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7. Numerical Quantum Mechanics

Erwin Schrbdinger: he gave us
\ the homework

We will skip “big” quantum chemistry (Hartree-Fock and heirs) and confine our-
selves to the “slim” physical methods of

— QM Diffusion Monte Carlo (QMC, DMCQC)
— Path Integral MC (PIMC)
— Density Functional MD (DFMD)



E)\ 7. Numerical QM

Diffusion Monte Carlo (DMC)
Write E.S.’s equation as

2
% = HW(r,t) with = + [U(r) — Er]

 2m
Er ... trial energy (arbitrary, affects only the phase of the wave function)
Introducing an “imaginary time” s =it/h we get
oWV (r, s)
Os

th

= DV?W(r,s) — [U(r) — Er] W (r,s)
with D = h2/2m.

——Describes dffusion with autocatalysis!

Visualization: population of bacteria diffusing about in a fluid with locally varying
nutrient concentration.
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Try out various Erp:

e If Er = Ey (ground state energy), then
lim W(r,s) = Wqu(r)

§— 00
o If Ep > Ey, the weight I(s) = [ W(r,s)dr will grow exponentially in time s.
o If Er < Ey, I(s) decreases exponentially in time.

—Solve the equation for various Ep, monitor the temporal behavior of I(s) re-
mains stationary, Er = Eg and W = Wy.

How to solve 7?7?77 —
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Solve the Diffusion and Autocatalysis parts separately.

Diffusion:
on(r,t) 5
———= = DV-n(r,t
Y (r,t)
—=Solve via Brownian random walk:
ri(th+1) = ri(tn) +§,, i=1,...N

with &,,. Gaussian with o2 = 2D At. Watching an ensemble made up of M
systems of N particles each, the mean density

M N
pr,t) = @) 1)) = ——=> > §[r(t) —r]

is an estimate for the solution n(r,t) of the diffusion equation.
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Autocatalysis:

D = ) (et

This is just the Relaxation equation with f(r) in place of —\l!

—=Stochastic solution: let systems in the ensemble die or multiply according to
their “fitness’ :

— Systems with many particles at high f(r) are replicated

— Systems with unfavorable configurations are weeded out
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Diffusion Monte Carlo:

Consider N particles of mass m, randomly distributed in a region with
U(r). Determine the “diffusion constant” D = h?/2m; choose a trial
energy Er, a time step As and an initial ensemble size M (sg).

1. For each system [l (= 1,... M(sg)) in the ensemble and for each
particle « (= 1,... N) perform a random displacement step

r;1(snt+1) = rii(sn) +&;;, with§;, Gaussian(o? = 2D As)
2. For each system [ determine the multiplicity
As}

K, = ea:p{

3. Produce K;—1 copies of each system. If K; < 1, delete that system
with probability 1 — Kj.

4. If the number M of systems increases systematically, choose a
smaller Er; if M decreases, take a larger Er.

5. Repeat until M remains constant; then the ground state energy is
Eqo = Er and

N
> U(riy) — Br
i—1

Wo(r) = (6(riyy—1))
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Applications:

— Compute ground state energy and wave function.
— In this form only applicable to Bosons such as 4He.
— Variants: also applicable to fermionic systems.
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Path Integral Monte Carlo (PIMC)
Up to now: ground state, i.e. kKT = 0.
Now: Finite temperature —

V=) cuWy, where HW, = E, WV,
n

Quantum analog of the Boltzmann factor: Density matrix,

p(r, 7 k) = Y Wi e HA v,y = Y wi@e B/ v, )
—=Average of some observable a(r),

@ = [ ot pterig)dr / [ otr.r:) dr = Spla / Splp]

with 8 = 1/kT.
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Example — Free particle:

—m(z — x')?/2Bh?

€

1/2
m
27rﬁ712]

po(a, o B) = [

Thus, po(x,z; B) = const, as it should.

But: p(r,r;B3) usually too complex!
—=Is there a way to use only simple density matrices? — Yes!!

It can be shown that

o(z,a'; B) = / &' p(e, 33 5 pla", '3 )

R.h.s: Path integral, involving two density matrices at 3/2, i.e. double kT.
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By iteration,
/0(580, xrp, /8) —
B

/.../dml dro...dxp_q p(wo,wl;g)---P(HJP—LmP;F)

(P... “Trotter number")

But:
Higher temperature P - kT —Lower effect of potential U(x) —Approach to free
particle with density matrix pg

10
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With P =5 — 100 the diagonal element reads
p($0, o, ,8) = AP/2 / ... /dxl L. de—l e_B(Uint + Ue:ct)

with
P-1
mP AT(' 2
e Um= L UGP, U= S (o apn)
p=0 p=0

And in 3 dimensions:

p(I‘o,I‘o;,B) — A3P/2/.../d1‘1...d1‘p_1 e_/B(Uint+Uext)

with A = mP/2nBh?, and

Uext = Z U(I‘p)/P Uint = Z |I'p — I‘p_|_1|

p_

11
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But this looks like a classical Boltzmann factor of a ring polymer. The P elements
of this polymer feel an external potential

ert(xp) — U(Ccp)/P

and successive links of the ring chain are coupled together by a harmonic bond
potential

A 2
Uint (Tp, Tp+1) = 7 (wp — ﬂ'3p+1)
where zp = xo.
o —
classical quantum mechanical

T herefore:
Monte Carlo of classical ring polymer < MC of single quantum particle

12
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Path integral Monte Carlo for one particle:

A quantum particle in an external potential U(r) is represented by a ring
polymer consisting of P links. Let r = {ro,...rp_1} and the total potential
energy

Upot(r) = Uint(r)_l_Uext(r)
be given, with

Vint = Bzhz Z'rp Tyt and - Veat = _ZU(I'P)

1. Displace r as a whole by Ar (large); also, move each link r, by a small
amount Ar,; the new configuration is called r'.
2. Compute Upp(r') and AU = Upot(r') — Upot(T).
3. Metropolis step: Draw £ from an equidistribution in [0, 1];
if AU <O, putr =r/;
if AU >0 and ¢ <e P2V, put r =r' as well;
if AU >0 and ¢ > e #AV, |et r remain unchanged.
4. Return to (1).

13
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Generalization to N quantum particles interacting by a pair potential u(|r; — ry|):

Each of these particles has to be represented by a P-element ring chain. Denoting
the position of element p in chain (=particle) ¢ by r;,, we have for the diagonal
element of the total density matrix

p(I'OaI'O; /8) —
N P-1

A3NP/2 / . /drl,l e dI‘N7P_1 exrp —Am Z Z (I'z',p — ri,p+1)2
i=1 p=0

8 N P-1
ezp | —5 y: y: y: u(|rjp — Tipl)

i=1 j>i p=0

with ro = {r10...rno}. Obviously, the pair potential acts only between respective
links (p) of different chains.

14
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Exercise: Write a PIMC program treating the case of one particle of mass m in
a two-dimensional oscillator potential U(r) = kr2/2. Let the Trotter number vary
between 2 and 10. Determine the positional probability p(r) of the particle from
the relative frequency of residence at r, averaged over all chain links. Noting that

p(r) = p(r,r;B)

we would expect for the two-dimensional harmonic oscillator (with w3 = k/m)

A 2 2 h.
p(r) = 2nr [—] e 4 where A= m;;o tanhﬁ 0
7r

(For convenience, put h = 1.) Draw several configurations of the ring polymer that
occur in the course of the simulation.

15
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Sample Application:

Coker, D. F., et al., J. Chem. Phys. 86 (1987) 5689: solvation of electrons in
simple fluids.
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From Coker et al.: solvated electron a) in liquid helium: strongly localized. Shell

of He is rigid and difficult to polarize, —repulsive cage.
b) in liguid xenon: extended positional probability. Shell of Xe polarizable —flat

dipole potential.
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Density Functional Molecular Dynamics (DFMD)

So far: time-independent calculations.

Now: Quantum molecular dynamics

Born-Oppenheimer approximation: Treat atomic cores (or ions, i.e. nucleus plus
inner electrons) as classical particles, the outer electrons by QM.

—=Electronic wave functions assume least energy configuration.

—>Minimization problem!

— Let W,;(r) be the wave functions of the N electrons. The electron density at
some position r is then given by

N
n@r) = 3 WP
=1

— Let {R;} be the momentary configuration of the (classical) ions.

17
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The ions produce a potential field U(r; {R;}) which the electronic wave functions
are invited to adjust to.

Total energy:
E{V;};{Ri}) = Ei1+Ex+ Ez+ Ey

with
N h2
* 2 . .
E{ = Z/dr Wi(r) [—Q—V ] W,;(r) kKinetic energy of the electrons
. m
z=1V
Fy = /drU(r; {R;}) n(r) potential energy in the field cre-
J ated by the ions
/
Es = 1//611« dr/”(r) n(r’) electrostatic  interaction be-
2 r — 1’| tween the electrons
V Vv
exchange -+ correlation energy,
Ers = Eg[n(r)] e.g. by local density approxima-
tion, LDA

18
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£
Expand W,(r) in plane waves,

Vi) = Y all)e T
k
with up to several hundred terms per electron.

=—=Minimize E({W;}; {R;}) with respect to {c;(k)}, maintaining orthonormality,
/\Uf(r,t) WVi(r,t)dr = 6
2

— Conventional method (Nobel prize winner):

Apply variational calculus, solve
iteratively. —Too slow for MD!

— But: Simulated annealing is fast! May be done either in its original version

(MCQC), or by a sort of MD in configuration space, Car’s and Parrinello’s “dynamical
Ssimulated annealing’:

19
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Let M be the ion mass, and u an abstract “mass” assigned to each electronic
wave function W;, with u~ 1AMU << M. Then

.. OF
v, (r,t) = ——mm— g i Wi(r,t
MR, = -V,E

where the Lagrange multipliers A;; have been introduced to maintain orthonormal-
ity.

The first equation represents the abstract “motion” in the space of the electronic
degrees of freedom, the second equation describes the classical motion of the
heavy ions.

To keep the “kinetic energy” of W,; small, use a thermostat!

20
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Applications:

— Amorphous silicon

— Lithium

— microclusters of alkali metals
— molten carbon

— jonic melts

— etc.
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