) A real-valued function f on X is (Lebesgue-)integrable if both its positive

part f+ and negative part f− are integrable in the sense of (1).23 If this

condition is satisfied, then the integral of f with respect to µ is, by

definition, the real number∫
X

f dµ :=

∫
X

f+ dµ−
∫
X

f− dµ . (
∫
, pt. 3)

(3) Finally, a complex-valued function f on X is (Lebesgue-)integrable if both

its real part Re(f) and imaginary part Im(f) are integrable in the sense

of (2).24 The integral of f with respect to µ is then given by the formula∫
X

f dµ =

∫
X

Re(f) dµ+ i

∫
X

Im(f) dµ . (
∫
, pt. 4)

(We leave it to the reader to check that each step is indeed consistent with the

previous one.)

6.14. Remarks on the definition.

(1) Keeping the notations from the preceding paragraph, one can also con-

sider the following extension of the notion of integrability (for real -valued

functions): a function f : X → R may be called quasi-integrable if both

f+ and f− satisfy (SM) from 6.11 and at least one of them is integrable.

For a quasi-integrable function f , we may again define
∫
X
f dµ by the

above formula (
∫
, pt. 3), with the caveat that this time the integral

might equal −∞ or +∞.

The advantage of integrability over quasi-integrability is that, while it is

easily checked that sums of integrable functions are again integrable (as

follows easily from the definitions, cf. also 6.11 and 6.12), the same need

not be true for quasi-integrable functions, see also E.25.

23Recall that the functions f± are defined by f±(x) = (|f(x)| ± f(x))/2 and thus satisfy

f = f+ − f−. Observe that, despite the nomenclature, they are both nonnegative.
24Here, of course, Re(f)(x) := Re(f(x)), and analogously for Im(f); in particular, both

functions are real-valued and f = Re(f) + i Im(f).
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(2) It is perhaps worth noting that, even though the Lebesgue integral in-

volves functions with values in the real line (or the complex plane), the

only measure which is relevant to the construction (and, potentially,

computation) of the integral is that on the domain; one never uses any

measure on the target space R (or C). Thus, in spite of the terminology,

the Lebesgue integral does not involve Lebesgue measure at all (except,

of course, if the domain of the functions one wants to integrate is again

the real line equipped with Lebesgue measure. . . ). �

6.15. Examples.

(1) Let f be a complex-valued simple function on a measurable space (X,A),

and µ be a measure on this same space. It is the content of E.26 that

f is integrable if and only if, for every nonzero y in the range of f , the

inverse image f−1(y) has finite µ-measure, in which case the integral is

given by the formula from 6.8:
∫
X
f dµ :=

∑
y∈f(X) y · µ(f−1(y)) (with

the by-now-familiar convention 0 · ∞ := 0).

(2) LetX be an arbitrary set and let µ denote counting measure on (X,P(X)).

Then (see E.27) a complex-valued function f on X is integrable if and

only if

(i) the set N = N(f) = {x ∈ X : f(x) 6= 0} ⊆ X is at most countable,

and

(ii) the series
∑

x∈N f(x) converges absolutely in C,

in which case
∫
X
f dµ =

∑
x∈N f(x). �

6.16. As was already mentioned in 6.14, sums of integrable functions are again

integrable; it is moreover easily checked that the integral of the sum equals

precisely the sum of the integrals of the individual summands (use 6.12). On

the other hand, it is about as easy to see that, if f is a real- or complex-valued

integrable function on a measure space (X,A, µ) and c is a real or complex

scalar, then cf is again integrable with integral equal to c
∫
X
f dµ. In more

concise and more technical vocabulary, we have the following statement.

6.17. Proposition. Let (X,A, µ) be a measure space, and let L1(X,A, µ;K)

denote the set of K-valued functions on X which are integrable with respect to
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µ. (Here, K may be either R or C.) Then L1(X,A, µ;K) is a vector space over

K with the obvious (pointwise) operations, and the assignment

f 7→
∫
X

f dµ

is a K-linear functional on L1(X,A, µ;K).

6.18. With the preceding result, our discussion of the Lebesgue integral might

be regarded as essentially complete, with one major exception: the condition

(SM) on which our definition of integrability currently rests is actually quite

cumbersome to check in practice. As a consequence, it is not at all clear—

at least not without additional general results—which functions really occur

as elements of L1(X,A, µ;K) (cf. 6.17 for the notation) for a given measure

space (X,A, µ). This is not a fault of the Lebesgue integral, but rather of

our presentation: in fact, (SM) may be equivalently replaced by the much

more natural and easily-formulated condition that the nonnegative function

f be measurable. In the next subsection, we shall introduce the notion of a

measurable function and thus belatedly provide the appropriate theoretical

framework for a systematic study of the Lebesgue integral.

6.3 Measurable functions

Abstractly, measurable functions are precisely the “structure-preserving maps”

between measurable spaces; informally, we could say that they are to measur-

able spaces what continuous maps are to topological spaces. In fact, the def-

inition of measurability, given immediately below, is even formally analogous

to that of continuity.

6.19. A function between two measurable spaces is said to be a measurable

function if preimages of measurable subsets of the target space are measurable

in the domain. More precisely, if (X,A) and (Y,B) are measurable spaces and

f is a function X → Y , then f is A-B-measurable (or, if the σ-algebras are

understood, simply measurable) if and only if f−1(B) ∈ A for every B ∈ B.

6.20. Remarks on the definition.
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(1) To provide some motivation for the above definition, recall that inverse

images are much better behaved than (“regular”) images with respect to

set-theoretic operations. For instance, it is easily checked that, if (Y,B)

is a measurable space and f : X → Y is a set-theoretic function from a

set X to Y , then

f−1B := {f−1(B) : B ∈ B} ⊆ P(X)

is a σ-algebra on X. Thus, if X comes equipped with a σ-algebra A ⊆
P(X), then the condition that f be measurable is synonymous with the

inclusion f−1B ⊆ A.

(2) Let (X,A) and (Y,B) be measurable spaces, and suppose that E ⊂ B
generates B in the sense that B = σ(E). (Cf. 3.7 for the notations.)

An ingenious argument (s. e.g. [Elst, Kapitel I, Satz 4.4; Kapitel III,

Satz 1.3]) can be used to show that, in order to check that a function

f : X → Y is A-B-measurable, it suffices to check that f−1(E) ∈ A for

every E ∈ E . �

6.21. Examples, pt. 1.

(1) Let (X,A) and (Y,B) be arbitrary measurable spaces. Then it is easily

checked that every constant function X → Y is measurable.

(2) Let X and Y be topological spaces, and f : X → Y be a continuous map

from X to Y . By definition, if U ⊆ Y is open, then f−1(U) is open in

X, hence Borel; by 6.20.(2), this proves that f is BX-BY -measurable, or

Borel measurable for short.

(3) Compositions of measurable functions are again measurable. In more

details, if (X,A), (Y,B) and (Z, C) are measurable spaces and the maps

f : X → Y and g : Y → Z are measurable, then so is g ◦ f . �

For the applications to integration theory, the measurable functions we will

be interested in will be those whose target set Y is either the real line or the

complex plane (while the domain (X,A) shall remain arbitrary). In either case,

the target set will invariably be considered with its Borel σ-algebra, BR or BC
as the case may be.25 More concisely, we stipulate the following

25In particular, the notion of measurability of a real-valued function does not make any

reference to the σ-algebra of Lebesgue measurable sets.
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6.22. Convention. A function on a measurable space (X,A) with values in

either K = R or K = C is ‘measurable’ if it is A-BK-measurable.

6.23. Remark. Of course, since R ∈ BC and hence BR = {B ∈ BC : B ⊆ R}
(as mentioned in footnote 21), a function f : X → R is measurable if and only

if it is measurable when viewed as a complex-valued function, cf. 6.6.(2). �

In addition to the examples in 6.21, which were of a more general nature, we

now provide some examples of real- and complex-valued measurable functions.

6.24. Examples, pt. 2. Throughout, we consider a fixed but arbitrary mea-

surable space (X,A). Whenever the symbol ‘K’ appears in a statement, this

means that the statement is true whether ‘K’ is replaced by ‘R’ or ‘C’.

(4) For a subset A ⊆ X, the indicator function 1A : X → {0, 1} ⊂ K of A is

measurable if and only if A ∈ A.

(5) More generally, it is easily seen that simple functions on X, as defined

in 6.5, are measurable. (S. also E.29.)

(6) For a function f : X → R, the following conditions are equivalent.

(i) f is measurable.

(ii) For all b ∈ R, the set {x ∈ X : f(x) < b} ⊆ X is (A-)measurable.

(iii) For all b ∈ R, the set {x ∈ X : f(x) ≤ b} ⊆ X is (A-)measurable.

(The equivalence is seen to hold by 6.20.(2) and 3.9.)

(7) Because (K,+) is a topological group, the map (x, y) 7→ x + y from

K2 to K is Borel-measurable by 6.21.(2). Using this in conjunction with

6.21.(3), one readily deduces that (pointwise) sums of measurable func-

tions X → K are measurable. Similar arguments (see [Elst, Kapitel III,

§4]) show that the set of measurable functions X → K is closed under

scalar multiplication (by elements of K) and taking pointwise products;

in particular, it is a vector space over K.

(8) A function f : X → C is measurable if and only if both its real part

Re(f) and its imaginary part Im(f) from footnote 24 are measurable.

(This is E.30.)

(9) Similarly, a function f : X → R is measurable if and only if both its

positive part f+ and its negative part f−, as introduced in footnote 23,

are measurable. (This is E.31.)
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(10) It can be shown (s. e.g. [Elst, Kapitel III, Satz 4.3]) that, if a real- or

complex-valued function f on X can be written as a pointwise limit of

measurable functions—to wit, if there exist measurable functions f1, f2,

. . . on X such that f(x) = limn→∞ fn(x) for every x ∈ X—then f is

itself measurable.

�

6.25. Combining items (5) and (10) from 6.24, we see that a nonnegative

function on a measurable space (X,A) satisfying (SM) from 6.11 is certainly

measurable. Most importantly, and perhaps surprisingly, the converse is also

true.

6.26. Proposition. A nonnegative function f on a measurable space (X,A)

satisfies (SM) from 6.11 if and only if it is measurable.

(We shall omit the proof, see e.g. [Elst, Kapitel III, Satz 4.13].)

6.27. The above result promptly implies that every integrable function (in

the sense of 6.13) on a measure space (X,A, µ) is measurable. (In fact, use

6.24.(8)–(9) above.) As for the “converse” problem of determining which mea-

surable functions are integrable, the following result 6.28 yields a powerful

characterization. In order to formulate it, we shall need one further item of

notation.

For a real- or complex-valued function f on a set X, we let |f | denote the

nonnegative function on X given by x 7→ |f(x)|; in other words: |f | = | · | ◦ f ,

where | · | denotes the Euclidean absolute value viewed as a map from R, or C,

to R≥0. In particular, if X is equipped with a σ-algebra A ⊆ P(X) and f is a

measurable function, then |f | is also measurable. (Use 6.21.(2)–(3).) By 6.26,

this means that
∫
X
|f | dµ ∈ [0,∞] is defined as per 6.11.

6.28. Proposition. Let (X,A, µ) be a measure space, and let L1(X,A, µ;K)

denote the K-linear space of K-valued functions on X which are integrable with

respect to µ. (Here, K may be either R or C.) Then

L1(X,A, µ;K) = {f : X → K measurable :

∫
X

|f | dµ <∞},

where the integral on the right-hand side may be understood in the sense of

6.11. In other words, if f is a measurable real- or complex-valued function on

X, then f is integrable if and only if |f | is.
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Proof. Let us first treat the case K = R. We shall use the fact that, for a real-

valued function f on a set X, the equality |f | = f+ + f− holds; in particular,

the inequalities |f | ≥ f+ and |f | ≥ f− follow.

Now let f be a real-valued measurable function. By 6.24.(9), both f+ and

f− are measurable, hence their integrals exist (as elements of [0,∞]) as per

6.11. But by the previous paragraph, the integral of |f | is finite if and only if

both
∫
X
f+ dµ and

∫
X
f− dµ are finite. (Use 6.12.) Thus, f is integrable if and

only if |f | is.

The complex case is settled by an analogous argument, by using the inequal-

ities

max{|Re(f)|, |Im(f)|} ≤ |f | ≤ |Re(f)|+ |Im(f)|,

which, when combined with the real case handled above, show that, for a

complex-valued measurable function f , the integral of |f | is finite if and only

if both
∫
X

Re(f) dµ and
∫
X

Im(f) dµ are.

6.29. Incidentally, it follows from the above proof that, for f : X → C inte-

grable, we have the estimate
∣∣∫
X
f dµ

∣∣ ≤ ∫
X
|f | dµ.

We conclude with a few conventions on notation. Throughout, we consider

a fixed measure space (X,A, µ).

6.30. Notation.

(1) The notation
∫
X
f dµ introduced earlier may also be replaced by the more

verbose notation
∫
X
f(x) dµ(x) if one wishes to emphasize the integration

variable. In pratice, one often omits the measure altogether and simply

writes
∫
X
f(x) dx (as for the Riemann integral); in the context of locally

compact groups, it is even common to find such statements as “Let dg

denote Haar measure on G”. For the sake of clarity, we shall abstain from

such abuse of notation in this note.

(2) If a measurable function f and a measurable subset A ∈ A are such

that f1A is integrable on X, then we may set
∫
A
f dµ :=

∫
X
f1A dµ.

This is then called the integral of f over A (with respect to µ). Observe

that the condition is automatically satisfied if f is itself integrable; more

precisely, if f is integrable over X and A ∈ A is arbitrary, then f1A is

again integrable over X. This is simply because |f1A| ≤ |f | (and because

of 6.28).
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7 Uniqueness of Haar measure

Much like §5, this section deals exclusively with the proof of one result, namely:

7.1. Theorem. Any two left Haar measures on a locally compact topological

group G are proportional. More precisely, if µ and ν are two left Haar measures

on G, then there exists a positive real number c = c(µ, ν) such that ν(B) =

cµ(B) for every Borel set B ⊆ G.

While the claim is about measures, the proof we follow—which is given e.g.

in [Cohn, Thm. 9.2.3] or [Gleason]—involves almost exclusively the (Lebesgue)

integrals associated to the measures in question. We can provide some “pre-

emptive motivation” for this change of perspective as follows.

7.2. Let (X,A) be a measurable space consisting of a locally compact Haus-

dorff topological space X and its Borel-σ-algebra A = BX . We saw in the

previous section how to associate, to each measure µ on (X,A), a real vector

space L1(X,A, µ;R), and how to view the Lebesgue integral with respect to µ

as a linear functional on this space, which we shall now denote by Iµ.

On the other hand, as we shall see in §7.1, there exists a certain space of

real-valued functions on X, denoted Cc(X;R), with the following properties:

(1) the definition of Cc(X;R) involves only the topology on X;

(2) Cc(X;R) is contained in L1(X,A, µ;R) for every Radon measure µ; and

in this case,

(3) µ is uniquely determined by the restriction of the linear functional Iµ to

Cc(X;R).

This result essentially yields a “test” to check whether two given Radon mea-

sures µ and ν on the LCH space X are equal: it suffices to check whether

integrating a function f ∈ Cc(X;R) with respect to µ and ν gives the same

results for every f . Thus, we may26 (and will) establish 7.1 by proving the fol-

lowing intermediate assertion (where the symbols G, µ and ν retain the same

meanings as in 7.1).

7.3. There exists a positive real number c = c(µ, ν) such that, for all f ∈
Cc(G;R), the equality

∫
G
f dν = c

∫
G
f dµ holds.

26For a more detailed argument, see §7.3.
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Because of this change of perspective, it will benefit us to take a closer look

at how the invariance properties of Haar measures translate into properties

of the corresponding Lebesgue integrals: this will be the topic of §7.2. The

results obtained in this subsection will become crucial in the proof of 7.1 (or

7.3) presented in §7.3.

7.1 Compactly supported functions

This subsection is essentially devoted to injecting mathematical rigour into the

claims made in 7.2.

7.4. First of all, given topological spaces X and Y , we fix the notation

C(X;Y ) for the set of all continuous functions X → Y . We shall most often

be concerned with the case Y = K, where K denotes either of the two fields R
and C; in this special case, elements of C(X;K) can be added and multiplied

(be it by scalars or among themselves) pointwise, making C(X;K) into an

algebra (and in particular, a vector space) over K. (This is well-known, but

see also E.4.)

For a function f ∈ C(X;K),27 the (topological) support of f is defined to be

the smallest closed subset of X outside of which f vanishes. In symbols,

supp f := {x ∈ X : f(x) 6= 0}.

We say that f has compact support, or is compactly supported, if supp f is

compact in X.

One easily checks that pointwise sums and scalar multiples of [continuous

and] compactly supported functions are again [continuous and] compactly sup-

ported. In other words,

{f ∈ C(X;K) : f has compact support}

is a K-linear subspace of C(X;K), which we may call the (sub-)space of con-

tinuous compactly-supported K-valued functions on X. Throughout this note,

this subspace will be denoted by Cc(X;K).

27The definition is clearly meaningful in much more general contexts. For instance, con-

tinuity of f is not essential to the definition; moreover, one may replace K by any additive

(topological) group A. However, we shall have no use for this added generality.
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7.5. Remark. If X is a compact topological space and K denotes either R or

C, then Cc(X;K) is all of C(X;K). �

7.6. If, in 7.4, we specialize to K = R, we obtain the space Cc(X;R) whose

role in the proof of our main theorem was touched upon in 7.2. It is clear

that the definition of Cc(X;R) only involves the topology on the space X,

i.e., the first of the three claims made in 7.2 is settled. The second claim

follows immediately from the upcoming proposition (together with the defining

properties of Radon measures).

7.7. Proposition. Let X be a Hausdorff topological space and let µ be a

measure on (X,BX) which is finite on compact sets. Then every continuous

compactly-supported complex-valued function on X is Lebesgue-integrable with

respect to µ.

Proof. Let f be a continuous compactly-supported function X → C. By

6.21.(2), f is a (BX-BC-)measurable function on X. By 6.28, it remains to

show that
∫
X
|f | dµ <∞. (See loc. cit. for the notation |f |.)

To that end, let K denote the support of f . (Observe that K is also the

support of |f |.) Since K is compact in X and f is continuous, there exists

a positive real number M such that |f(x)| ≤ M for all x ∈ K. Because |f |
is zero outside of K, we obtain |f | ≤ M1K (recall that this notation means

that the inequality holds everywhere pointwise). But then, by 6.10 and 6.12,∫
X
|f | dµ ≤

∫
X
M1K dµ = Mµ(K) < ∞, where the last inequality holds by

our assumption that µ is finite on compact sets. Hence, f is indeed integrable,

as claimed.

To prove the third claim, we have to use deeper facts about the topology of

LCH spaces. The central result is the following version of Urysohn’s Lemma.

7.8. Proposition. Let X be a locally compact Hausdorff space, U be an

open subset of X and K be a compact subset of U . Then there exists a contin-

uous compactly-supported real-valued function f on X such that:

(i) 0 ≤ f(x) ≤ 1 for all x ∈ X;

(ii) f(x) = 1 for all x ∈ K; and

(iii) the support of f is contained in U .
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(For a proof, see [Folland2, Urysohn’s Lemma 4.32].)

7.9. To draw a first consequence of the previous result, it will be convenient

to introduce some ad hoc items of notation, again following [Folland2]. Let X

be a topological space, U be an open subset of X, and f ∈ Cc(X;R). Then we

write

f ≺ U

if and only if f has values in the closed interval [0, 1] and the support of f is

contained in U .

7.10. Proposition. Let X be a locally compact Hausdorff space and µ be a

Radon measure on X. Then, for every open subset U of X,

sup

{∫
X

f dµ : f ∈ Cc(X;R), f ≺ U

}
∈ [0,∞]

is equal to µ(U).

Proof. First, one needs to convince oneself that the supremum exists and is

meaningful; we leave this verification to the reader.

Next, fix an open subset U ⊆ X. Clearly, if f ∈ Cc(X,R) is such that

f ≺ U , then 0 ≤
∫
X
f dµ ≤

∫
X

1U dµ = µ(U), so the supremum appearing in

the statement is certainly less than or equal to µ(U).

To show actual equality, recall that µ is inner regular by assumption, i.e.:

µ(U) = sup{µ(K) : K ⊆ U,Kcompact}. Now whenever K is a compact subset

of U , there exists, by the previous result, a function f ∈ Cc(X;R) such that

f ≺ U and additionally f is identically 1 on K. For such a function f , we have

the inequalities

µ(K) =

∫
X

1K dµ ≤
∫
X

f dµ ≤ µ(U);

thus, the integral of f is “squeezed” between µ(K) and µ(U). Inner regularity

of µ completes the proof.

With the help of the preceding result, the last and most important claim

made in 7.2 follows immediately.

7.11. Corollary. Let X be a locally compact Hausdorff space. and let µ

and ν be Radon measures on X. Suppose that
∫
X
f dµ =

∫
X
f dν for every

f ∈ Cc(X;R). Then µ = ν.
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Proof. We shall show that µ(U) = ν(U) for every open subset U of X; by

outer regularity, this is enough to prove that µ and ν agree on all Borel sets

of X.

Thus, let U ⊆ X be open. Applying the above proposition combined with

our current assumptions, we obtain

µ(U) = sup

{∫
f dµ : f ∈ Cc(X;R), f ≺ U

}
= sup

{∫
f dν : f ∈ Cc(X;R), f ≺ U

}
= ν(U),

and the proof is completed.

7.2 Invariant integrals

The main goal of this subsection is to establish the following result, which,

informally, reads as the assertion that the Lebesgue integral associated to a

left Haar measure inherits an invariance property of sorts.

7.12. Theorem. Let G be a locally compact group and µ be a left Haar mea-

sure on G. Then the Lebesgue integral with respect to µ is left-invariant in the

following sense: for every f ∈ L1(G,BG, µ;C) and every g ∈ G, the function

f ◦ lg is again integrable (cf. 1.6 for the notation lg) and has the same integral

as f . In other words,∫
G

f(gx) dµ(x) =

∫
G

f(x) dµ(x) for all f ∈ L1(G,BG, µ;C), g ∈ G.

Proof. Because the definitions of integrability and of the Lebesgue integral

itself were given in several stages, it is natural to argue following those same

stages: in other words, the claim may be first shown for nonnegative simple

functions, then for nonnegative measurable functions, then for real-valued and

finally for complex-valued integrable functions.

As a preliminary remark, observe that, if g is any element of G and f is a

measurable complex-valued function on (G,BG), then the same is true of f ◦ lg:
this is because of 6.21.(2)–(3). (Recall that lg is continuous by 1.7.) Moreover,

since lg is a bijection from G to itself, the functions f and f ◦ lg have the same
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range; therefore, if f is real-valued, nonnegative, or simple, then the same is

true of f ◦ lg. (For the last claim, recall E.29.)

In this paragraph, let f be a nonnegative simple function on (G,BG), and

g ∈ G be arbitrary; our goal is to show that
∫
G

(f ◦ lg) dµ =
∫
G
f dµ. If f

happens to be of the form 1B for some B ∈ BG, then f ◦ lg is none other than

the indicator function 1g−1B; using 6.10.(0), the left-invariance of µ immediately

yields ∫
G

f(gx) dµ(x) =

∫
G

1g−1B dµ = µ(g−1B) = µ(B) =

∫
G

f dµ ,

as desired. In general, f is a finite linear combination of indicator functions of

Borel sets (as seen in 6.7.(3)), so the claim readily follows by linearity from

the above special case.

Now, let f denote a nonnegative measurable function on (G,BG), and let

g again denote an arbitrary element of G. Then, by 6.26, f satisfies (SM)

from 6.11, so there exist nonnegative simple functions f1, f2, . . . such that

f1 ≤ f2 ≤ · · · and f = lim fn (pointwise). By our preliminary remarks, we

obtain that, for every n ≥ 1, the function f̃n := fn ◦ lg is again nonnegative

and simple; that f̃1 ≤ f̃2 ≤ · · · (pointwise); and that f ◦ lg = lim f̃n (again

pointwise). By the arguments in 6.11, the limit limn→∞
∫
G
f̃n dµ yields the

value of the integral of f ◦ lg with respect to µ; but then, using what was

already proved for simple functions,∫
G

(f ◦ lg) dµ = lim
n→∞

∫
G

(fn ◦ lg) dµ

= lim
n→∞

∫
G

fn dµ

=

∫
G

f dµ ,

where the equality holds in [0,∞]. In particular, f ◦ lg is integrable if and only

if f is.

The rest of the proof is straightforward: to extend the validity of the claim

to all real-valued and then all-complex valued integrable functions, one takes

advantage of the linearity of the integral to fall back on the nonnegative case.

The details are omitted.
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7.13. Remark on the proof. The equality
∫
G

(f ◦ lg) dµ = lim
∫
G

(fn◦ lg) dµ seen

in the above proof involves interchanging an integral sign and a (pointwise)

limit of functions; since changing the order of these operations might alter the

end result in general, one has to argue with particular care here.

At this stage in the proof, some authors (cf. [Cohn, p. 305] and, expand-

ing on this, [Gleason, Lemma 4.5]) invoke the monotone convergence theorem,

a fundamental result of Lebesgue integration theory which gives a sufficient

condition for when the interchange of limit and integral is permitted. Since

(fn ◦ lg)n≥1 is a monotonically increasing sequence of nonnegative measurable

function converging pointwise to f ◦ lg, the assumptions of the theorem are

fulfilled and so any potential concerns are swiftly put to rest.

By contrast, in our approach we avoid applying the monotone convergence

theorem by observing that each fn ◦ lg is additionally simple; thus, the fact

that the integrals of fn ◦ lg converge to that of f ◦ lg as n goes to ∞ follows

directly from the “well-definedness” of the integral of a nonnegative measurable

function discussed in 6.11. �

7.14. Let G be a locally compact group and µ be a right Haar measure on G.

Then the argument given in the above proof—with left translation maps lg re-

placed by right translation maps rg (cf. 1.6) throughout and a few other obvious

changes— shows the “mirror version” of 7.12, i.e.: for every f ∈ L1(G,BG, µ;C)

and every g ∈ G, the function f ◦ rg is again integrable and has the same in-

tegral as f , or in symbols,∫
G

f(xg) dµ(x) =

∫
G

f(x) dµ(x) for all f ∈ L1(G,BG, µ;C), g ∈ G.

7.3 The core of the uniqueness proof

Having argued how to reduce the main theorem 7.1 to the assertion 7.3, we

now set out to prove the latter. To this end, we first provide an elementary

reformulation of the claim which will bring us one step closer to the actual

(technical) core of the proof.

First, we observe that 7.3 entails—and is in fact equivalent to—the following

pair of assertions (with notations being as in the original statement of 7.1):

(a) for every f ∈ Cc(G;R), the integrals
∫
G
f dµ and

∫
G
f dν are either both

zero or both nonzero; and
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(b) if for a certain concrete function f0 ∈ Cc(G;R) they are both nonzero,

then ∫
G

f dν =

∫
G
f0 dν∫

G
f0 dµ

∫
G

f dµ ,

or equivalently ∫
G
f dµ∫

G
f0 dµ

=

∫
G
f dν∫

G
f0 dν

,

for every f ∈ Cc(G;R).

In this connection, the usefulness of the following result should be apparent.

7.15. Proposition. Let G be a locally compact group, and let f ∈ Cc(X;R)

be nonnegative and not identically zero. Then, for every left [right] Haar mea-

sure µ on G, the integral
∫
G
f dµ is strictly greater than zero.

Proof. By the assumptions on f , there exists an element x0 of X such that

f(x0) is strictly positive; if we let ε denote this function value and

U :=
{
x ∈ X : f(x) >

ε

2

}
⊆ X,

then U is open (by continuity of f) and non-empty, since it contains x0. By

construction, we have the inequality f ≥ ε
2
1U pointwise.

Now let µ be a left [right] Haar measure on G. Then we know from 4.21.(i)

that µ(U) is strictly positive. By the basic properties of the integral, we then

find that ∫
X

f dµ ≥ ε

2

∫
X

1U dµ =
ε

2
µ(U) > 0,

as claimed.

Thanks to this result and the discussion preceding it, we conclude that, in

order to prove 7.1, it suffices to establish the following.

7.16. Proposition. Let G be a locally compact group and let f , f0 be ele-

ments of Cc(G;R), with f0 nonnegative and not identically zero. Then there

exists a real number C = C(f, f0) such that, for every left Haar measure µ on

G, the equality ∫
G
f dµ∫

G
f0 dµ

= C

holds.
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(The salient point is that C is independent of the choice of Haar measure

on G.)

Proof. By 5.1, we may pick a left Haar measure µ0 on G. For x ∈ G, set

Ψ(x) :=

∫
G

f0(tx) dµ0(t) .

Because t 7→ f0(tx) is (like f0 itself) a nonnegative continuous compactly-

supported function on G which is not identically zero, we have that Ψ(x) > 0

for every x by the previous result 7.15. This yields a function Ψ from G into

the positive real numbers.

7.17. Lemma. The function Ψ introduced above is continuous.

(See [Cohn, Corollary 9.1.5] for the proof.)

Now consider the function G→ R given by y 7→ f(y−1)
Ψ(y−1)

. (This is well-defined

because Ψ never vanishes.) It is readily verified that this function is again

continuous and compactly supported, so its integral∫
G

f(y−1)

Ψ(y−1)
dµ0(y) =: C

exists. We claim that this is precisely the constant C = C(f, f0) whose exis-

tence is claimed in the statement, i.e., that for every left Haar measure µ on G,

the equation C
∫
G
f0 dµ =

∫
G
f dµ holds. To show this, we will first rewrite the

left-hand side, which is a product of two integrals over G, as a double integral.

This is achieved by applying (a suitable version of) Fubini’s Theorem, namely:

7.18. Fubini’s Theorem. Let X and Y be locally compact Hausdorff spaces,

equipped with Radon measures µ and ν respectively, and let f be an element of

Cc(X × Y ). Then:

(i) for every x ∈ X, the map y 7→ f(x, y) belongs to Cc(Y ), and for every

y ∈ Y , the map x 7→ f(x, y) belongs to Cc(X);

(ii) the two maps

x 7→
∫
Y

f(x, y) dν(y) and y 7→
∫
X

f(x, y) dµ(x)

belong to Cc(X) and Cc(Y ), respectively; and
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(iii) the equality∫
X

∫
Y

f(x, y) dν(y) dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x) dν(y)

holds.

(See [Cohn, Prop. 7.6.4] for a proof.)

From now on, we choose a fixed but arbitrary left Haar measure µ on G (in

addition to the left Haar measure µ0 which was used to define Ψ and C above).

Recall that our aim is to show that C
∫
G
f0 dµ =

∫
G
f dµ.

First, consider the function h : G×G→ R given by

h(x, y) :=
f(y−1)f0(x)

Ψ(y−1)
.

It is easy to see that h is continuous and compactly supported, so we may con-

sider double integrals of h (with respect to µ and µ0) as per Fubini’s Theorem.

More importantly, the variables in h can be “separated”, so the integral can

be computed as follows:∫
G

∫
G

h(x, y) dµ0(y) dµ(x) =

∫
G

∫
G

f(y−1)f0(x)

Ψ(y−1)
dµ0(y) dµ(x)

=

∫
G

f0(x)

(∫
G

f(y−1)

Ψ(y−1)
dµ0(y)

)
dµ(x)

= C

∫
G

f0 dµ .

(Recall the definition of C.) In conclusion, we have indeed accomplished writing

C
∫
G
f0 dµ as a double integral.

Next, for x, y ∈ G, set

h̃(x, y) := h(yx, x−1) =
f(x)f0(yx)

Ψ(x)
;

then h̃ is again in Cc(G×G). The double integral of h̃ equals∫
G

∫
G

h̃(x, y) dµ0(y) dµ(x) =

∫
G

∫
G

f(x)f0(yx)

Ψ(x)
dµ0(y) dµ(x)

=

∫
G

f(x)

∫
G
f0(yx) dµ0(y)

Ψ(x)
dµ(x)

=

∫
G

f(x) dµ(x) .
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(Recall the definition of Ψ!) Therefore, the proof will be complete if we can

show that
∫∫

h̃ dµ0 dµ =
∫∫

h dµ0 dµ. This turns out to be a simple application

of the left-invariance of the integrals corresponding to the left Haar measures

µ and µ0, as illustrated in 7.12; in particular, this does not use the concrete

form of h but only the relation h̃(x, y) = h(yx, x−1) linking h and h̃.

In more detail, consider ϕ : G→ R given by

ϕ(x) :=

∫
G

h̃(x, y) dµ0(y) ;

by part (ii) of Fubini’s Theorem 7.18, ϕ ∈ Cc(G). Because µ is a left Haar

measure, the Lebesgue integral with respect to µ is left-invariant as per 7.12,

so ∫
G

ϕ(y−1x) dµ(x) =

∫
G

ϕ(x) dµ(x) .

But the integral on the right-hand side is none other than the double integral

of h̃ as per part (iii) of Fubini’s Theorem, whereas the left-hand side equals∫
G

∫
G

h(x, x−1y) dµ0(y) dµ(x) .

Similar arguments yield∫
G

∫
G

h(x, y) dµ(x) dµ0(y) =

∫
G

∫
G

h(x, x−1y) dµ(x) dµ0(y) .

(It is left as an exercise to the reader to check the details.) Combining all these

different equalities and recalling again part (iii) of Fubini’s Theorem, we obtain

the sought-after equality
∫∫

h̃ dµ0 dµ =
∫∫

h dµ0 dµ and, in so doing, complete

the proof.

To wrap up the subsection, here is a summary of the complete argument

which proves 7.1 (and, incidentally, 7.3).

Proof of 7.1. (Throughout the proof, the notations G, µ and ν retain the same

meaning as in the statement of 7.1.)

Pick a nonnegative function f0 ∈ Cc(G;R) which is not identically zero (f0

will be fixed for the entirety of the proof). Then, by 7.15, both
∫
G
f0 dµ and∫

G
f0 dν are strictly positive. Let c denote the ratio of the latter by the former.
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Now let f be an arbitrary element of Cc(G;R). By 7.16, we have the equality∫
G
f dµ∫

G
f0 dµ

=

∫
G
f dν∫

G
f0 dν

,

or equivalently, ∫
G

f dν =

∫
G
f0 dν∫

G
f0 dµ︸ ︷︷ ︸
=c

∫
G

f dµ .

This proves 7.3.

Finally, let µ′ denote the measure µ′ : BG → [0,∞] defined by µ′(B) := 1
c
ν(B)

for every B ∈ BG. Then
∫
G
f dµ =

∫
G
f dµ′ for every f ∈ Cc(G;R). By 7.11,

it follows that µ and µ′ are the same measure, i.e., ν(B) = cµ(B) for every

B ∈ BG, as desired.

(Essential) uniqueness of left Haar measure is clearly a pivotal statement

which immediately makes accessible a plethora of useful consequences. This

will become more and more apparent in the course of the next section. For the

time being, we only record three immediate corollaries.

7.19. Corollary. Any two right Haar measures on a locally compact topo-

logical group G are proportional.

Proof. Let µ and ν be right Haar measures on G; we want to show that there

exists a positive real number c such that ν = cµ, i.e.: ν(B) = cµ(B) for all

Borel sets B ⊆ G.

By 4.20.(1), we obtain left Haar measures µ∨ and ν∨ on G. Then, by 7.1,

there exists a positive real number c such that ν∨ = cµ∨. But then it follows

that ν = cµ, as claimed.

7.20. Corollary. The following statements are equivalent for a locally com-

pact group G.

(i) G possesses a bi-invariant Haar measure (as per 4.18).

(ii) Every left [right] Haar measure on G is bi-invariant.

The proof is an immediate application of the theorem and will therefore be

omitted.

83



7.21. Corollary. Let G be a locally compact group, µ and µ′ two left [right]

Haar measures on G. Then a [Borel-measurable] complex-valued function f on

G is integrable with respect to µ if and only if it is integrable with respect to

µ′.

This is again immediate from 7.1.

7.4 Digression: the Riesz Representation Theorem

In the above discussion, we have brushed upon the intimate connection between

Radon measures on a locally compact Hausdorff space X and their respective

Lebesgue integrals, viewed as linear functionals on Cc(X;R). In this connec-

tion, there is a central result which we deem absolutely worth mentioning, even

though our proofs of existence and uniqueness of Haar measure do not require

its full strength: the Riesz Representation Theorem.

This result can be put into context as follows. Recall that we have already

noted that every Radon measure µ on X (with X being as above) yields a

linear functional Iµ on Cc(X;R), namely

f 7→ Iµ(f) :=

∫
X

f dµ .

Every functional arising in this way is additionally positive in the sense that it

maps nonnegative functions to nonnegative real numbers. (I.e.: if f ∈ Cc(X;R)

only attains nonnegative values, then Iµ(f) ≥ 0.) The Riesz Representation

Theorem tells us that every positive linear functional I on Cc(X;R) can be

represented as Iµ for a unique Radon measure µ on X:

7.22. Riesz Representation Theorem. Let X be a LCH topological space,

and let I be a linear functional on Cc(X;R) which is positive in the sense that

I(f) ≥ 0 whenever f is nonnegative. Then there exists a unique Radon measure

µ on X such that I(f) =
∫
X
f dµ for every f ∈ Cc(X;R).

7.23. Remarks on terminology.

(1) This result, more accurately named the Riesz-Markov-Kakutani repre-

sentation theorem, is unrelated to the Riesz (or Riesz-Fréchet) represen-

tation theorem from functional analysis, which is a result on the dual

spaces of Hilbert spaces.
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(2) There exist other versions of the above result—also dubbed “the” Riesz

Representation Theorem—in which the positive linear functionals on

Cc(X;R) (with X being a LCH space) are shown to be in one-to-one

correspondence with a different set of measures than what we chose

to call ‘Radon measures’ (recall that we dwelled on these terminolog-

ical points in 4.14.(1)–(2)). For instance, the version proved in [Rudin,

Thm. 2.14] shows that, for a LCH space X, the positive linear functionals

on Cc(X;R) are in bijection with pairs (M, µ) such that:

(a) M ⊆ P(X) is a σ-algebra on X containing the Borel-σ-algebra BX ;

(b) µ is a measure on (X,M) which is finite on compact sets, outer

regular on all E ∈M, and inner regular on all open sets as well as

all sets E ∈M of finite µ-measure; and

(c) (X,M, µ) is a complete measure space.

(The bijection being again, at least in one direction, given by integrating:

the positive linear functional corresponding to (M, µ) is I : f 7→
∫
X
f dµ.)

Intuitively, Rudin’s version implies 7.22 simply by setting µ = µ|BX ;

conversely, if I and µ are as in 7.22, then one may take µ to be the

saturation of the completion of µ (cf. 3.16 and E.19). (This choice also

determines M as being, in the notation of 3.16, simplyM(µ∗).) Of course,

one has to check the details, namely that
∫
X
f dµ =

∫
X
f dµ for all f ∈

Cc(X;R); this is essentially the content of [Cohn, Prop. 7.2.11].

(3) In Bourbaki’s terminology, a measure on a locally compact Hausdorff

topological space X is, by definition, a positive linear functional on

Cc(X;R). Thus, while our notion of a measure (cf. 3.10) was much more

general, on a locally compact Hausdorff space Bourbaki’s ‘measures’ are

in one-to-one correspondence with “our” Radon measures.

Notably, the discussion in the preceding item shows that the notion of

a ‘Radon measure’ can be defined differently than in 4.13 (for instance,

by allowing more flexibility in the domain) without losing the one-to-one

correspondence with positive linear functionals on Cc(X;R) and hence,

by 7.22, with Radon measures in “our” sense. As a consequence, an ap-

proach such as Bourbaki’s, in which measures are equated with positive

linear functionals on Cc(X;R) (for X a LCH space) from the very start,

has the indisputable advantage that it elegantly bypasses the need to
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use the phrase ‘Radon measure’ and sidelines all the potential ambiguity

which might otherwise arise. (The downside being, of course, that Bour-

baki’s definition is hard to fully motivate—or reconcile with intuition, or

indeed most modern bibliographical sources—without assuming knowl-

edge of such an advanced result as the Riesz Representation Theorem.)

�

Sketch of proof of 7.22. One immediately recognizes that the uniqueness part

of the statement is merely a reformulation of 7.11. To prove existence, one has

to construct a Radon measure µ on X and show that I is indeed given by the

Lebesgue integral with respect to µ.

For the first half, we can rely on our previous results 4.8, 4.17. Indeed, set

h(K) := inf{I(f) : f ∈ Cc(X;R), f ≥ 1K}

for K ⊆ X compact. Then h satisfies the assumptions (h1)–(h3) of 4.8. (To

obtain (h3), one needs to use Urysohn’s Lemma 7.8, cf. [Elst, Kapitel VIII,

Lemma 2.2].) Accordingly, 4.17 yields a Radon measure µ on X. As for the

proof that I(f) =
∫
X
f dµ for all f ∈ Cc(X;R), we refer the reader to [Cohn,

Prop. 7.2.11] or claim (iv) in the proof of [Folland2, Thm. 7.2].

7.24. Remark on the proof. The argument given above makes use of the tech-

nical proposition 4.8, which in turn relies on Carathéodory’s extension the-

orem 3.14. Alternatively, as explained in 7.23.(2), one can derive 7.22 from

[Rudin, Thm. 2.14], whose proof (as given ibidem) remarkably does not invoke

Carathéodory’s result. �

7.25. The Riesz Representation Theorem is key in proving several results

about Radon measures on LCH spaces, see e.g. [Folland2, §7.2]. Most of these

are beyond the scope of this note, but we have opted to record one particular

result which characterizes Radon measures on “sufficiently well-behaved” LCH

topological spaces.

7.26. Proposition. Let X be a LCH space, and suppose additionally that

X is second-countable. Then any measure µ on (X,BX) which is finite on

compact sets is automatically inner regular on open sets and outer regular on

Borel sets, i.e. a Radon measure.
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(See e.g. [Folland2, Thm. 7.8].)

7.27. Finally, to conclude our digression, we shall spend a few words on how

an implicit or explicit application of the Riesz Representation Theorem can

affect the way in which the main results of this chapter—namely: existence

and essential uniqueness of Haar measure—are sometimes stated, proved or

presented in the literature. To this end, we posit a definition.

Let G be a locally compact group, I be a positive linear functional on

Cc(G;R). We call I a left Haar integral on G if I is not identically zero and

is left-invariant in the sense that I(f ◦ lg) = I(f) for all f ∈ Cc(G;R) and all

g ∈ G (with lg being, as usual, as in 1.6). Analogously, a right Haar integral is

a nonzero positive linear functional I on Cc(G;R) which is right-invariant in

the sense that I(f ◦ rg) = I(f) for all f and all g.

By 7.12 [or 7.14 as the case may be] together with 7.7, every left [right] Haar

measure µ yields a left [right] Haar integral via f 7→
∫
G
f dµ. Conversely, the

Riesz Representation Theorem 7.22 implies the following:

7.28. Proposition. Let G be a locally compact group, and let I be a left

[right] Haar integral on G. Then there exists a unique left [right] Haar measure

µ on G such that I(f) =
∫
X
f dµ for all f ∈ Cc(G;R).

Sketch of proof. Clearly one takes µ to be the measure associated to I by the

Riesz Representation Theorem; it only remains to check that µ is left- [right-

]invariant and nonzero.

The latter claim is trivial: if µ is identically zero, then so is I (indeed, recall

the step-by-step definition of the integral covered in §6), contradicting the

assumption that I is a left [right] Haar integral. We thus set out to show that,

if I is left-invariant, then µ is. (The arguments can easily be applied to the

right-invariant case mutatis mutandis.) Thus, let B be a Borel set in G and

g ∈ G; we need to show that µ(gB) = µ(B).

We shall first restrict to the case where B = U is an open set; by applying

7.10 (with the notations used ibidem), we obtain

µ(U) = sup{I(f) : f ∈ Cc(G;R), f ≺ U},
µ(gU) = sup{I(f) : f ∈ Cc(G;R), f ≺ gU}.
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We now observe that, if f ∈ Cc(G;R) and g ∈ G, then f ◦ lg again belongs

to Cc(G;R), and that f satisfies f ≺ gU if and only if f ◦ lg ≺ U . (The

latter is an easy computation using the results of §1). Thus, µ(gU) can also be

expressed as the supremum of the set {I(f ◦ lg) : f ∈ Cc(G;R), f ≺ U}, which

by left-invariance of I is none other than the set appearing on the right-hand

side the first of the two equations above. In conclusion, µ(gU) = µ(U). Outer

regularity then allows one to conclude that µ is indeed left-invariant on all

Borel sets, as claimed. (The argument was given in more detail in the proof of

5.1, in §5.3.)

It is, moreover, self-evident that two Haar integrals are proportional if and

only if the corresponding Haar measures are. Thus, in each of the four funda-

mental statements 5.1, 5.16, 7.1 and 7.19 (concerning existence and essential

uniqueness of left [right] Haar measures), swapping out the words ‘Haar mea-

sure(s)’ for ‘Haar integral(s)’ yields an equivalent statement.

Authors may choose to take advantage of this equivalence in different ways.

For instance, the proof of existence of Haar measure we gave in §5 has no need

for integrals; on the other hand, our proof of [essential] uniqueness of left Haar

measure in the present section was, arguably, a proof of [essential] uniqueness

of the left Haar integral in disguise! (We then leveraged the “uniqueness half”

of the Riesz Representation Theorem, which we proved in full in §7.1, to ob-

tain the corresponding results for measures.) In this regard, our approach is

similar to [Cohn]’s. By contrast, other authors prove both the existence and

the uniqueness of Haar measure (almost) entirely at the level of linear func-

tionals: as we already mentioned in passing at the beginning of §5, this is the

choice made e.g. in [Folland2] and [Joys], and obviously (in view of 7.23.(3)) it

is also the approach followed by [Bourbaki]. All in all, it is our hope that this

discussion will be useful to the reader navigating the literature and will defuse

potential sources of confusion early on.

8 Determining Haar measure

As a way to wrap up this chapter, we have chosen to devote a large part of

the final section to the following question: given a locally compact group, how

does one concretely and efficiently determine Haar measure on that group?
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Of course, fully answering this question means not only exhibiting left [or

right] Haar measure for a number of familiar groups (such as the ones that al-

ready appeared as examples in §§1–2), but most importantly providing general

results which we can potentially apply again as new examples of locally com-

pact groups appear and become relevant. Accordingly, in §8.1 we will present

several results of this type, deferring applications to §8.2 for the most part.

Throughout these discussions, left and right Haar measures will be treated

parallelly (but separately), as was already copiously done in previous sections.

In the third subsection, we shall break from this tradition and take up the

question of when the left and right Haar measures on a given group actually

coincide—i.e., we will investigate which groups have bi-invariant Haar mea-

sure (cf. 7.20). As we shall see, all compact (Hausdorff) groups fall under this

category, and so we will devote the final subsection §8.4 to presenting a few

additional results which specifically hold true for compact groups, as well as

an application which will become quite prominent in Chapter II.

All in all, the contents of this section prove to be both varied and quite

involved. In fact, in many cases proofs will have to be sketched, and we will

rely on external sources more than in previous sections. Accordingly, it seems

impractical to include a list of references in this introductory discussion, as

was done for other sections; instead, references will be provided for individual

results wherever appropriate.

8.1 Subgroups, products, quotients

As the title suggests, the current subsection will mostly deal with how Haar

measures “propagate” across standard constructions such as taking subgroups,

products or quotients of locally compact groups.

We start with a general result relating Haar measure of a subgroup to Haar

measure of the ambient group, for whose statement and proof we are indebted

to SE1335588.

8.1. Proposition. Let G be a locally compact group, H be a locally compact

subgroup of G, and µ be a fixed left [right] Haar measure on G. Suppose that H

has nonzero measure with respect to µ, i.e. that µ(H) is strictly positive. Then

for every left [right] Haar measure ν on H there exists a positive real number

c such that ν = cµ|BH , i.e.: ν(B) = cµ(B) for every Borel subset B of H.
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8.2. Remarks on the statement.

(1) To see that the notation µ|BH is meaningful, recall from 2.10 that, in a

Hausdorff topological group, a locally compact subgroup is necessarily

closed, and hence in particular Borel; thus, if G and H are as in the

above statement, then by footnote 21 it holds that BH = {B ∈ BG : B ⊆
H} ⊆ BG.

(2) Clearly the result fails in general if one lifts the assumption that µ(H) >

0: it suffices to consider the inclusion H = Z ⊂ R = G, with the larger

group equipped with Lebesgue measure µ = λ (and the discrete subgroup

Z equipped with ν = counting measure). �

Proof of 8.1. By 7.1 [or 7.19], it suffices to show that µ′ := µ|BH : BH → [0,∞]

is a left [right] Haar measure on H. Clearly µ′ is again left- [right-]invariant,

and µ′ is not identically zero by the assumption µ′(H) = µ(H) > 0. To check

that µ′ is a Radon measure, it is convenient to use the following result.

8.3. Lemma. In a locally compact group, a Borel-measurable subgroup of

positive left [right] Haar measure is automatically open.

(This is [a version of] the Steinhaus theorem, see SE1258647, cf. also [Cohn,

Prop. 1.4.8].)

The proof is then completed by E.32.(b).

The next construction we consider is taking (finite)28 products of locally com-

pact groups. We start by considering binary products:

8.4. Theorem. Let G1 and G2 be locally compact groups, and let G denote

the product G1 × G2. Then, given left [right] Haar measures µ1 and µ2 on

G1 and G2, respectively, there exists precisely one left [right] Haar measure

µ =: µ1 × µ2 on G with the property that, for all f ∈ Cc(G;R),∫
G

f dµ =

∫
G1

∫
G2

f dµ2 dµ1 =

∫
G2

∫
G1

f dµ1 dµ2 (
∫

=
∫∫

=
∫∫

)

28Recall from 2.9–2.10 that finite products of locally compact groups are always locally

compact, whereas products with an arbitrary (infinite) number of factors need not be. The

situation is different when restricting to compact groups, see §8.4 and in particular 8.49.
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(where the expressions on the right are indeed well-defined and equal to each

other by Fubini’s Theorem 7.18). Additionally, every left [right] Haar measure

ν on G arises as ν1 × ν2 for suitable left [right] Haar measures ν1 and ν2 on

G1 and G2, respectively.

Proof. We start by proving the first claim, i.e. existence and uniqueness of µ

for given µ1 and µ2.

Uniqueness is quite clear: suppose that both µ and µ′ are left [right] Haar

measures on G for which the claim holds true. Then by 7.1 [or 7.19], there

exists a positive real number c such that µ′ = cµ. Now pick a nonnegative

f ∈ Cc(G;R) which is not identically zero. Then f is integrable with respect

to both µ and µ′, by 7.7, and clearly
∫
G
f dµ′ = c

∫
G
f dµ; both integrals are

strictly positive by 7.15. But by our choice of µ and µ′, both integrals must

also be equal to, say, the double integral
∫∫

f dµ2 dµ1. It follows that c = 1,

i.e. µ′ = µ, as claimed.

As for existence, consider the map Cc(G;R)→ R given by

f 7→ I(f) :=

∫∫
f dµ2 dµ1 =

∫∫
f dµ1 dµ2 .

It is easily checked that I defines a positive linear functional on Cc(G;R); by

the Riesz Representation Theorem 7.22, I is associated to a Radon measure µ

on G. But I is nonzero (ultimately as a consequence of 7.15), and left- [right-

]invariant (by iterated application of 7.12 [7.14]). Thus, by 7.28, the Radon

measure µ corresponding to I is a left [right] Haar measure on G. The equality

of the three integrals now holds true by construction.

The final claim is an easy consequence of 7.1 [or 7.19]: if ν is a left [right] Haar

measure on G, then ν = Cµ for some positive real number C, so ν = ν1 × ν2

for, say, ν1 := Cµ1 and ν2 := µ2.

8.5. Remark. A part of the above argument—the one which invokes Fubini’s

Theorem 7.18 and the Riesz Representation Theorem 7.22—can actually be

applied more generally to obtain, from Radon measures µ1, µ2 on LCH topo-

logical spaces X, Y respectively, a Radon measure µ = µ1×µ2 on the product

space X × Y satisfying the equality (
∫

=
∫∫

=
∫∫

) (with G1, G2 and G re-

placed by X, Y and X×Y , respectively) for all f ∈ Cc(X×Y ;R). In [Folland2,

p. 227], µ1 × µ2 is called the Radon product of µ1 and µ2; in [Cohn, p. 245], it
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is called the regular Borel product of µ1 and µ2. (This is consistent with the

fact that “our” Radon measures are called regular Borel measures in Cohn’s

book, cf. op. cit., p. 206.) �

8.6. Caveat. In measure theory, there is a general theory of product mea-

sures—more precisely,

(a) given measurable spaces (X,A), (Y,B), the Cartesian product X × Y

can be equipped with a product σ-algebra29 A⊗ B ⊆ P(X × Y ); and

(b) given measures µ1, µ2 on (X,A), (Y,B) respectively, there is a corre-

sponding product measure on the measurable space (X × Y,A⊗B), also

customarily denoted by µ1 × µ2.

(For details, we refer to [Folland2, §2.5] or [Cohn, Chapter 5], but note that,

in the latter source, the product measure is only defined in case both measure

spaces (X,A, µ1) and (Y,B, µ2) are σ-finite.)

Our warning to the reader is that, in general, the Radon product of two

Radon measures (as per the above remark 8.5) is not the same as the product

measure discussed in (b) above. More precisely, if µ1, µ2 are Radon measures

on LCH spaces X, Y , respectively, then the Radon product of µ1 and µ2,

which is a measure on (X × Y,BX×Y ), is not necessarily the same as the

product measure, which “lives” on (X × Y,BX ⊗ BY )—in fact, the two σ-

algebras BX×Y and BX ⊗BY need not even be the same in general! (For more

on this, we refer to [Cohn, Section 7.6] and [Folland2, §7.4].) This technical

difficulty serendipitously disappears under the additional assumption that the

spaces X and Y be second-countable (in addition to being locally compact

Hausdorff). �

Before moving onto the next topic, it is worthwhile to spend a few more

words on the properties of the “product Haar measure” from the previous

result. We shall use the notion of σ-finite sets, first introduced in the course of

3.17. We also adopt the following notational conventions: if X and Y are LCH

29Note that the symbol ⊗ is standard in this context and that some authors even use the

terminology “tensor product σ-algebra”, which might be disorienting at first.
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spaces and B is a Borel subset of X × Y , we set

Bx := {y ∈ Y : (x, y) ∈ B} ⊆ Y (x ∈ X),

By := {x ∈ X : (x, y) ∈ B} ⊆ X (y ∈ Y ).

8.7. Proposition. Let G1, G2 be locally compact groups, equipped with left

[right] Haar measures µ1, µ2, respectively, and let G denote the product G1×G2,

equipped with the measure µ = µ1×µ2 from 8.4. Furthermore let B be a Borel

subset of G.

(i) If B = U is open, then the real-valued maps x 7→ µ2(Bx) and y 7→ µ1(By)

(on G1 and G2 respectively) are Borel-measurable and

µ(B) =

∫
G1

µ2(Bx) dµ1(x) =

∫
G2

µ1(By) dµ2(y) .

(ii) The conclusion of (i) also holds if B is contained in a set of the form

B1 ×B2 where B1 ∈ BG1 [resp., B2 ∈ BG2] is σ-finite for µ1 [resp., µ2].

(iii) If G1 and G2 are σ-finite (e.g., if they are second-countable), then the

conclusion of (i) holds for all Borel subsets B ⊆ G.

References. All three claims are special cases of results that hold more gener-

ally for Radon products (defined as in 8.5). Claim (i) is [Cohn, Prop. 7.6.5] or

[Folland2, Prop. 7.25], claim (ii) is [Cohn, Cor. 7.6.6], and [the bulk of] claim

(iii) can either be derived from (ii) or proved independently as in [Folland2,

Thm. 7.26]. As for the other claim implicitly made in (iii)—namely that a

second-countable LCH space is σ-finite—this follows from [Cohn, Prop. 7.1.5]

together with 4.16.

8.8. Remark. Resume the notations of the above statement and pick a Borel

subset B ⊆ G which is of the form B1×B2 for σ-finite Borel subsets Bi ⊆ Gi,

where i = 1, 2. Then the sections Bx and By (for arbitrary x ∈ G1, resp.

y ∈ G2) are easily computed, and applying 8.7.(ii) yields

(µ1 × µ2)(B1 ×B2) = µ1(B1)µ2(B2).

(Here, we again need the convention 0 · ∞ = ∞ · 0 := 0 for this to be well-

defined.) If both G1 and G2 are second-countable, then
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(i) the above equality holds for all B1 ∈ BG1 , B2 ∈ BG2 , and

(ii) µ1 × µ2 is the unique measure on (G,BG) with this property.

(Here is a brief explanation for the uniqueness statement. We mentioned in 8.6

that, under the assumption that G1 and G2 are second-countable, we have the

equality BG = BG1⊗BG2 . But by definition, the right-hand side is the σ-algebra

σ(H) generated by the collection H of all “rectangles” B1×B2 with B1 ∈ BG1 ,

B2 ∈ BG2 . Moreover, we have just proved that µ1 × µ2 is an extension of the

map ` : H → [0,∞] sending a “rectangle” B1 × B2 to µ1(B1)µ(B2). Since G1

and G2 are σ-finite for µ1 and µ2, respectively, it follows that G is σ-finite for

`. Uniqueness now follows from Carathéodory’s uniqueness theorem 3.18 since

H ⊂ P(G) is a semiring.) �

Iteratively applying the above results allows one to retrieve—and carry out

computations with—Haar measures on finite products G1 × · · · × Gn of lo-

cally compact groups for any n ≥ 2. The precise statements read verbatim as

those above, with the obvious modifications, and can easily be derived by the

interested reader.

As for us, we shall continue our discussion by stating the third major result of

this subsection, 8.10, which concerns Haar measures on quotients.

8.9. Bibliographical remark. Our phrasing of the statement is essentially

identical to that of [Bourbaki, Chapter VII, §2, no. 7, Prop. 10]. In op. cit., the

claim is derived from a result (§2, no. 6, Thm. 3) regarding relatively invariant

measures (defined in op. cit., Chapter VII, §1, no. 1, Def. 1) on homogeneous

spaces, i.e. quotient spaces of the form G/H where H is a closed but not nec-

essarily normal subgroup of the locally compact group G. By contrast, the

proof we present will specialize arguments coming from the theory of quasi-

invariant measures on homogeneous spaces, as covered e.g. in [Folland, §2.6]

or [Kan-Tay, Section 1.3] (but also in [Bourbaki, Chapter VII, §2, no. 5]). This

latter theory is indispensable when dealing with induced representations of lo-

cally compact groups in full generality, cf. [Kan-Tay, Chapter 2] and [Folland,

Chapter 6]. �

8.10. Theorem. Let G be a locally compact group, H be a closed normal

subgroup, and let µ and ν denote fixed left Haar measures on G and H, re-
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spectively. Additionally, choose a left Haar measure µ̇ on G/H. Then, upon

scaling µ̇ by a positive scalar if necessary, we have Weil’s integration formula:∫
G

f(g) dµ(g) =

∫
G/H

∫
H

f(gh) dν(h) dµ̇(ġ) for all f ∈ Cc(G;R),

where ġ denotes the integration variable ranging over the elements of G/H.

8.11. Remarks on the statement.

(1) Recall that the quotient G/H is locally compact by 2.9, so the choice of

a left Haar measure µ̇ on G/H is possible by 5.1.

(2) The statement requires some clarification as to the meaning of the nested

integrals on the right-hand side: the integration variable for the outer

integral is ġ, but the integrand (i.e., in this case, the inner integral) does

not ostensibly depend on ġ.

First, for f ∈ Cc(G;R), consider the map G→ R defined by

g 7→
∫
H

f(gh) dν(h) .

This map is constant on (left) H-cosets by construction: indeed, if g′ lies

in the coset gH, i.e. if g′ = gh′ for some h′ ∈ H, then∫
H

f(g′h) dν(h) =

∫
H

f(gh′h) dν(h)

=

∫
H

f(gh) dν(h) .

(The crucial step uses the invariance of the integral, see 7.12, applied

to the function h 7→ f(gh), with g fixed.) Accordingly, it descends to a

well-defined map

gH 7→
∫
H

f(gh) dν(h)

from G/H to R, which we shall denote by Φ(f). One can easily convince

oneself ([Folland, p. 56], [Kan-Tay, p. 12]) that Φ(f), like f , is again

continuous and compactly supported, so it is integrable with respect to

any Haar measure on G/H by 7.7. The equality in the above statement

can then more accurately be phrased as:∫
G

f(g) dµ(g) =

∫
G/H

Φ(f)(ġ) dµ̇(ġ) for all f ∈ Cc(G;R).
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(3) As always, there is a “right-invariant counterpart” of the above state-

ment: if µ, ν and µ̇ are right Haar measures on G, H and G/H respec-

tively, then, up to a scalar, we have∫
G

f(g) dµ(g) =

∫
G/H

∫
H

f(hg) dν(h) dµ̇(ġ) for all f ∈ Cc(G;R).

(To prove, e.g., that the inner integral on the right-hand side indeed

descends to a function of ġ, use the same argument as in the preceding

item, except with right cosets.) �

Sketch of proof of 8.10. One can provide an elegant argument by exploiting

the intimate relation between Cc(G;R) and Cc(G/H;R). Recall that, in the

preceding paragraph, we defined a map Φ: Cc(G;R)→ Cc(G/H;R); it is easily

seen from the definition that Φ is R-linear (because the integral f 7→
∫
G
f dµ

is, as a map I : Cc(G;R) → R). More importantly, as shown e.g. in [Folland,

Prop. 2.48] or [Kan-Tay, Prop. 1.9], Φ is surjective, so it has a section (i.e.:

a right-inverse)30 Σ: Cc(G/H;R) → Cc(G;R). One can, moreover, show that

the kernel of Φ consists precisely of those f ∈ Cc(G;R) with
∫
G
f dµ = 0. (In

[Folland], this is shown essentially in the course of the proof of Thm. 2.49.)

From this, it follows that J = I ◦ Σ, i.e.

J : Cc(G/H;R)→ R,

f 7→
∫
G

Σ(f) dµ ,

is actually independent of the choice of Σ. This, in turn, together with linearity

of Φ and of I, implies that J is itself linear. Finally, because Σ can be chosen so

that Σ(f) is nonnegative whenever f ∈ Cc(G/H;R) is nonnegative ([Kan-Tay,

Prop. 1.9] or [Folland, Prop. 2.48]), we conclude that J is a positive linear

functional on Cc(G/H;R). One can check that J is nonzero (use 7.15) and left-

invariant (using the fact that I is, by 7.12), i.e. a left Haar integral on G/H.

We can then define µ̇ to be the left Haar measure on G/H corresponding to J

via 7.28, and Weil’s integration formula becomes an immediate reformulation

of the definition of J .

30This is an application of the axiom of choice.
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8.12. Example. Let us better illustrate some aspects of the above discussion

with the help of a concrete example. To that end, take G to be the additive

group of the reals and let H denote the closed normal subgroup Z ⊂ R; then,

the natural choice of Haar measure ν on the discrete subgroup Z is counting

measure. With this choice, for f ∈ Cc(R;R), the map Φ(f) ∈ Cc(R/Z;R) (as

defined in 8.11) is given by

x+ Z 7→
∑
m∈Z

f(x+m).

(Recall 6.15.(2); to see why the right-hand side is well-defined, observe that

{m ∈ Z : f(x + m) 6= 0} is finite, being contained in the intersection of the

compact subset supp f ⊂ R with the discrete subset x+ Z ⊂ R.)

Now recall that, by 1.17.(3), the quotient G/H = R/Z is isomorphic to the

circle group T from 1.2.(2), hence in particular compact. It follows (from 7.5)

that Cc(R/Z;R) = C(R/Z;R); since Φ is surjective (s. the proof supra), this

means that every continuous real-valued function on R/Z is of the form Φ(f)

for some f ∈ Cc(R;R).

Consider for example the constant function on R/Z which sends every ele-

ment to 1 ∈ R. This function is continuous, hence is equal to Φ(f) for some

f ∈ Cc(R;R); in fact, one may take e.g.

• f(x) = x1[0,1)(x) + (2− x)1[1,2)(x); or

• f(x) = cos2(π
2
x)1[−1,1].

In accordance with the claims made in the proof of 8.10, these functions have

the same integral (over R, with respect to Lebesgue measure λ): in both

cases,
∫
R f dλ = 1. Thus, if λ̇ is the unique Haar measure on R/Z for which

Weil’s integration formula holds without scaling factor, then
∫
R/Z 1 dλ̇ = 1,

i.e., λ̇(R/Z) = 1. The reader is invited to compare these findings with 8.26. �

There is one more construction with topological groups which appeared in

earlier sections, namely taking projective limits (cf. §2.3). A general discussion

of Haar measures for projective limits is given e.g. in [Bourbaki, Chapter VII,

§1, no. 6]; however, we will not discuss this in detail in this note.

We conclude the subsection with an apparently harmless result which does

not technically involve any constructions with locally compact groups, but
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nevertheless belongs in this discussion from a conceptual viewpoint and will

prove quite useful in the following subsection. In order to state the result, we

shall first add a few new terms to our vocabulary.

8.13. A map ϕ : G → H between topological groups G and H will be called

a topological group isomorphism if it is both a group homomorphism and a

homoeomorphism. (As is easily seen, a topological group isomorphism from G

to H may equivalently be described as

(i) a continuous group isomorphism ϕ with continuous inverse ϕ−1, or

(ii) a homoeomorphism ϕ which simultaneously satisfies ϕ(gg′) = ϕ(g)ϕ(g′)

for all g, g′ ∈ G.)

A topological group isomorphism from a topological group G to itself is also

called a (topological) automorphism of G.

8.14. Remarks.

(1) Clearly if ϕ : G → H is a topological group isomorphism then the same

is true of ϕ−1 : H → G.

(2) Restating an earlier definition (given in passing in 1.17), we may say that

two topological groups are isomorphic (as topological groups) if (and only

if) there exists a topological group isomorphism between them. �

8.15. Proposition. Let H be a topological group which affords a topological

group isomorphism ϕ : H → G to a locally compact group G. Then H is itself

locally compact, and every left [right] Haar measure ν on H is of the form

ν(B) = µ(ϕ(B)), B ∈ BH

for a unique left [right] Haar measure µ on G.

8.16. Remark. The relationship between ν and µ in the above statement can

also be expressed concisely using the notion of the pushforward of a measure.

Indeed, set ψ := ϕ−1 : G→ H, the inverse map of ϕ. (By 8.14.(1), ψ is again a

topological group isomorphism.) Then ν is simply the pushforward of µ along

ψ; in symbols, ν = ψ∗µ. For more on pushforwards, see also E.13 and E.32. �
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Proof of 8.15. The first claim is clear since local compactness and “Hausdorff-

ness” are topological properties (i.e.: preserved by homoeomorphisms). The

bulk of the remaining claim is contained in the following fact, which we shall

state and prove separately—and slightly more generally than needed right

now—for later convenience.

8.17. Lemma. Let ϕ : H → G be a continuous group homomorphism between

locally compact groups H and G, and let µ be a left [right] Haar measure on

G. Suppose that ϕ is open and injective, i.e. a homoeomorphism onto an open

subgroup ϕ(H) ⊆ G. Then

ν : BH → [0,∞],

B 7→ µ(ϕ(B))

is a left [right] Haar measure on H.

Proof of the lemma. The heavy lifting is done by E.32.(c), which ensures that

ν is a Radon measure under our assumptions on µ and ϕ. Next, to check

that ν is nonzero, one may proceed as follows: because ϕ(H) is open in G by

assumption, and µ is strictly positive on non-empty open subsets of G (this is

4.21.(i)), we find that ν(H) = µ(ϕ(H)) > 0; in particular, ν is nonzero.

Finally, because ϕ is a group homomorphism, left- [right-]invariance of µ

immediately carries over to ν. In more detail, suppose µ is left-invariant (the

other case being fully analogous). Then, for any Borel subset B ⊆ H and every

h ∈ H, we have ϕ(hB) = ϕ(h)ϕ(B), so

ν(hB) = µ(ϕ(hB))

= µ(ϕ(h)ϕ(B))

= µ(ϕ(B)) = ν(B),

(µ(ϕ(·)))

i.e.: ν is a left Haar measure on H.

Applying the above lemma to “our” ϕ (which is even a homoeomorphism

onto all of G), we obtain a way to assign, to each left [right] Haar measure on

H, a left [right] Haar measure on G. We shall now show that this assignment

is a one-to-one correspondence, concluding the proof.

Thus, let ν be a left [right] Haar measure on H. Now note the following
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8.18. Lemma. Let X, Y be LCH spaces, and let f : X → Y be a homoeomor-

phism. Then every [nonzero] Radon measure ν on Y is of the form f∗µ for a

unique [nonzero] Radon measure µ on X, namely µ = (f−1)∗ν.

(The proof has been left to the reader: it is E.33.)

Applying the lemma (with X = G, Y = H, and f = ϕ−1) to the measure ν

we fixed earlier, we conclude that there exists a unique nonzero Radon measure

µ on G such that ν(B) = µ(ϕ(B)) for all B ∈ BH . It remains to prove that

µ is left- [right-]invariant. But, again by the lemma, µ is given by the formula

µ(B) = ν(ψ(B)) for all B ∈ BG, where ψ := ϕ−1 is a topological group iso-

morphism G→ H, so the left- [right-]invariance of µ can be established again

by the previous lemma 8.17—one need only replace ϕ by ψ and interchange

the roles of G and H (and obviously, those of µ and ν).

We conclude our discussion with a few observations about the above proof

which will be useful in §8.3.

8.19. Remark on the proof of 8.17. Let us resume the notations of the state-

ment and proof of 8.17, and let us take a closer look at the chain of equali-

ties (µ(ϕ(·))). In order to apply the left-invariance of µ in the final step, we

used the fact that ϕ “commutes with left translation”, or more precisely that

ϕ ◦ lh = lϕ(h) ◦ ϕ for all h ∈ H. But, on closer inspection, it is irrelevant which

left translation map appears on the right-hand side of this equality: all that

matters is that it is a map of the form lg for some g ∈ G, so that we can

conclude µ(gϕ(B)) = µ(ϕ(B)) = ν(B) in the final steps. Thus, the arguments

given in the proof above actually establish the following stronger claim. �

8.20. Proposition. Let G, H be locally compact groups, ϕ : H → G be a

homoeomorphism onto an open subspace ϕ(H) ⊆ G, and suppose that

(ϕ-γ) for all h ∈ H there exists an element γ(h) ∈ G such that ϕ◦ lh = lγ(h)◦ϕ.

Then, for every left Haar measure µ on G,

ν : BH → [0,∞],

B 7→ µ(ϕ(B))

is a left Haar measure on H.
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8.21. Remarks.

(1) Observe that (ϕ-γ) can equivalently be rephrased as the condition that

ϕ(hx) = γ(h)ϕ(x) for all x ∈ H (ϕ-γ)

for some (set-theoretic) function γ : H → G. One can check (E.34) that,

if this condition is verified for some γ, then there is precisely one γ

for which it is verified, and this γ is necessarily a group homomorphism

H → G.

(2) Clearly every map ϕ : H → G as in the statement of 8.17 satisfies the

assumptions of 8.20 (with γ = ϕ). To see that the newer condition is more

general, consider for a moment the special case H = G. Then, for any

g ∈ G, the right translation map ϕ = rg : G→ G is a homoeomorphism

which satisfies (ϕ-γ) with γ equal to the identity map (i.e., γ(h) = h

for all h ∈ G); however, rg is clearly not a group homomorphism in

general. Similarly, the left translation map ϕ = lg is a homoeomorphism

G → G which satisfies (ϕ-γ) with γ = lg ◦ (rg)−1 and is not a group

homomorphism.

(3) There is a rather obvious counterpart of the above result which holds true

for right Haar measures: to obtain the statement, it suffices to replace

left translation maps by right translation maps throughout. The proof is

again obtained by a straightforward modification of the arguments seen

in the proof of 8.17. �

8.2 Concrete examples

In this subsection, we will successively put several locally compact groups

under our figurative microscope, approximately in the same order in which they

appeared in the previous sections, and use the results from §8.1 to determine

Haar measure on each of them. All the groups considered in this subsection

(except in 8.28) are abelian; for such groups, we will always simply speak of

‘Haar measure’ (or ‘Haar integral’) without either of the qualifiers ‘left’ or

‘right’. Our starting point—the Haar measures we already know—will be 4.19,

that is:
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• on the additive group of the reals, the restriction λ|BR of Lebesgue mea-

sure λ to the Borel-σ-algebra BR is a (bi-invariant) Haar measure on

(R,+); and

• on any discrete group G, counting measure on BG = P(G) is a (bi-

invariant) Haar measure on G.

8.22. Example. Consider the group (Rd,+), with d a positive integer greater

than or equal to 2, and let λd := λ × · · · × λ be the Haar measure on Rd

obtained by iteratively applying 8.4. Then, by 8.8, λd satisfies

λd(B1 × · · · ×Bd) = λ(B1)λ(B2) · · ·λ(Bd) whenever B1, . . . , Bd ∈ BR,

and is in fact the unique measure on (Rd,BRd) which possesses this property.

One calls λd (d-dimensional) Lebesgue measure, or Lebesgue measure on Rd.

(However, see also the remark immediately below.)

As a special case, the above discussion yields a Haar measure on the complex

numbers C, and indeed on Cd for any d ≥ 1; more precisely, because for every

d ≥ 1 we (trivially) have an isomorphism of topological groups between (Cd,+)

and (R2d,+), the measure is given by 8.15. �

8.23. Remark. As was the case for (R,+), Lebesgue measure on Rd can actu-

ally be defined on more than “just” Borel sets: there is a σ-algebra of Lebesgue-

measurable subsets of Rd, containing all Borel subsets of Rd, to which λd can

be uniquely extended, and the extension may again be called Lebesgue measure

and again denoted by λd.

One way to carry out this extension is via E.19. Alternatively, we can retrace

the steps taken in 3.3 and 3.17 and define, for every d ≥ 1,

Hd = {[a1, b1)× · · · × [ad, bd) : a1, . . . , ad, b1, . . . , bd ∈ R} ⊂ P(Rd);

this is again a semiring (cf. 3.4), and we may again speak of Lebesgue outer

measure on Rd (defined again as in out.meas., with Hd in place of H) and

again obtain Lebesgue measure by applying 3.14 as in 3.15. As before, 3.18

guarantees that these two methods yield the same measure; an advantage of

the second method is that it works even without previous knowledge of the

properties of “one-dimensional” Lebesgue measure λ, and in fact it even allows

one to construct Lebesgue measure in all dimensions simultaneously. �
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8.24. Example. Consider now the multiplicative groups R>0 and R∗. Recall

that these are considered with the respective subspace topology coming from

the inclusions R>0 ⊂ R∗ ⊂ R; in particular, BR>0 = {B ∈ BR : B ⊆ R>0} and

analogously for BR∗ . (Cf. E.13 and footnote 21.)

A concise, if somewhat abstract, way to exhibit a Haar measure on R>0 is

to exploit the maps exp: R → R>0 and log : R>0 → R familiar from basic

real analysis. Indeed, these are well-known to be continuous, inverse to each

other and to yield group homomorphisms between (R,+) and (R>0, ·)—i.e.,

each map defines an isomorphism of topological groups. By our earlier result

8.15, we may then conclude that

λ×(B) := λ(log(B)), B ∈ BR>0

defines a left Haar measure on R>0; the invariance property reads

λ×(cB) = λ×(B) for all B ∈ BR>0 , c ∈ R>0

(where we have used the notation cB = {cx : x ∈ B} from 1.6). Finally,

because R∗ ∼= {±1} × R>0 (as topological groups!), where {±1} denotes the

essentially unique group with two elements, we obtain a Haar measure on R∗

via

B 7→ λ×(B ∩ R>0) + λ×(−B ∩ R>0)

(where of course −B = {−b : b ∈ B}). It is immediate that this measure

is an extension of the measure λ× we defined earlier on BR>0 ; we shall not

differentiate in the notation between the previously-defined measure and its

extension to BR∗ .

There is a different approach to the construction of λ× which we shall now

sketch (expanding on [Bourbaki, Chapter VII, §1, no. 2, Example 2)]). As a

starting point for this, we may go all the way back to 3.3 (and resume the

notations therein) and observe that the original length function ` (defined a

priori only on half-open intervals I = [a, b) ∈ H) has the property that

`(cI) = |c|`(I) for all c ∈ R, I ∈ H.

It is then easy to check that Lebesgue outer measure λ∗—and hence also

Lebesgue measure λ, being simply the restriction of λ∗—inherits this property.
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(See also [Folland2, Thm. 1.21] for an outline of the argument.) Using this,

one may carry out the following computation for any nonnegative measurable

function f on R∗ and any nonzero real number c:∫
R\{0}

f(cx)

|x|
dλ(x) =

∫
R\{0}

f(cx)

|c||x|
|c| dλ(x)

=

∫
R\{0}

f(cx)

|cx|
dλ(cx)

=

∫
R\{0}

f(x)

|x|
dλ(x) .

(More rigorously, the last two steps of this computation should instead be

justified by a “change-of-variables formula”, such as [Cohn, Prop. 2.6.5].)

The above computation shows in particular that the map sending f ∈
Cc(R∗;R) to

∫
R\{0}

f(x)
|x| dλ(x) is a left Haar integral, which thus yields a Haar

measure λ̃× on R∗ by 7.28. Applying [Folland2, Chapter 7, Exercise 9, p. 220]

(jointly with E.32.(b)), we can describe λ̃× more concretely as

λ̃×(B) =

∫
R\{0}

1B(x)

|x|
dλ(x)

=

∫
B

dλ(x)

|x|
,

where B ∈ BR∗ .

It remains, of course, to check that this alternative method indeed yields the

same measure as above. For Borel sets of a very special kind, this is verified

easily by using elementary calculus to explicitly compute the Lebesgue integral

(as a Riemann integral): more precisely, if B is an interval [a, b) with 0 <

a < b, the second method yields λ̃×(B) =
∫ b
a

dx
x

= log(b) − log(a), which

is the same result provided by the earlier definition: λ×(B) = λ(log(B)) =

λ([log(a), log(b)) = log(b) − log(a). It is then easy to see that λ× and λ̃×

agree on the collection of all intervals [a, b) with ab > 0, at which point one

may use 3.18 since this collection is certainly a semiring which generates the

Borel-σ-algebra of BR∗ . �

8.25. Remark. It is not uncommon to find the notation ‘d×x’ in reference to

the measure which we have opted to denote by λ×. (Cf. also 6.30.(1).) For the
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sake of clarity authors may then also use the analogous notation ‘d+ x’ for the

“additive” Haar measure (i.e. simply Lebesgue measure λ), and explain the

relationship between the two by means of an equality such as: d×x = d+x
|x| . �

8.26. Example. We now consider the circle group T introduced in 1.2.(2) and

set out to determine its Haar measure.

The strategy used in [Bourbaki, Chapter VII, §1, no. 2, Example 3)] takes

advantage of the properties of the map q : R→ T given by x 7→ e2πix. (We can

regard q as the composition of the canonical quotient map π : R → R/Z (cf.

1.15.(iii)) with the isomorphism R/Z ∼= T from 1.17.(3).) Indeed, let f belong

to Cc(T;R)—then f ◦ q is a continuous function on R, and as such, integrable

(with respect to Lebesgue measure λ) over any interval I ⊂ R. But f ◦ q is

also periodic, with (f ◦ q)(x + 1) = (f ◦ q)(x) for all x ∈ R; accordingly, for

any interval I ⊂ R of length 1, the integral
∫
I
(f ◦ q) dλ yields the same value

(independently of the choice of I). It is readily seen that f 7→
∫
I
(f ◦ q) dλ

defines a Haar integral on T and hence, by 7.28, a Haar measure µ on T.

As is often the case, µ has an alternative description. To see this, let us choose

once and for all I = [0, 1] ⊂ R, and let us agree to henceforth denote the

restriction of λ to I (more precisely: to BI , cf. footnote 21) again just by λ,

and the restriction of q to I again just by q. Now consider the pushforward q∗λ

of λ along q (cf. E.13), which is a measure on (T,BT). By a standard result on

integrals with respect to pushforward measures (see e.g. [Cohn, Prop. 2.6.5]),

a measurable complex-valued function f on T is integrable with respect to q∗λ

if and only if f ◦ q is integrable with respect to λ, in which case∫
T
f dq∗λ =

∫
I

(f ◦ q) dλ .

But, by compactness of I, any continuous function on I is (Riemann-, hence

Lebesgue-)integrable. It follows that, if f ∈ Cc(T;R), then f is integrable with

respect to q∗λ, and the integral is given by
∫
I
(f ◦ q) dλ, which in turn, by the

definition of µ, is precisely
∫
T f dµ. We now want to conclude that q∗λ and µ

are one and the same.

To that end, observe first that q∗λ is finite on compact sets of T. Next, note

that T is surely second-countable (being a subspace of the second-countable

space C ∼= R2). Then, by 7.26, q∗λ is a Radon measure on T; the uniqueness
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part of the Riesz Representation Theorem 7.22 now tells us that µ is none

other than q∗λ, as desired.

As an application of this alternative description, let A ⊆ T be a connected

arc—then µ(A) = λ(q−1(A)), which, as is readily seen, is just α
2π

, where α is

the length of A in the usual sense, i.e. the size of the angle subtended by A

expressed in radians. In particular, µ(T) = 1. (In all fairness, though, this was

also evident from the previous description.) It is then easy to see that, upon

denoting by ϕ the usual isomorphism R/Z→ T, the Haar measures µ (on T)

and λ̇ (on R/Z) from 8.12 correspond to each other as per the statement of

8.15. �

8.27. Example. Building on the previous examples, we may now provide two

ways to determine Haar measure on the multiplicative group C∗. One method

is similar to the (second) one seen in 8.24: first, one establishes that the “ad-

ditive” Haar measure on C (which, modulo the isomorphism C ∼= R2, is just

2-dimensional Lebesgue measure λ2, as seen in 8.22) has the property that

λ2(zB) = |z|2λ2(B) for every complex number z and every Borel set B, from

which one concludes that

f 7→
∫
C\{0}

f(z)
dλ2(z)

|z|2

defines a Haar integral on C∗. (Cf. also [Folland, Chapter 11, Exercise 4a,

p. 347].)

The other method, which is essentially identical to that of [Bourbaki, Chap-

ter VII, §1, no. 5, Example 2)], takes advantage of polar coordinates. Recall

that every nonzero complex number z can be written as reiϑ for a unique pos-

itive real number r and a real number ϑ ∈ R, unique up to integral multiples

of 2π. If we identify the quotient group R/2πZ with the circle group T (via

ϑ + 2πZ 7→ eiϑ), then we conclude that there is a bijection between C∗ and

R>0 × T, given (in the forward direction) by z 7→ ϕ(z) :=
(
|z|, z|z|

)
. But it is

easily checked that this bijection is even an isomorphism of topological groups,

hence, by combining 8.4, 8.24 and the considerations in 8.26, we obtain that a
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Haar integral on C∗ is given by

f 7→
∫ ∞

0

∫ 2π

0

f(reiϑ) dλ(ϑ) dλ×(r)

=

∫ ∞
0

∫ 2π

0

f(reiϑ) dλ(ϑ)
dλ(r)

r
.

Standard transformation formulae for polar coordinates (as can be found e.g. in

[Folland2, Thm. 2.49]) show that the two integrals we have considered actually

agree for any f ∈ Cc(C∗;R). The corresponding Haar measure is given by

B 7→
∫
B

dλ2(z)

|z|2
=

∫∫
ϕ(B)

dλ(ϑ) dλ(r)

r
, B ∈ BC∗ .

(This follows, as in 8.22, from [Folland2, Chapter 7, Exercise 9, p. 220].) �

8.28. The attentive reader might have noticed that we have now discussed at

least one way to compute Haar measure for each of the groups listed in items

(1) and (2) of our earlier list 2.6 of locally compact groups. (In fact, we have

also covered item (4), that is, discrete groups.) The next natural step would

thus be to provide Haar measure for item (3), i.e. for Lie groups. We shall not go

into details here, since we don’t assume familiarity with differential geometry;

let us simply mention for the initiated that left [right] Haar measures µ on

a real Lie group G can be obtained from left- [right-]invariant volume forms

(i.e.: top-degree differential forms) ω on G: more precisely, G affords such an

ω, and for every such ω which is additionally positive with respect to a chosen

orientation on G, there exists a µ such that integrating against ω is the same as

integrating with respect to µ. Details can be found in [Knapp], esp. Thm. 8.21.

Fortunately, for many Lie groups which happen to be matrix groups, one

can determine left and right Haar measures without resorting to the afore-

mentioned result, s. e.g. [Folland2, Chapter 11, Exercises 3–4, p. 347]. As an

example, consider G = GLn(R), the group of invertible n × n-matrices with

real entries. Since n×n-matrices with entries in R may be identified with vec-

tors in Rn2
(simply by rearranging the entries into a single column), one can

also regard G as a subset of Rn2
. Modulo this identification, G is in fact the

complement in Rn2
of the vanishing set of the polynomial (hence: continuous)

map which sends a matrix A to its determinant detA ∈ R. It follows that G is
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open in Rn2
. If we now let λn

2
denote Lebesgue measure on Rn2

(as in 8.22),

then the aforementioned exercises in Folland’s book tell us that

f 7→
∫
G

f(g)
dλn

2
(g)

|det g|n

is a bi-invariant Haar integral on G; applying once again [Folland2, Chapter 7,

Exercise 9, p. 220], we conclude that the corresponding Haar measure is the

map sending B ∈ BG to
∫
B

dλn
2
(g)

|det g|n .

8.3 Bi-invariance and the modular function

So far, our discussions of left and right Haar measures have taken place paral-

lelly to one another: every result which can be proved for left Haar measures

also has a “mirror version” (less figuratively: a counterpart for right Haar

measures) which can be proved with entirely analogous methods, and we often

only carry out the proof in the former case (with notable exceptions, such as

5.16 and 7.19, where one case was used to prove the other by exploiting the

natural bijection between left and right Haar measures first seen in 4.20). In

this subsection, we will explore the intersection of these two worlds; in other

words, we will tackle the question of determining when left Haar measures are

also right-invariant (or viceversa). The key to our discussion will be expressing

left- and right-invariance in a slightly new way (with the help of 8.20).

8.29. To start things off, recall the notation f∗µ used in the latter part of

§8.1 for the pushforward of a measure µ along a measurable function f . It

costs little effort to recognize that a nonzero Radon measure µ on a locally

compact group G is a left Haar measure if and only (lg)∗µ is equal to µ for all

g ∈ G; analogously, µ is a right Haar measure if and only if (rg)∗µ = µ for all

g ∈ G. More importantly, if we fix a left Haar measure µ on G and we apply

8.20 with H = G and ϕ equal to a right translation map rg for some g ∈ G
(cf. 8.21.(2)), then we obtain a new left Haar measure ν = (rg

−1
)∗µ on G, and

by the above, µ is bi-invariant if and only if (rg
−1

)∗µ = µ for all g ∈ G. As it

turns out, this characterization is quite fruitful when it comes to tackling the

general problem of finding groups which possess bi-invariant Haar measure.

Having provided some motivation, let us now attempt a more systematic
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treatment. First, we state the following result, which can be obtained essen-

tially by combining 8.20 (with H = G) and 7.1.

8.30. Proposition. Let G be a locally compact group and let ϕ : G → G be

a homoeomorphism onto an open subspace ϕ(G) ⊆ G with the property that

ϕ(gx) = γ(g)ϕ(x) for all x ∈ G (ϕ-γ)

for a suitable γ : G → G. Then there exists a positive real number c = c(ϕ)

such that, for every left Haar measure µ on G,

µ(ϕ(B)) = cµ(B) for all B ∈ BG.

8.31. Remark. Observe that the scalar c can be seen as a way of quantifying

how much ϕ “dilates” (or “shrinks”) subsets of G in terms of (any) Haar

measure on G. This is made even more apparent by the following example: let

G denote the additive group of the reals, and ϕ : G→ G be given by x 7→ ax for

some nonzero real number a. Then ϕ is a topological group isomorphism, hence

satisfies (ϕ-γ) with γ = ϕ (cf. 8.21.(2)), and we have already seen (in 8.24)

that the conclusion of the statement holds (for µ equal to Lebesgue measure

λ) with c equal to the absolute value |a| of a.

Keeping in mind that the absolute value of a real number is also sometimes

called its modulus, it is perhaps not surprising that the following terminology

has entered common use. �

8.32. Let G and ϕ be as in the above statement. The scalar c = c(ϕ) provided

by 8.30 is called the modulus31 of the homoeomorphism ϕ and denoted by

modG(ϕ) or simply mod(ϕ).

Proof of 8.30. Fix a left Haar measure µ0 on G, and let µ1 denote the measure

B 7→ µ0(ϕ(B)) on (G,BG). Then µ1 is a left Haar measure on G by 8.20.

Because both µ0 and µ1 are left Haar measures on G, there exists a positive

real number c such that µ1 = cµ0 by 7.1. We claim that this scalar c has the

required property.

31Some authors use “module”.
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Indeed, let µ be any left Haar measure on G. Then 7.1 guarantees that

µ = Cµ0 for a suitable positive real number C. But then, for every B ∈ BG,

µ(ϕ(B)) = Cµ0(ϕ(B))

= Ccµ0(B) = cµ(B),

as desired.

8.33. Recap. The example from 8.31 can now be rephrased as follows: for

G = (R,+) and ϕ of the form x 7→ ax, where a ∈ R∗, one has mod(ϕ) = |a|.
Similarly, it follows from the contents of 8.27 that, for G = (C,+) and ϕ of

the form w 7→ zw, where z ∈ C∗, one has mod(ϕ) = |z|2.

For a general locally compact group G, we have already seen that mod(lg) =

1 for every g ∈ G—recall that the modulus is defined relative to left Haar

measure!—and that G has a bi-invariant Haar measure (i.e., satisfies the equiv-

alent conditions of 7.20) if and only if mod(rg) = 1 for all g ∈ G.

8.34. Our latest observation suggests that, to determine whether a locally

compact group G possesses bi-invariant Haar measures, one could study the

map G→ R>0 sending g 7→ mod(rg). In this note, this map will be denoted by

∆G and called the modular function of the group G. Unravelling the definition,

this means that the modular function is the unique map G→ R>0 satisfying

µ(Bg) = ∆G(g)µ(B) (∆)

whenever µ is a left Haar measure on G, B is a Borel subset of G and g ∈ G;

in particular, if one fixes a Borel subset B which satisfies 0 < µ(B) <∞, then

∆G(g) can be expressed (and even defined) as the ratio µ(Bg)/µ(B) for every

g ∈ G. (Observe that these assumptions are automatically satisfied if B is, say,

a compact subset of G with non-empty interior, by 4.21.(i).)

8.35. Remarks on terminology.

(1) The phrase “modular function” is also commonly used to refer to certain

functions of a complex variable which transform in a certain peculiar way

under certain discrete groups of automorphisms of C. The two notions

are entirely unrelated.
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(2) Some authors (such as [Wallach] and [Knapp]) use the term “modular

function” to refer to the function which, in our notation, would be de-

noted by

g 7→ ∆G(g−1) = ∆G(g)−1.

(The equality will follow from 8.36.(i) below.) Unfortunately, the term

is often thrown around without an accompanying remark or formula

which might disambiguate the meaning right away; it would seem that

many authors are not even aware that two different conventions exist.

An egregious example is provided by the entry for “Haar measure” in the

online Encyclopedia of Mathematics:32 in the former half of the article,

the modular function is defined in the same way as in this note (to see

this, cf. also 8.36 below), whereas in the latter half, where the discussion

is specialized to Lie groups, the opposite convention is used. �

Here are a couple of fundamental properties of the modular function.

8.36. Proposition. Let G be a locally compact group, and let ∆G denote the

modular function of G as per 8.34. Then the following hold.

(i) ∆G : G→ R>0 is a group homomorphism.

(ii) ∆G is continuous.

(iii) For every left Haar measure µ on G and every f : G → C which is

integrable with respect to µ,∫
G

f(xg) dµ(x) = ∆G(g)−1

∫
G

f(x) dµ(x) for all g ∈ G.

(iv) For every left Haar measure µ on G and every f : G → C which is

integrable with respect to the right Haar measure µ∨ (cf. 4.20.(1)),∫
G

f(x−1) dµ(x) =

∫
G

f(x) dµ∨(x)

=

∫
G

f(x)∆G(x)−1 dµ(x)

(in particular, all integrals in question are indeed defined).

32https://encyclopediaofmath.org/wiki/Haar_measure.
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Proof. To prove the first claim, observe first that, if ϕ, ψ are homoeomorphisms

G→ G which satisfy the equation (ϕ-γ) from 8.30 for suitable functions γ, γ′

respectively, then ϕ ◦ ψ has the same property (for γ ◦ γ′) and mod(ϕ ◦ ψ) =

mod(ϕ) mod(ψ). In particular, ∆G(gh) = mod(rgh) = mod(rh) mod(rg) =

∆G(g)∆G(h) (recall that R>0 is commutative!), and the claim is proved.

Now we establish continuity of ∆G, following the argument given in SE668827.

By (i) and E.5, it suffices to prove that ∆G is continuous at the neutral element

e, i.e. that for every ε > 0 there exists a neighbourhood W of e such that

∆G(g) ∈ (1− ε, 1 + ε) for all g ∈ W .

Thus, fix a left Haar measure µ on G and an ε > 0; additionally, fix a

compact set K ⊆ G with non-empty interior. Then, by outer regularity of µ,

there exists an open set U ⊇ K such that µ(U) < (1 + ε)µ(K). By 5.15, there

also exists a neighbourhood V of e such that KV ⊆ U ; then, for g ∈ V , we have

∆G(g) = µ(Kg)/µ(K) ≤ µ(U)/µ(K) < 1 + ε using 8.34 and the monotonicity

of µ. On the other hand, if h ∈ V −1, then K ⊆ Uh, so

∆G(h) =
µ(Uh)

µ(U)
≥ µ(K)

µ(U)
≥ 1

1 + ε
> 1− ε

(again using 8.34 and monotonicity.) Thus, W = V ∩V −1 has the sought-after

properties, and this concludes the proof of (ii).

The third claim may be proved “in stages” like 7.12, so we omit the details. To

understand the appearance of the inverse −1, observe that, if f is an indicator

function 1B (and g ∈ G), then f ◦ rg = 1Bg−1 , so∫
G

f(xg) dµ(x) = µ(Bg−1) = ∆G(g)−1µ(B) = ∆G(g)−1

∫
G

f dµ .

We now turn to the final claim (iv). Part of it is settled by the following

8.37. Lemma. Let G be a locally compact group, µ be a left [right] Haar

measure, and f be a [Borel-measurable] complex-valued function on G. Then

f is integrable with respect to the right [left] Haar measure µ∨ if and only if

the function x 7→ f(x−1) is integrable with respect to µ, in which case∫
G

f(x) dµ∨(x) =

∫
G

f(x−1) dµ(x) .
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Proof of the lemma. As was the case for (iii), one may again proceed as in the

proof of 7.12: start with simple functions, . . .

To conclude the proof of the claim, fix first of all a left Haar measure µ.

If f ∈ Cc(G;R), then x 7→ f(x)∆G(x−1) is again a continuous compactly-

supported function on G (use (ii)) and hence (by 7.7) integrable with respect to

any fixed left Haar measure on G. Thus, we may define a map I : Cc(G;R)→ R
by assigning, to f ∈ Cc(G;R), the real number I(f) =

∫
G
f(x)∆G(x−1) dµ(x).

It is immediate that I is a nonzero positive linear functional on Cc(G;R). We

shall now show that I is a right Haar integral: to that end, pick f ∈ Cc(G;R)

and g ∈ G, and let h denote the function x 7→ f(x)∆G(gx−1)—then, by (iii),∫
G

f(xg)∆G(x−1) dµ(x) =

∫
G

h(xg) dµ(x)

=

∫
G

h(x)∆G(g−1) dµ(x)

=

∫
G

f(x)∆G(x−1) dµ(x)

(where we used (i) in the last step to simplify), proving I(f ◦ rg) = I(f), as

required. By 7.28, I defines a right Haar measure ν on G; for B ∈ BG, we have

ν(B) =

∫
B

∆G(x−1) dµ(x) (ν(B))

by [Folland2, Chapter 7, Exercise 9, p. 220].

Now, by 7.19, ν is a multiple cµ∨ of µ∨. Thus, all it remains to show is

that ν = µ∨, i.e.: c = 1. We argue by contradiction, following [Folland2,

Prop. 11.14].

Thus, suppose that c 6= 1. Then ε := 1
2
|c− 1| > 0. Because ∆G is continuous,

the same is true of x 7→ ∆G(x)−1, so in particular there exists a neighbourhood

U of e such that |∆G(x)−1 − 1| < ε for all x ∈ U . For such a neighbourhood
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U , we find that

|ν(U)− µ(U)| =
∣∣∣∣∫
U

∆G(x)−1 dµ(x)−
∫
U

1 dµ

∣∣∣∣
=

∣∣∣∣∫
U

(
∆G(x)−1 − 1

)
dµ(x)

∣∣∣∣
≤
∫
U

∣∣∆G(x)−1 − 1
∣∣ dµ(x)

<

∫
U

ε dµ =
1

2
|c− 1|µ(U).

(This computation uses fundamental properties of the integral, (ν(B)), and

6.29.)

Now recall that every neighbourhood of e contains a symmetric neighbour-

hood of e (1.14); thus, we may even choose U to be symmetric in the above

discussion. But if U is symmetric then µ(U) = µ∨(U), so the left-hand side of

the above computation is also equal to

|ν(U)− µ(U)| = |cµ∨(U)− µ(U)|
= |cµ(U)− µ(U)|
= |c− 1|µ(U).

Together with the previous computation, this yields the sought-after contra-

diction to our assumption that |c− 1| is strictly positive.

For the sake of completeness, we record how the above findings translate into

assertions about the “opposite modular function”, i.e. the map g 7→ ∆G(g−1) =

∆G(g)−1 which some authors call “the” modular function (see 8.35.(2)).

8.38. Corollary. Let G be a locally compact group, and let δG denote the

map g 7→ ∆G(g−1) = ∆G(g)−1, with ∆G as in 8.34. Then the following hold.

(i) δG is the unique map G→ R>0 satisfying

ν(gB) = δG(g)ν(B) (δ)

whenever ν is a right Haar measure on G, B is a Borel subset of G and

g ∈ G.

(ii) δG is a continuous group homomorphism from G to R>0.
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(iii) For every right Haar measure ν on G and every f : G → C which is

integrable with respect to ν,∫
G

f(gx) dν(x) = δG(g)−1

∫
G

f(x) dν(x) for all g ∈ G.

(iv) For every right Haar measure ν on G and every f : G → C which is

integrable with respect to the left Haar measure ν∨ (cf. 4.20.(1)),∫
G

f(x−1) dν(x) =

∫
G

f(x)δG(x)−1 dν(x)

(in particular, both integrals in question are indeed defined).

Sketch of proof. The equality (δ) follows immediately from (∆) (from 8.34)

upon passing to the left Haar measure µ := ν∨ (recall 4.20.(1)).

The assertion about δG being a group homomorphism follows immediately

from 8.36.(i) since R>0 is abelian. Continuity of δG is clear from continuity of

∆G (8.36.(ii)) together with continuity of the inversion map g 7→ g−1.

The third claim (iii) can easily be derived from 8.36.(iii) with the help of 8.37:∫
G

f(gx) dν(x) =

∫
G

f(x−1g−1) dν∨(x)

= ∆G(g−1)−1

∫
G

f(x−1) dν∨(x)

= δG(g)−1

∫
G

f(x) dν(x) .

Finally, (iv) follows essentially from 8.36.(iv), again with the help of 8.37.

Indeed, let f be as in the statement, and consider the auxiliary function

h : G→ C given by h(x) := f(x)∆G(x) for x ∈ G. Then:∫
G

f(x)δG(x)−1 dν(x) =

∫
G

h(x) dν(x)

=

∫
G

h(x−1) dν∨(x)

=

∫
G

h(x)∆G(x)−1 dν∨(x)

=

∫
G

h(x−1)∆G(x) dν(x)

=

∫
G

f(x−1) dν(x) ,
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as claimed.

We may now conclude the section with the application we have been striving

towards all along: finding bi-invariant Haar measures (or rather, groups which

possess them).

8.39. A locally compact group G is unimodular if it has a bi-invariant Haar

measure, or equivalently, if its modular function ∆G is identically 1.

8.40. Remark. The term “unimodular” is used in several different contexts

with the same basic meaning of “having modulus equal to 1”—for instance, a

unimodular number is a (complex) number of absolute value, and a unimodular

matrix is a matrix of determinant 1. In a slight extension of this latter usage,

some authors use the term ‘unimodular group’ to refer to the group of n× n–

matrices of determinant 1 (for some n, and with entries in some ring R). To

avoid confusion, this group will be called the special linear group instead in

this note and denoted accordingly by SLn(R). �

8.41. Examples.

(1) It has already been noted several times that every (locally compact)

abelian group is necessarily unimodular.

(2) All discrete groups are unimodular in light of 4.19.

(3) Our result 8.4 concerning Haar measures on products readily implies

that any finite product of unimodular locally compact groups is again

unimodular. Similarly, it follows from 8.1 and its proof that an open33

subgroup of a unimodular group is again unimodular. (A different proof

of this can be found e.g. in [Kallman, Lemma 5].)

To obtain more interesting (classes of) examples, we will have to put in

more work. As the first entirely nontrivial consequence of the introduction of

the modular function, we have the following:

(4) Every compact [Hausdorff] group is unimodular.

We shall provide two proofs for this fact.

33By contrast, general subgroups of unimodular subgroups need not be unimodular, cf.

also 8.42 below.
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Proof n. 1. (As in [Folland2, Prop. 11.13].) We start with a compact Hausdorff

group G and with the observation that, for all g ∈ G, the right translate

Gg = rg(G) is simply G. Now let µ be a left Haar measure on G—then 0 <

µ(G) < ∞, e.g. by 4.21.(iii), so 8.34 implies that ∆G(g) = µ(Gg)
µ(G)

= µ(G)
µ(G)

= 1

for all g ∈ G, i.e. that ∆G is identically 1, proving the claim.

Proof n. 2. We shall now show more generally that, if K is a compact subgroup

of a locally compact group G, then ∆G(K) = {1}.
First, recall from 8.36 that ∆G is a continuous group homomorphism G →

R>0. Since K is a compact subgroup of G, it follows that ∆G(K) is a compact

subgroup of R>0. But the only compact subgroup of R>0 is, in fact, the trivial

subgroup {1}.34

Before we can state the next item, we shall need a bit of preparation. To

fix notation, let G be any locally compact group. Since ∆G has values in the

abelian group R>0, clearly ∆G(x) = 1 whenever x ∈ G is a commutator, i.e. an

element of the form [g, h] := ghg−1h−1 for some g, h ∈ G. It follows that ∆G

is certainly identically 1 on the subgroup generated by all the commutators.

In abstract group theory, the subgroup we just mentioned is known as the

commutator subgroup (or derived subgroup) of G and often denoted by [G,G].

For topological groups, however, it makes more sense to define the commu-

tator subgroup [G,G] to be the smallest closed subgroup which contains all

commutators, as in [Folland2, p. 346]. (Of course, the two definitions agree

for discrete groups.) For the sake of clarity, we may denote the commutator

subgroup according to the first (purely algebraic) definition as [G,G]alg, and

reserve the unadorned notation [G,G] for the subgroup yielded by the second

definition.

With this notational convention, it follows from 1.18.(i) that [G,G] is the clo-

sure in G of [G,G]alg. Because ∆G is continuous and identically 1 on [G,G]alg,

we deduce that it is even identically 1 on all of [G,G]. Hence:

(5) Any locally compact group G satisfying G = [G,G] = [G,G]alg is uni-

modular. For instance, the group G = SLn(R) (cf. 8.40) is unimodular

(for every n ≥ 1) since G = [G,G]alg, see e.g. SE2372936.

34If H is a nontrivial subgroup of R>0, then H contains some x 6= 1, and with it, all of

xZ = {xn : n ∈ Z}, which is unbounded, so H cannot be compact.
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(6) More generally, [Folland2, Prop. 11.12] shows that G is unimodular if

[G,G] is of finite index in G.

(7) Also generalizing the example of SLn(R) from (5), it holds ([Knapp,

Cor. 8.31]) that every semisimple Lie group and in fact every reductive

Lie group35 is unimodular.

To prove the claim for (connected) semisimple groups, one exploits commu-

tators as in the previous items—but this time, at the level of Lie algebras, see

e.g. ([Knapp, Lemma 4.28])—to show that every continuous group homomor-

phism G → C∗ has to be identically 1. This result is then used to prove the

claim for reductive Lie groups.

(8) The general linear group GLn(R) is unimodular (for every n ≥ 1).

This was mentioned at the very end of the previous subsection; it also follows

from (7) since GLn(R) is a reductive Lie group. (On the other hand, G =

GLn(R) does not fall in any of the other categories from the previous items: it

is neither abelian (for n > 1), nor discrete, nor compact, nor semisimple, and its

commutator subgroup [G,G] = SLn(R) is not of finite index.) Unimodularity

of GLn(R) can also be derived from that of SLn(R) as follows ([Nachbin, p.

92f.]): first, if GL+
n (R) denotes the subgroup of GLn(R) consisting of matrices

of positive determinant, then GL+
n (R) ∼= R>0×SLn(R) and is hence unimodular

by item (3) above (since R>0 is abelian). One then uses the fact that GL+
n (R) ⊂

GLn(R) is a closed normal subgroup of finite index36 to conclude that GLn(R)

must itself be unimodular (e.g., by applying [Nachbin, Chapter II, Prop. 23]

to G = GLn(R), H = GL+
n (R) and K = G/H, cf. also 1.15).

As a final class of examples, of a slightly different flavour, we have:

(9) (SE323017) Suppose that a locally compact group G is nilpotent, i.e. has

a finite central series. Then G is unimodular. �

35The notion of a reductive Lie group varies from author to author. In the reference we

have given, the claim is proved for Lie groups which are reductive in the sense of [Knapp,

§VII.2].
36More precisely, the index is two: there are two cosets, corresponding to matrices of

positive [resp., negative] sign.
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8.42. Non-example. The standard example of a locally compact group which

is not unimodular is given by the group{(
x y

0 1

)
: x ∈ R>0, y ∈ R

}
⊂ GL2(R),

see e.g. [Folland2, Chapter 11, Exercise 4d]. Since GL2(R) is unimodular by

8.41.(8) above, this example also shows that subgroups of unimodular groups

need not be unimodular themselves. �

Let us record a final characterization of unimodularity for the sake of com-

pleteness:

8.43. Proposition. A locally compact group G is unimodular if and only if,

for every left [right] Haar measure µ on G, the corresponding right [left] Haar

measure µ∨ (cf. 4.20.(1)) is equal to µ.

Proof. Sufficiency is obvious: if µ∨ = µ for some left [right] Haar measure µ

on G, then µ is bi-invariant, hence G is unimodular. As for necessity, we shall

first prove the statement for an arbitrary left Haar measure µ. Accordingly,

pick such a µ, and consider µ∨. Since we now assume G to be unimodular, µ∨

is proportional to µ by 7.1; let c denote the scaling factor.

Now let K be a compact neighbourhood of e in G. By 1.14.(i), K contains

a symmetric open neighbourhood U of e; by 4.21.(i), monotonicity of µ and

finiteness of µ on compact sets, we infer that 0 < µ(U) < ∞. On the other

hand, µ∨(U) = µ(U−1) = µ(U) since U is symmetric. But then the propor-

tionality relation µ∨(U) = cµ(U) can only hold if c = 1, and the claim follows.

The proof for a right Haar measure ν is, of course, entirely analogous; alter-

natively, one may write ν = µ∨ for a left Haar measure µ (by 4.20) and use

the above argument to conclude that µ = µ∨ = ν; but by 4.4, µ = ν∨, so in

conclusion ν = ν∨, as desired.

8.4 Compact groups

In this final subsection, we specialize to those (topological) groups within the

realm of locally compact groups which are additionally compact. Strictly speak-

ing, these are (precisely) the compact Hausdorff topological groups, but follow-

ing a convention similar to the one adopted in 2.5, we shall just refer to them
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as compact groups. (Thus, our usage will be the same as in [SWarner] and

[Bourbaki].)

First of all, for compact groups the main theorems of existence and unique-

ness of Haar measure take on the following form.

8.44. Theorem. Let K be a compact group. Then there exists precisely one

bi-invariant Radon measure µ on K such that µ(K) = 1. Every nonzero left-

or right-invariant Radon measure ν on K is proportional to µ in the sense that

there exists a positive real number c such that ν(B) = cµ(B) for all B ∈ BK.

Proof. By the convention laid out at the beginning of the subsection, K is

a locally compact group (cf. 2.6.(5)); by what was proved in 8.41.(4), K is

unimodular. It follows that there exists a bi-invariant Haar measure µ̃ on K.

We know that 0 < µ̃(K) < ∞ (because µ̃ is nonzero and finite on compact

sets), so we may scale µ̃ by the positive real number 1
µ̃(K)

, thus obtaining a

new bi-invariant Haar measure µ on K such that µ(K) = 1. The last claim

follows from 7.1 (recalling also unimodularity of K).

8.45. Remark. While we derived 8.44 above from the earlier results on general

locally compact groups, it turns out that this is not necessary: the result can

actually be proved independently in the special case of compact groups, as is

done e.g. in [Joys, Chapter 5]. �

8.46. For a compact group K, the unique measure µ mentioned in 8.44 is often

called normalized Haar measure on K. An integral over a compact group K

where the differential is denoted by dk or similar expressions (cf. 6.30.(1)) is

almost always to be understood as an integral with respect to normalized Haar

measure µ on K; in our notation, “dk” would be denoted less ambiguously by

‘dµ(k)’.

8.47. Examples.

(1) The measure λ̇ from 8.12 is normalized Haar measure on the compact

group R/Z.

(2) Consider the compact group T (the circle group from 1.2.(2)). Then

normalized Haar measure on T is precisely the µ constructed in 8.26.
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(3) Let G be a finite group (equipped with the discrete topology). Then G

is compact, and normalized Haar measure on G is given by

µ(A) =
#A

#G
, A ⊆ G,

where #X denotes cardinality of the finite set X. In other words, nor-

malized Haar measure on a finite group is counting measure divided by

the cardinality of the group. �

8.48. Recall that, in contrast with locally compact groups, products of com-

pact [Hausdorff] groups are always again compact [Hausdorff] regardless of the

“number” of factors.37 It is then natural to ask whether, for compact groups,

our earlier result 8.4 concerning Haar measures on finite products can be ex-

tended to infinite products.

As usual, the major technical problems come from the measure-theoretic

side. To prove our earlier result, we (implicitly) leaned on the notion of the

Radon product of two Radon measures (see 8.5); the challenge now lies in

extending the scope of this notion to arbitrary products (under the additional

assumption that all factors are compact). This is accomplished e.g. in [Folland2,

Thm. 7.28], to which we refer for details; in this note, we shall content ourselves

with restating the result in our special context of Haar measures.

8.49. Proposition. Let K be a compact group which can be written as a

product
∏

i∈I Ki for compact groups Ki, i ∈ I, with I an arbitrary index set.

For each i ∈ I, let µi denote normalized Haar measure on Ki. Then normalized

Haar measure on K is the unique Radon measure µ on K such that µ(K) = 1

and such that,

• for every finite subset J ⊆ I,

• every ordering J = {i1, . . . , ir} of the elements of J ,

• and every Borel subset E ⊆
∏r

j=1Kij ,

the set

E∗ = {k = (ki)i∈I : (ki1 , . . . , kir) ∈ E} ∈ BK

has measure µ(E∗) = (µi1 × · · · × µir)(E).

37This is, of course, Tychonoff’s theorem, reliant on the axiom of choice.
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(As was mentioned above, the bulk of the proof is [Folland2, Thm. 7.28].)

8.50. Remark. Resume the notations of the above statement, and pick a Borel

subset E ⊆ K which is of the form
∏

i∈I Ei for Borel subsets Ei ⊆ Ki, with

equality Ei = Ki for all but at most finitely many i ∈ I. Then

µ(E) =
∏
i∈I

µi(Ei)

(where the product on the right-hand side converges since only at most finitely

many factors are allowed to be 6= 1). In analogy with the case of finite products

(cf. 8.8), we have that, if all Ki are second-countable and the index set I is

countable (so that K is itself second-countable), then µ is the unique measure

with the property described immediately above. �

As an application of the proposition, we compute normalized Haar measure

on our paradigmatic profinite group AN, first introduced in 2.11.

8.51. Example. Let A be a finite abelian group equipped with the discrete

topology, and set K := AN (equipped with the product topology, cf. 2.11).

Then the assumptions of the proposition are met (with I = N and Ki = A for

all i ∈ I). It follows from 8.50 that, if µ denotes normalized Haar measure on

G and µ0 denotes normalized Haar measure on A, then µ(
∏

iEi) =
∏

i µ0(Ei)

whenever Ei, i ∈ I, are subsets of A such that all but finitely many of them are

equal to A. Combining this with the explicit description of µ0 from 8.47.(3),

we can then compute µ(E) for several subsets E ⊆ K of interest.

As a baby example, consider e.g. the set B = {(an)n∈N ∈ K : a0 = 0} ⊂ K.

By the above, its measure is given by

µ(B) =
1

#A
· 1 · 1 · · · = 1

#A
.

More generally, if (b0, . . . , bm−1) is a finite sequence of elements of A, then

B′ = {(an)n∈N ∈ K : ai = bi for i = 0, . . . ,m− 1} ⊂ K (*)

is a Borel set with measure given by (#A)−m. This computation is especially

useful in view of the fact that every open ball in K of radius r ≤ 1 is of the

form (*) for a unique finite sequence (b0, . . . , bm−1) of elements of A, as seen

122



in E.8. One then concludes that every open ball of radius r = 2−m (m ≥ 0) in

K has normalized Haar measure equal to (#A)−(m+1).

Knowing the measure of all open balls is sufficient, at least in theory, to

compute the Haar measure of any Borel subset of K. Indeed, let E ∈ BK .

Then, for every ε > 0, there exists an open set U ⊇ E with µ(U) ≤ µ(E) + ε

(by outer regularity of µ). From the explicit description of the open balls in K

(again, see E.8), we know that the collection of open balls in K is countable,

so U can be written as a countable union of open balls in K. But the same

exercise also tells us that any two open balls in K are either disjoint or one is

contained in the other; it follows that U can actually be written as a disjoint

union
⋃
j∈J Bj of open balls in K, where the index set J is at most countable.

But then µ(U) =
∑

j∈J µ(Bj) by countable—or even finite—additivity.

Let us conclude by mentioning in passing that the measures of open balls can

also be determined without resorting to 8.49. Indeed, let B ⊆ K be an open

ball of some radius r ≤ 1—by the explicit form of the metric on K, we may

and shall assume that r is the reciprocal of an integral power of 2, say r = 2−m.

For k ∈ K, the translate k + B of B by k is again an open ball of radius r in

K. One readily checks that there are precisely (#A)m+1 distinct translates of

B; that they are all disjoint; and that they cover K. Since µ(K) = 1, finite

additivity forces µ(B) = (#A)−(m+1), as we saw above. �

In the next chapter, we shall use the above example to determine normalized

Haar measure on the ring FJxK of formal power series in one variable with

coefficients in a finite field F (cf. the preliminaries), which will be one of our

main examples of topological rings and, most importantly, will accompany us

throughout our discussion of locally compact fields.
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E Exercises

E.1. Exercise. Consider the additive group of the reals, and consider the

topology on R generated by the half-open intervals [a, b). Prove:

(a) the map

µ : R× R→ R,
(x, y) 7→ x+ y,

is continuous (the domain being equipped with the product topology),

but

(b) the inversion map

ν : R→ R,
x 7→ −x,

is not continuous.

E.2. Exercise. Prove 1.16, whose statement is reproduced below for conve-

nience.

Let G be a group and let a topology be given on G. In order for both µG and

νG to be continuous, it is necessary and sufficient that qG = µG ◦ (idG × νG)

be continuous.

E.3. Exercise. Prove38 that (R,+) and (R2,+) are isomorphic as (abstract)

groups but not as topological groups; in other words,

(a) show that there exists a bijective group homomorphism R2 → R; and

(b) show that there exists no map R2 → R which is both a homoeomorphism

and a group homomorphism.

(In fact, R and R2 are not homoeomorphic.)

E.4. Exercise. This problem is about pointwise operations with functions;

the reader is invited to check the preliminaries for more on this topic.

38In showing the first assertion, the axiom of choice is key.



(a) Let X, Y , Z be topological spaces, and let β : Z×Y → Y be a continuous

map. Check that, if f : X → Y is continuous and z ∈ Z, then the map

X → Y sending x to β(z, f(x)) is again continuous.

(b) Resume the notationsX, Y , Z and β from the previous item, and suppose

that Z = Y . Then, if f and g are continuous maps from X to Y , then

so is the map x 7→ β(f(x), g(x)).

(c) Use (b) to show that, for any topological group (G, ·) and any topo-

logical space X, the set C(X;G) of continuous maps X → G becomes

a group—in fact, a subgroup of GX = {f : X → G}—with pointwise

multiplication.

(d) Use the previous items to show that, if K denotes either the real field R
or the field of complex numbers C, and X denotes any topological space,

then the set C(X;K) of continuous maps X → K becomes a K-linear

space—in fact, a subspace of KX—with pointwise addition and pointwise

scalar multiplication.

E.5. Exercise. A group homomorphism between topological groups is con-

tinuous if and only if it is continuous at the identity.

E.6. Exercise. Let G be a group, Σ be a family of normal subgroups which is

closed under finite intersections (e.g., a nested family). Then there is a unique

topology on G which makes G into a topological group and such that the

subgroups H ∈ Σ form a neighbourhood base around the neutral element.

Show:

(a) In this topology, each H ∈ Σ is both open and closed in G.

(b) The topology is Hausdorff if and only if
⋂
H∈ΣH is the trivial subgroup.

(c) The topology is discrete if and only if the trivial subgroup belongs to Σ.

(Hint. Cf. 1.19.(i).)

E.7. Exercise. Prove 1.21. In fact, prove the following strengthening of the

third claim: a quotient of any topological group by a closed normal subgroup

is Hausdorff.

(Hint. Use (i) of 1.19.)



E.8. Exercise. Let A be an abelian group, G = AN be as described in 2.11.

For x ∈ G and r ∈ R>0, we let Br(x) [resp., Dr(x)] denote the open [resp.,

closed ] ball of radius r with centre x, where of course we view G as equipped

with the metric d from 2.11.(i).

(a) Verify that the closed unit ball D1(x) around any point x ∈ G is equal

to all of G.

(b) Let B ⊂ G be an open ball B = Br(x) for some x ∈ G and some

0 < r ≤ 1. Then B is of the form

{(an)n∈N ∈ G : ai = bi for i = 0, . . . ,m− 1} (eq. E.8)

for a unique positive integer m and a unique finite sequence (b0, . . . , bm−1)

of elements of A.

(c) Let D ⊂ G be a closed ball Dr(x) for some x ∈ G and some 0 < r < 1.

Then D is of the form (eq. E.8) for a unique positive integer m and a

unique finite sequence (b0, . . . , bm−1) of elements of A.

(d) In fact, check that, for every x ∈ G and every r > 0, there exists a ρ > 0

such that Br(x) = Dρ(x).

(Hint. It is always possible to choose ρ ∈ {r, r
2
}.)

Conclude that G satisfies the following condition (cf. 2.11).

(ZD) Every point in G has a neighbourhood basis consisting of neighbourhoods

which are both open and closed in G.

E.9. Exercise. Let X be a topological space satisfying

(ZD) every point in X has a neighbourhood basis consisting of neighbourhoods

which are both open and closed in X.

Show that, if X is T1, then:

(TD) the only non-empty connected subsets of X are the singletons {x}, x ∈
X.

E.10. Exercise. Let A be an abelian group, G = AN be as described in 2.11.

Show that, in order for G to be locally compact, it is necessary and sufficient

that A be a finite group, and that if this is the case, then G is even compact.



E.11. Exercise. Prove 2.22.

E.12. Exercise. We adopt the following notations: for a topological space X,

let B = BX ⊆ P(X) denote the σ-algebra generated by the open subsets of

X, and let C = CX ⊆ P(X) denote the σ-algebra generated by the compact

subsets of X. Prove the following statements.

(a) If X is a finite set with at least three distinct elements, then there exists

a topology on X such that C 6⊆ B.

(b) If X is the real line with the discrete topology, then B 6⊆ C.

E.13. Exercise. Given a measure space (X,A, µ), prove the following claims.

(a) Let (Y,B) be a measurable space and f be a function X → Y . Suppose

that f is A-B-measurable, i.e. that the preimage f−1(B) lies in A for all

B ∈ B. (Cf. 6.19.) Then

ν : B → [0,∞],

B 7→ µ
(
f−1(B)

)
is a measure on (Y,B), often denoted by ν = f∗µ in the literature and

called the pushforward of µ along f .

(b) Let Y be an arbitrary subset of X, and set

Y ∩ A := {Y ∩ A : A ∈ A} ⊆ P(Y ).

Then Y ∩ A is a σ-algebra (the trace σ-algebra). If, moreover, Y ∈ A,

then Y ∩ A = {A ∈ A : A ⊆ Y } ⊆ A. In this case the restriction

ν := µ|Y ∩A is a measure on (Y, Y ∩ A).

(Hint. In both cases, we can write ν = µ ◦ Φ for a suitable Φ; indeed,

• in (a), Φ: B → A is the map B 7→ f−1(B); and

• in (b), Φ is the inclusion Y ∩ A ↪→ A.

But Φ commutes with arbitrary unions and intersections and sends ∅ to ∅.)



E.14. Exercise. (Addendum to part (a) of the previous exercise.) Let (X,A),

(Y,B) be measurable spaces, and let f : X → Y be a bijective, A-B-measurable

function with B-A-measurable inverse f−1. (Cf. E.13, 6.19.) Then every [non-

zero] measure ν on (Y,B) is of the form f∗µ for a unique [nonzero] measure µ

on (X,A), namely µ = (f−1)∗ν.

E.15. Exercise. Prove that the Borel-σ-algebra of a topological group is both

left-invariant and right-invariant.

(Hint. Recall 4.2.(2) and 6.21.(2).)

E.16. Exercise. Prove claims (i)–(iv) in 4.4.

(Remark. The first part of claim (iii) can be seen as a special case of E.13.)

E.17. Exercise. Prove that, if X is a discrete space, then counting measure on

(X,P(X)) has properties (a)–(b) from 4.7.

E.18. Exercise. Prove that, if X is a discrete space and µ denotes counting

measure on (X,P(X)), then µ is both inner regular and outer regular on all

measurable sets, i.e.,

µ(E) = sup{µ(K) : K ⊆ E compact}
= inf{µ(U) : U ⊇ E open}

for every E ⊆ X.

E.19. Exercise. Let µ be a Radon measure (as per 4.13) on a locally compact

Hausdorff space X. Let h denote the restriction of µ to K(X), the collection

of compact subsets of X, and let µ∗ : P(X) → [0,∞] be the outer measure

obtained from h by an application of 4.8. Show that µ∗ is none other than

the outer measure obtained from µ as explained in 3.4 (i.e. essentially by the

formula (out.meas.)); in particular, µ∗ agrees with µ on all Borel sets (hence

with h on all compact sets) and is outer regular on all µ∗-measurable subsets

(not just Borel sets).



E.20. Exercise. Let X be a Hausdorff space and µ : BX → [0,∞] be a measure

defined on the Borel-σ-algebra of X. Suppose that µ is locally finite in the sense

that every point x ∈ X has a neighbourhood U ∈ BX such that µ(U) < ∞.

Then for every compact set K ⊆ X it holds that µ(K) <∞.

E.21. Exercise. Let G be a topological group and let BG denote its Borel-σ-

algebra. Then, using the notations introduced in 4.4, the following hold.

(a) BG∨ is precisely BG.

Suppose now that G is locally compact. Then:

(b) for every Radon measure µ on G, µ∨ is again a Radon measure on G,

and

(c) if, in (b), µ is not the zero measure, then µ∨ is also not identically zero.

(Hint. To prove claim (a), cf. also the hint given for E.15. Claim (b) can be

proved directly or regarded as a special case of E.32.(a).)

E.22. Exercise. Consider the additive group of the reals (R,+). The following

are given:

(a) K is a compact interval in R;

(b) U is a (bounded) open interval in R, with U 6= ∅.

Denoting by `(K) and `(U) the length of K and U , respectively, find a closed

formula for the Haar covering number (K : U) in terms of `(K) and `(U).

(See 5.3 for the definition of (K : U).)

E.23. Exercise. Prove (i)–(iii) from 5.5.

E.24. Exercise. Prove that, if K, V and K0 are as in 5.8, then (K : V ) ≤ (K :

K0)(K0 : V ).

(See 5.3 for the definition of (K : V ).)

E.25. Exercise. Consider the measure space (X,A, µ) = (R,BR, λ), where

λ : BR → [0,∞] denotes (the suitable restriction of) Lebesgue measure. Fix

the notations B+ = (0,∞) and B− = (−∞, 0); then B+ and B− are Borel

sets in R. Show that 1B+ and −1B− are both quasi-integrable, but their sum

(which is the sign function from 6.8.(2)) is not.



E.26. Exercise. Prove the claims made in 6.15.(1).

E.27. Exercise. Prove the claims made in 6.15.(2).

(Hint. It is convenient to use the equivalent characterization of integrability

given in 6.28.)

E.28. Exercise. Let X, Y be topological spaces. Use 6.21.(2) to infer the fol-

lowing.

(a) Let f : X → Y be a homoeomorphism. Then, for a subset E ⊆ X, the

image f(E) is Borel in Y if and only if E is Borel in X.

(b) Let ϕ : Y → X be a continuous, open injection—i.e., a homoeomorphism

onto an open subset ϕ(Y ) ⊆ X. Then, for B ∈ BY , the image f(B) is

Borel in X. (Recall also footnote 21.)

E.29. Exercise. Let (X,A) be a measurable space, f be a complex-valued

function on X. Then the following are equivalent for f :

(i) f is simple in the sense of 6.5.

(ii) f is measurable (in the sense of 6.19) and the range f(X) of f is a finite

set.

E.30. Exercise. Prove the claim made in 6.24.(8).

(Hint. For one implication, use 6.24.(7). For the other, recall that Re: C→ R
and Im: C→ R are continuous maps and use 6.21.)

E.31. Exercise. Prove the claim made in 6.24.(9). (Cf. the previous exercise.)

E.32. Exercise. Given a locally compact Hausdorff space X and a Radon

measure µ on X, prove the following strengthenings of the claims from E.13.

(a) Let f : X → Y be a homoeomorphism to another LCH space Y . Then

the pushforward ν = f∗µ (cf. E.13.(a)) is a Radon measure on Y .

(b) Let Y be an open subset of X, so that Y is LCH with the subspace

topology (by 2.4) and BY = Y ∩ BX ⊆ BX (cf. E.13.(b) as well as

footnote 21). Then the restriction ν = µ|BY is a Radon measure on Y .



Moreover,

(c) if ϕ : Y → X is a continuous, open injection—i.e., a homoeomorphism

onto an open subset ϕ(Y ) ⊆ X—then

ν : BY → [0,∞],

B 7→ µ(ϕ(B))

is a Radon measure on Y .

(Hint. Observe that (c) follows from combining (a) and (b); conversely, (c)

entails both (a) and (b) as special cases. Any of the three claims can be proved

by writing ν = µ ◦ Φ for the obvious choice of Φ: BY → BX—cf. the hint

given for E.13, and recall E.28—and observing that Φ commutes with arbitrary

unions and intersections, sends ∅ to ∅, and, under the assumptions of either

(a), (b) or (c), has the following additional properties.

(Φ1) For B ∈ BY , we have that Φ(B) is compact [resp., open] in X if and only

if B is compact [resp., open] in Y .

(Φ2) If A ∈ BX and B ∈ BY are such that A ⊆ Φ(B), then A = Φ(B′) for

some B′ ∈ BY with B′ ⊆ B.

(Φ3) If Φ(B) (with B ∈ BY ) is contained in some open subset U ⊆ X, then

there exists an open subset V ⊆ Y such that B ⊆ V and Φ(V ) ⊆ U .)

E.33. Exercise. (Addendum to part (a) of the previous exercise.) Let X, Y be

LCH spaces, and let f : X → Y be a homoeomorphism. Then every [nonzero]

Radon measure ν on Y is of the form f∗µ for a unique [nonzero] Radon measure

µ on X, namely µ = (f−1)∗ν.

(Hint. Recall E.14.)

E.34. Exercise. Let G, H be topological groups, and let ϕ : H → G be a

homoeomorphism of H onto an open subspace ϕ(H) ⊆ G. Suppose that there

exists a function γ : H → G such that

ϕ(hx) = γ(h)ϕ(x) for all x ∈ H.

Then:



(a) there is a unique γ for which the above equality holds;

(b) γ is a group homomorphism H → G; and finally,

(c) γ is again a homoeomorphism onto an open subspace γ(H) ⊆ G, and is

surjective (onto G) if and only if ϕ is.

(Hint. γ = (rϕ(e))−1 ◦ ϕ.)
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