Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario

Philipp Gunza,b, Fred L. Booksteinc,d, Philipp Mitteroeckera,d,e, Andrea Stadlmayrea, Horst Seidlera, and Gerhard W. Webera,1

Departments of aAnthropology and bTheoretical Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; cDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany; dDepartment of Statistics, University of Washington, Seattle, WA 98195; and eKonrad Lorenz Institute for Evolution and Cognition Research, Adolf Lorenz Gasse 2, A-3422 Altenberg, Austria

Edited by Erik Trinkaus, Washington University, St. Louis, MO, and approved January 15, 2009 (received for review September 1, 2008)

The interpretation of genetic evidence regarding modern human origins depends, among other things, on assessments of the structure and the variation of ancient populations. Because we lack genetic data from the time when the first anatomically modern humans appeared, between 200,000 and 60,000 years ago, instead we exploit the phenotype of neurocranial geometry to compare the variation in early modern human fossils with that in other groups of fossil Homo and recent modern humans. Variation is assessed as the mean-squared Procrustes distance from the group average shape in a representation based on several hundred neurocranial landmarks and semilandmarks. We find that the early modern group has more shape variation than any other group in our sample, which covers 1.8 million years, and that they are morphologically similar to recent modern humans of diverse geographically dispersed populations but not to archaic groups. Of the currently competing models of modern human origins, some are inconsistent with these findings. Rather than a single out-of-Africa dispersal scenario, we suggest that early modern humans were already divided into different populations in Pleistocene Africa, after which there followed a complex migration pattern. Our conclusions bear implications for the inference of ancient human demographic from genetic models and emphasize the importance of focusing research on those early modern humans, in particular, in Africa.


The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: gerhard.weber@univie.ac.at.

This article contains supporting information online at www.pnas.org/cgi/content/full/0808160106/DCSupplemental.
Table 1. Sample description

<table>
<thead>
<tr>
<th>UP AMH (16)*</th>
<th>Early AMH (7)†</th>
<th>Neanderthal (10)‡</th>
<th>Archaic Homo (11)§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br2 Brno 2</td>
<td>J1 Jebel Irhoud 1</td>
<td>Am Amud 1</td>
<td>Da Dali</td>
</tr>
<tr>
<td>CC Combe-Capelle</td>
<td>J2 Jebel Irhoud 2</td>
<td>At Atapuerca SH5</td>
<td>Ka Kabwe 1</td>
</tr>
<tr>
<td>Cr1 Cro-Magnon 1</td>
<td>LH18 Ngloba</td>
<td>Gu Guerrtari 1</td>
<td>3733 KKM-ER 3733</td>
</tr>
<tr>
<td>Cr3 Cro-Magnon 3</td>
<td>Om2 Omo 2</td>
<td>LCS La Chapelle-aux-Saints</td>
<td>Ng7 Ngandong 7</td>
</tr>
<tr>
<td>DV2 Dolní Věstonice 2</td>
<td>Qa6 Qafzeh 6</td>
<td>LF La Ferrassie 1</td>
<td>Ng14 Ngandong 14</td>
</tr>
<tr>
<td>FH Fish Hoek</td>
<td>Qa9 Qafzeh 9</td>
<td>LQS La Quina 5</td>
<td>Pa Petralona</td>
</tr>
<tr>
<td>GE4 Grotte des Enfants 4</td>
<td>Sk5 Skhül 5</td>
<td>LM Le Moustier 1</td>
<td>Sa17 Sangiran 17</td>
</tr>
<tr>
<td>Mc1 Mladec 1</td>
<td>Sp1 Spy 1</td>
<td>Sp2 Spy 2</td>
<td>Zh1 Zhokoudian 1</td>
</tr>
<tr>
<td>Mc5 Mladec 5</td>
<td>Ta Tabun C1</td>
<td>Zh11 Zhokoudian 11</td>
<td>Zh12 Zhokoudian 12</td>
</tr>
<tr>
<td>Mc6 Mladec 6</td>
<td>Ok1 Oberkassel 1</td>
<td>Ok2 Oberkassel 2</td>
<td></td>
</tr>
<tr>
<td>Ok1 Oberkassel 1</td>
<td>Předmostí 3</td>
<td>Předmostí 4</td>
<td></td>
</tr>
<tr>
<td>Ok2 Oberkassel 2</td>
<td>Pavlov 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr3 Předmostí 3</td>
<td>Mc5 Mladec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr4 Předmostí 4</td>
<td>Mc6 Mladec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC103 Zhoukoudian Upper Cave 103</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All specimens were assigned a priori to one of the five groups. Group arrangement is heuristic but in fact results from scientific publications and dating of other authors (see Materials and Methods and SI).

AMH, anatomically modern Homo sapiens.
Recent humans: specimens accepted as anatomically modern H. sapiens from the Holocene (10–0 kya), including also subfossil specimens such as Hohlenstein 1 (Ho1), Hohlenstein 2 (Ho2), Kaufertsberg (Kau), Wahliwes (Ww), Wadjak 1 (Wk1), Cohuna (Co), Kow Swamp 5 (K5S), and Paderborn 1 (Pb).
†UP AMH (Upper Paleolithic AMH): specimens accepted as anatomically modern H. sapiens dating to the Upper Paleolithic period.
§early AMH: specimens accepted as anatomically modern H. sapiens and predating Upper Paleolithic.

AFH, Archaic Forms of Homo.
*Neanderthal: specimens accepted as Homo neanderthalensis as well as Atapuerca SH 5
†AH (Archaic Homo): specimens classified as archaic forms of Homo, including Homo ergasterierectus and Homo heidelbergensis.

Results
The result of our statistical shape and form analysis is summarized in 2-dimensional projections of the first 3 principal components (PCs, Fig. 1; see also Figs. S1 and S2) of Procrustes shape space, over which is overlaid our nearest neighbor diagram. Because our group (i.e., color) assignment follows other authors’ morphological approaches (which do not attempt to weight all areas of the neurocranial geometry equally), our pairings, based on the high-density data mesh, might or might not comport with the color scheme. Even though the a priori group assignment only affects the color, not the position, nor the connections in our plot, we find that most nearest neighbor pairs are of the same color. This is also true of the modern humans, because crania of similar geographic origin tend to cluster together. Still more interesting are the specimens that are nearest to shapes from another group.

The tightest clustering in this plot is for the Neanderthals and the archaic Homo group (AH); the greatest dispersion is for the early AMH and the modern humans. This is unexpected, because the AH cover a wide geographic and temporal range and are so diverse in other aspects of fossil form as to merit 3 separate species designations (see Table 1 and Materials and Methods). These comparisons of variance are confirmed when we attend to the full shape distances, not just their projections into this 3-dimensional subspace (Fig. 2).

One possible source for high levels of shape variability would be allometric effects, because shape covaries with size (small gracile crania vs. large robust ones). However, the group that is the most variable in terms of shape (early AMH) is, at the same time, the least variable with regard to centroid size (see Fig. 1 Lower). This might be related to differences in the temporal, spatial, and taxonomic distribution among the groups, but is beyond the scope of this article because we are not interpreting size per se, only shape. Nevertheless, this observation is important to rule out that the high shape variability of the early AMH group is caused by allometry.

Point clouds of moderns (blue and light brown) and archaics (green and orange) are clearly distinct (Fig. 1 and Fig. S1), with nosingle nearest neighbor connection between them. This is consistent with the notion that Neanderthals and archaic Homo share a conserved cranial architecture that is different from the one of modern humans (15–17).

Sample-size-insensitive rarefaction analyses and bootstrap tests demonstrated (see Fig. 2 and Fig. S3) that early AMH are significantly more variable than recent Homo sapiens (P = 0.011), Upper Paleolithic people (P = 0.014), Neanderthals (P = 0.008), and archaic forms of Homo (P = 0.045). Our results thus revealed that shape variability of early AMH was highest among all tested groups, i.e., within a sample of the genus Homo embracing the last 1.8 million years. The shortest connections between early AMH are either with other specimens of this group or recent modern humans, for instance, Omo 2 [recently dated to ~195 ka (1)] and LH 18, two of the earliest east African candidates for the emergence of modern human morphology (18), and the Levantine Qafzeh 6 connect with recent Australian aboriginals (cf. ref. 19). We also find a connection between 3,500-km-distant sites in the Levant and northwest Africa, i.e., between the more archaic looking Jebel Irhoud 1 and Skhül 5, whereas Jebel Irhoud 2 connects to recent Europeans. Qafzeh 9 (Levant) is linked to a European UP specimen. We find, however, no single link between Neanderthals and AMH, including Upper Paleolithic specimens.

Discussion
Our phenetic analysis confirms doubts raised by genetic studies (7–9, 20) regarding a single-dispersal model proposed by others (21, 22). We interpret the evident heterogeneity of early AMHs as representing multiple temporarily isolated populations in Africa. The diverse nearest neighbor links of the early AMH specimens to various modern populations are consistent with a model of multiple dispersal events out of Africa. This interpretation rests on the assumption that neurocranial shape is not dissociated from true population history (23). No consensus has
been achieved on the relative impact of neutral patterns and selective processes on the evolution of human cranial morphology (for summaries see refs. 19 and 23–25). However, recent studies (summarized in ref. 23) indicate that correlations between genetic and phenotypic distances based on crania are moderate to high and several results point toward a more neutral pattern of cranial evolution (23, 25), especially for the neurocranium (13). That neurocranial shape retains a population history signal can also be seen in the nearest neighbor clustering of geographical regions among recent modern human crania (see Fig. S1).

Our nearest neighbor approach finds a closest neighbor for any specimen. This does, of course, not necessarily indicate an ancestor-descendant relationship between each AMH fossil and the specific human it ties to. Except for Omo 2, Procrustes distances from the early AMH to their nearest neighbors in full shape space (detailed list in Fig. S4) do not exceed the upper range of distances from modern humans to their nearest neighbors. The short apparent lengths of these connecting segments are thus not projection artifacts of the principal component analysis.

Although our results cannot pinpoint a specific model of demographic history for the origins of our species, our data are applicable to any model that introduces a new genetic introgression following a demographic bottleneck. This is the case for the spread of AMH from Africa to other continents (see below). However, further work is needed to test the robustness of our results with alternative methods or data sets, as well as with additional fossils and comparative analysis among other hominin taxa.
only consistent with a subset of demographic models. Our findings do not support the notion that large genetic variability of modern Africans can be attributed solely to the greater time-depth on the African continent. The morphological variability seen in modern humans is not a recent phenomenon, because we find even higher levels of shape variability already near the emergence of our species in Pleistocene Africa. This high shape variability thus predates modern human culture by tens of millennia and we therefore consider it unlikely that it is an effect of Holocene population expansions or the relaxation of constraints in a modern cultural environment.

Any model consistent with our data requires a more dynamic scenario and a more complex population structure than the one implied by the classic Out-of-Africa model. Our findings on neurocranial shape diversity are consistent with the assumption that intra-African population expansions (21, 22) produced temporarily subdivided and isolated groups (8, 26). In such a metapopulation model, transient populations are connected by migration, subject to extinction and rebirth by colonization, as well as to fluctuation in local size (7, 27). This view is in agreement with recent genetic results (28) suggesting divergence of some recent human populations from the rest of the human mtDNA pool 90–150,000 years ago, and isolation times between 50 and 100,000 years. Separated demes (population subdivisions) might have partly merged again, whereas others left Africa at different times and may also be due to different routes, and still others probably also remigrated to Africa.

Our data on neighbors and variability is unsupportive of the strict forms of a single-origin model but does not conflict with another approach, the model of “isolation by distance,” which predicts that genetic and phenotypic dissimilarity increases with geographic distance (24, 29–31). The metapopulation framework would predict the same because frequency and magnitude of genetic exchange would follow the likelihood of 2 populations to meet, which declines with geographical distance from the early AMH epicenter in Africa. Our fossil AMH data, however, suggest that before there was isolation by distance from Africa, there already existed (at least temporally) isolation by distance within Africa during the Pleistocene.

Genetic diversity among living modern humans is known to be very low when compared with extant apes (32, 33). To reconcile this observation with our proposed metapopulation model within Africa, it is necessary to assume that genetic diversity of early AMH and even earlier fossil groups of Homo must have been relatively low as well. The only fossil human group for which such genetic data are available, the Neanderthals, support this contention; their level of genetic variability also is low when compared with living apes (34, 35).

Seemingly ancient contributions to the modern human gene pool (36) have been explained by admixture with archaic forms of Homo, e.g., Neanderthals. Although we cannot rule out such admixture (37), the clear morphological distinction between AMH and archaic forms of Homo in the light of the proposed ancestral population structure of early AMH to us suggests another underestimated possibility: the genetic exchange between subdivided populations of early AMH as a potential source for “ancient” contributions to the modern human gene pool (9, 36).

Although more data are needed to corroborate our inferences, we could clearly demonstrate the pronounced variability of early AMH and their morphological relationship to modern humans. It is crucial for any analysis, genetic or phenetic, of modern human origins to take into account this Late Pleistocene African diversity that predates the range expansions into Eurasia. The molecular and fossil evidence of the African continent deserves more attention in the modern human origins debate.

Materials and Methods

Our sample includes 486 geometrically homologous anatomical landmarks and semilandmarks from 203 neurocranial specimens (Fig. 1). Three-dimensional coordinates were measured using a 2GX digitizer on the original specimens or research quality casts. Each cranium was measured in 2 orientations, which were later superimposed by using 5 fiducial points. We collected 16 homologous landmarks (Table S1) and closely spaced points along the supraorbital torus, the midasgittal profile from glabella to inion and along the medial part of the super nuchal line. Furthermore, we digitized a dense point cloud on the neurocranial surface of every specimen. Data on some fossils are from Om 2, Li 18, Atapuerca SH 5, Guattari, Mladed 1, Petralona, Kabwe, Skhul 5) were measured on the CT scans of the originals.

Segments along the curves were resampled to get the same number of points (curve-landmarks) on each specimen. A mesh of 414 surface landmarks was carefully digitized on one cranium and then projected onto all others, by warping them using the thin-plate spline interpolation between the landmarks of the reference specimen and every other specimen and then lofting the points on each specimen’s neurocranial surface. This protocol guarantees the same point count of approximately evenly spaced semilandmarks on every specimen. All semilandmarks were allowed to slide along tangents to the curve or surface so as to minimize the bending energy between each specimen and the Procrustes average shape (12, 38). These tangents were approximated for each curve-landmark by using the vector between the 2 neighboring points. For every surface semilandmark we used the first 2 eigenvectors of the covariance matrix of its 5 nearest neighbors in the sliding step. In the sliding step the thin-plate spline interpolation between two neighboring points is used to provide a criterion for geometric homology or correspondence. Thus, after sliding, landmarks and semilandmarks can be treated equivalent in the course of the multivariate analysis.

Anatomical landmarks were measured on the left and right side, curves and surface points only on one side and then mirrored along the midsagittal plane. Usually we measured the curves on the left side; in fossil specimens we measured the better-preserved side and mirrored it. This was done before resampling the curves and sliding the semilandmarks. Because some fossils were incomplete, some reconstruction was necessary before the analysis, because geometric morphometric methods require a full data matrix without missing values. We followed the reconstruction protocol described in ref. 39. Whenever possible, missing parts were reconstructed by mirror imaging. In cases where bilateral landmarks were missing on one side only, they were estimated by reflected relabelling (40), which uses the Procrustes geometry to represent any missing side. In the sliding step, a reflected relabelling is used to provide a criterion for geometric homology or correspondence. Thus, after sliding, landmarks and semilandmarks can be treated equivalent in the course of the multivariate analysis.

In some cases we reflected the better-preserved side by using a least squares fitting plane through the midsagittal landmarks, rather than by using reflected relabelling: (i) when only one-half of the cranium was preserved, and (ii) when one-half was distorted and the other one correct. In the former case, reflected relabelling could not be computed because of the lack of bilateral points; in the latter case, reflected relabelling would have propagated the error of the distorted side to the other.
In a few cases, landmarks missing on both sides were estimated during the spline relaxation against the Procrustes average, missing points were fully relaxed, i.e., their positions were estimated by minimizing the thin-plate spline bending energy. This yields the configuration with the smoothest interpolation, taking all of the preserved morphology into account. Our sample comprises only specimens that preserve complete calvariae, so the necessary reconstruction was kept to a minimum.

Sample Composition. In our study, “UP AMH” includes all anatomically modern Homo sapiens (AMH) of our sample that date between ~45 and 10 kya (cf. ref. 41). AMH specimens predating the Upper Paleolithic are grouped as “early AMH.” “Neanderthals” includes specimens widely accepted as “classic” Homo [sapiens] neanderthalensis (e.g., 42, 43) and one specimen from Atapuerca: SH 5), whereas “archaic Homo” comprises representatives of the genus Homo other than AMH or Neanderthals, e.g., “archaic” Homo sapiens, H. erectus, H. ergaster, or H. heidelbergensis.

Our modern human sample covers a wide range of modern human shape variability. It is not balanced with regard to sex and populations, so the data resolution is not high enough to support any claims about which founding population gave rise to which modern group. Because of the gene flow among modern humans over several millennia, it seems unlikely that such a detailed signal could be recovered, no matter how large the modern human comparative group would be. We would like to point out that a smaller modern human sample is actually biased against our finding that almost all early modern human fossils connect to a recent human. Increasing the modern human sample would only increase the chance that a fossil is close to a modern human in shape space.

ACKNOWLEDGMENTS. We thank M. Teschler-Nicola and M. Berner at the Naturhistorisches Museum Wien; C. Stringer and R. Kruszyński at the Natural History Museum London; the Johann Wolfgang Goethe-University in Frankfurt am Main; C. Magori, C. Saanane, and D. Kamamba from Antiquities Tanzania; J. H. Mariam from ARCh Ethiopia; and M. Yilma from the National Museum Addis Ababa for access to their collection of fossils and casts; and M. Bernhard and C. Fenes for sharing data from modern humans. We thank D. Lieberman from Harvard University for access to Skhul 5 CT data; J. L. Arsuaga, G. Koufos, L. Bondioli, and R. Macchiarelli for permission to scan fossil specimens; W. Recheis and D. zur Nedden at the University Hospital Innsbruck and H. Imhof and F. Kainberger at the General Hospital Vienna for technical support; and J. J. Hublin, K. Harvati, J. Schwartz, T. B. Viola, and S. Neubauer for discussion and support. This work was supported by EU FP6 Marie Curie Actions “EVAN,” the Austrian Science Foundation, the Austrian Council for Science and Technology, and the Austrian Federal Ministry for Education, Science and Culture.