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SELECTED APPLICATIONS

Section 6. Statistical-mechanical simulation

Section 7. Numerical quantum mechanics

Section 8. Computational hydrodynamics



6. Simulation and Statistical Mechanics

Ludwig Boltzmann would have
loved simulation

A short tour takes us to:

e Model Systems of Statistical Mechanics
e Tricks of the trade

e Monte Carlo simulation

e Molecular dynamics simulation



& 6. Simulation (StatMech)

Model Systems of Statistical Mechanics:

Hard soheres u(r) = oo ifr < rg First approximation in many
s =0 ifr>rg applications
Lennard- r\—12 r\ 6 Noble gas atoms; nearly
Jones u(r) = 4e <_> - <_> spherical molecules
(o) (o)

Intramolecular bonds, if kT

Harmonic u(r) = A (r — ) is small compared to the
bond energy

u(r) = Intramolecular bonds, if kT
Morse A [B_Qb(r_f,no) _ 9e—b(r—ro)] IS comparable to the bond
energy

Some isotropic model potentials: u = u(r)



6. Simulation (StatMech)

Hard spherocylin- 4 (12) = oo if overlap First approximation
ders, etc. =0 otherwise to rigid molecules
Interaction site sum of isotropic pair energies Rigid and nonrigid
models between sites in molecules molecules
interaction site model with fixed Slezdle molecules,
Kramers-type ) from ethane to
internal bond lengths :
biopolymers
First approxima-
Stockmayer Lennard-Jones 4+ point dipoles tion to small polar
molecules
rio —o(12 oo\ 12
4¢e(12) [( = go )+ O) Liquid crystal
Gay-Berne _6 molecules of ellip-
_ (”2 — ‘7(0102) + 00) ] soidal shape

Some anisotropic models: u(12) = u(riz,ei,es)
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Spin models for solids:
Fixed positions on a lattice, but spins with varying directions:

Ising model — the spins may point either up or down,
Heisenberg model — all directions permitted.

2D Ising lattice: only the four nearest spins contribute to the energy of o; (= £1);
in three dimensions the six nearest neighbors must be considered.

Total energy of the N spins:

N 4or6

A
b= —52 Y gioia)

i=1j(i)=1

with A a coupling constant.



& 6. Simulation (StatMech)

Simulation: General remarks

Let I': = {r1... rx} be a microstate in the 3N-dimensional “configuration space”
., and let p(T'.) be its probability density.
(For spin models I'. is given by all spins on the lattice.)

Given some property a(I'.), the — observable — thermodynamic average of a is
given by

(@) = /r a(T.) p(T.) dT.

Examples:
1
U = NkT—l—E(ZZu(rij)) Internal energy
)
NET 1 du
= — = Pressure

P v e 2T g N

1 jFi ij
But: —



&“ 6. Simulation (StatMech)

p(I';) is known only up to a normalizing factor:
€.g. pcan(rc) Ocemp[_E(I‘c)/kT]
But the Partition Function @

Q = / o—ET)/ET gy

is not known.

—How to compute thermodynamic averages?

— Ensemble average: Monte Carlo walk through phase space
— Time average: Molecular dynamics simulation



& 6. Simulation (StatMech)
Tricks of the Trade
Units:

Choose appropriate units for three mechanical quantities, such as energy, mass,
and length. The other units follow.

Example 1 — Lennard-Jones: Eg =€, mg = 1AMU = 1.6606 -10"%" kg, lo = 0.

With u* = u/e etc. the energy of a pair of particles is u}; = 4 [r*~12 — r*=%] where
all numerical values will be of order 1.

The unit of time is to = \/moo?/e.
Density (LJ): po = 1/03, thus p* = No3/V.
Temperature (LJ): To = €¢/k.

Example 2 — Hard Spheres: Eg = kT, mo = LAMU, lg = do (diameter).

Time (HS): to = \/mod?/kT

Density (HS): po = V/2/d3, thus p* = Nd3/V V2.
Temperature (HS): To = €/k.
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Exercise: Consider a pair of LJ “Argon” particles with ¢ = 1.6537 - 1021 J and
o = 3.405-1071%m. Let the two molecules be situated at a distance of 3.2:10"19m
from each other, and calculate the potential energy of this arrangement. Now do
the same calculation using € and o as units of energy and length.

Using the above units and mg = 1AMU, what is the metric value of the self-
consistent unit of time? Let one of the particles have a metric speed v = 500 m/s,
typical of the thermal velocities of atoms or small molecules. What is the value of v
in self-consistent units?
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Periodic boundary conditions (PBC):

Instead of z;, store (z; + 2L) mod L (with L the side length of the cell.)
—=-Conservation of N and (in MD) > v;.

Nearest Image Convention (NIC):
Pair energy: if Az =z; —z; > L/2, use Ax;; — L instead, etc.

A compact formulation of this rule is
) Az
AJ) — ACB-L'nlnt (T)

(nint(a) ... rounded value of a.)

10
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Starting configuration:

Place the particles on the vertices of an fcc grid and “melt” the lattice before
the simulation. The fcc population numbers are 4m3, with m = 1,2,... =N =
32,108, 256,500 etc.

Adjusting the temperature:

T = m*(|v'|%)/3
—=Take the average of |v*|?2 over a number of MD steps, then scale each velocity
component of every particle by /T .../ To vl

11
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Exercise: Write a code to set up a cubic box inhabited by N = 108 or 32 particles in
a face-centered cubic arrangement. Use your favourite programming language and
make the code flexible enough to allow for easy change of volume (i.e. density).
Make sure that the lengths are measured in units of o ;. For later reference, let
us call this subroutine STARTCONF.

By scaling all lengths, adjust the volume such that the reduced number density
becomes p* = 0.6.

Include a procedure that assigns random velocities to the particles, making sure
that the total momentum is zero.

Exercise: Write a subroutine ENERGY that computes the total potential energy
in @ system, assuming a Lennard-Jones interaction and applying the nearest image
convention:

0 N-1 N
Ept = EZZULJ(TU): Z Z ury(ri;)

T JFL 1=1 j=i+1

Use it to compute the energy in the system created by STARTCONF.

12
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Monte Carlo Method

Generate a Markov chain of, say, K configurations {I'.(k), k = 1,... K} such that
the relative frequency of a configuration in the chain is proportional to the corre-
sponding Boltzmann factor.

—= Estimate the mean value (a) from

1 K
(@) = =) all(k)]
k=1

The proven method for generating a suitable Markov chain of microstates is the
biased random walk through configuration space: —

13
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Metropolis Monte Carlo for continuous potentials:

Let I'c(k) = {r1...rn} be given, with E(k) =(1/2) >, > u(|r; —ril).

1. Generate a “neighboring” configuration I', by randomly moving one
of the N particles: z’ = z;+d (£—0.5) and similarly for y;, z;. Here,
d should be adjusted such that ~ 50% of the trials are accepted,
and ¢ is equidistributed in (0,1). The number j of the particle to
be moved may either be drawn among the N candidates, or may
run cyclically through the set of particle indices.

2. Determine the modified total energy E’; since displacing particle
j affects only N — 1 of the N(N — 1)/2 pair distances, it is not
necessary to recalculate the entire double sum.

3. If E' < E(k), accept I', as the next element of the Markov chain:

E'<E(k): = T'«(k+1)=T.; go to (1)

If B/ > E(k), compare the quotient of the two thermodynamic

probabilities, g = e~ &' — E(K)]/kET' 5 a random number ¢ € (0,1):
E' > E(k) :
¢ < q: = T(k+1)=T,; go to(1)
£ > qi = Te(k+1) =T(k); go to (1)

14
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In the case of hard disks or spheres E(k) and E’ are either O or oo, and the
Boltzmann factors are either 1 or 0. Here is the MC procedure for hard particles.

Monte Carlo for hard spheres:

Let I'c(k) ={r1...rN} be given.
e Trial move I'.(k) — I'.:

v, = z;+d(£{—0.5) etc., for y;, z;

e If particle 57 now overlaps with any other particle, let I'c(k+ 1) = I'.(k);
otherwise let T.(k+ 1) =T,

15
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Exercise: Write a subroutine MCSTEP which performs the basic Monte Carlo step
as described above: selecting at random one of the LJ particles that were placed
on a lattice by STARTCONFIG, displace it slightly and apply the PBC; then
compute the new potential energy (using NIC!) and check whether the modified
configuration is accepted or not, given a specific temperature T*; if accepted, the
next configuration is the modified one, otherwise the old configuration is retained

for another step.

Write a main routine to combine the subroutines STARTCONF, ENERGY, and
MCSTEP into a working MC program.

16
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Molecular Dynamics Simulation
Different methodology for

— Hard spheres
— Lennard-Jones and friends

17
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MD of Hard Spheres

— Given all positions and velocities, find for each pair (¢,5) the time t;; until they
collide (if at all):

—b— /b2 —v2(r?2 — d?)
ti; = 2

where r is the distance between the centers of ¢« and 5, and

b=(rj—ri)-(vj—vi), U:|(Vj_vz')|

— For each i, find the smallest positive collision time t(i) = min(¢;;) and the
corresponding collision partner j(z). (If particle i has no collision partner at positive
times, set j(¢) = 0 and t(i) = [o<].

— Find the smallest of all N next-collision times, t(ig). Let the partners in this
collision be 29 and jo.

18



6. Simulation (StatMech)

— Increment all particle positions as
r; — 1; + v; - t(i0)
and subtract t(ig) from all ¢(7).

— Elastic collision between 1 =19 and j = jo: —
v, =v; + Av, V;-:Vj—AV
where
Av = b%

— Recalculate all collision times ¢;; involving ig or jo: only 2N — 3 pairs have to be
scanned.

19



& 6. Simulation (StatMech)

Molecular dynamics simulation of hard spheres:

For all 7, let the next-collision time ¢(7) and the partner j(i) be given.

1. Find the smallest positive t(ig), with partners ig, jo.
2. Perform free flight for At = t(ig); subtract At from each ¢(7).

3. Perform elastic collision between g and jo:

v, = v+Av, with Av:b%

4. Recalculate all times t(z) involving ig or jo, (i = ig, i = j(40), 7 = jo,

and i = 35(jo).)
5. Go to (1).
At low densities, limit the time allowed for free flight such that for all

particles and each coordinate a Az, = v, At < L/2 —d.

Exercise: For a two-dimensional system of hard disks, write subroutines to a) set
up an initial configuration (simplest, though not best: square lattice;) b) calculate
t(7) and j(i); c) perform a pair collision. Combine these subroutines into an MD

code.

20
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Continuous Potentials

Particle ¢ moves as

1
ri(t) = — Z Kz'j(t) with K = —Vz-u(rij)
S

Example — Lennard-Jones:

The pair force is
..\ —14 ..\ —8
K; = —24— [2 () - (2) ] i
(o) (o) (o)
where ryj =r; — Ty.

(Don’'t forget to apply NIC!)

To solve the equation of motion, use the Verlet algorithm (or any competitor such
as PC):

ri(tnt1) = 2ri(tn) — i(tn—1) + bi(tn) (AL)?

21
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Exercise: In the subroutine ENERGY, add a few lines to compute for each particle
¢ the total force exerted on it by all other particles j: K; = Zj#i K;;, with K;; as
above; remember to apply the nearest image convention.

Write a subroutine MOVE to integrate the equations of motion by a suitable al-
gorithm such as Verlet’s. Having advanced each particle for one time step, apply
periodic boundary conditions to retain them all in the simulation box.

Write a main routine that puts the subroutines STARTCONF, ENERGY and
MOVE to work. Test your first MD code by monitoring the mechanically con-
served quantities.

Do a number of MD steps — say, 50-100 — and average the quantity |v*|? to esti-
mate the actual temperature. To adjust the temperature to a desired value, scale
all velocity components of all particles in a suitable way. Repeat this procedure
up to 10 times. After 500-100 steps the fluid will normally be well random-
ized in space, and the temperature will be steady — though fluctuating slightly.

22
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Beyond Basic Molecular Dynamics
Generalizations involve

— ionic and dipolar interactions

— orientation dependent potentials

— polymers or other complex molecules

— nonequilibrium dynamics

23
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Evaluation of Simulation Experiments

Pressure:

b= T 6V Zz”dr

1 JFI

Internal energy:

U = NkT+ (> > ulry))

T JF

24
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Exercise: In your Lennard-Jones MD and MC programs, include a procedure to
calculate averages of the total potential energy and the virial,

|/ ZKi'ri:_%ZZKij'rij
1 ? J

From these compute the internal energy and the pressure. Compare with results
from literature, e.g. Verlet*, McDonald**. Allow for deviations in the 5 — 10%
range, as we have omitted a correction for the finite sample size (‘cutoff correc-
tion’).

* Verlet, L., Phys. Rev. 159/1 (1967) 98; ibidem, 165/1 (1968) 201.

* McDonald I. R., J. Phys. C: Sol. St. Ph., 7 (1974) 1225.

6. Simulation (StatMech)

25
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Pair correlation function:

Local density at r:

p(r) = (2:5(1'1:—1‘))

In a fluid we usually have p(r) = const.
More interesting: pair correlation function (PCF)

g(r) = 2N2 225(T_T2j)>

T JFEI
Probability of finding a particle at r, given that there is a particle at the origin.
—Measure of spatial ordering.

How to determine ¢g(r)? —

26
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Calculation of g(r):

— Divide the range of » (at most [0; L/2]) into 50 — 200 intervals Ar.
— In a given configuration {ri,...ryx}, determine for each pair (i,j) a channel

number
k = int(rij>
Ar

— Increment a histogram table g(k).
— Finally, normalize g(k) appropriately.

27
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3.5

25

15 |

0.5

-0.5

r

Pair correlation function of the Lennard-Jones liquid

28
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Significance of g(r);
— Thermodynamic averages:

NkT  N?2 du

= _ P o(r)d
b v 6V2/rd7~g(r) g

<

etc.

— Spectroscopy:
The Fourier transform of g(r), the “scattering law”

S(k) = 1—|—%/[g('r)—1]eik'rdr
Vv

is the relative intensity of neutron or X-ray scattering at a scattering angle 6 which

is related to k by k= 2"sin 2



&

Exercise: Augment your Lennard-Jones MD (or MC) program by a routine that
computes the pair correlation function g(r); remember to apply the nearest image
convention when computing the pair distances. As the subroutine ENERGY al-
ready contains a loop over all particle pairs (4,7), it is best to increment the g(r)
histogram within that loop.

Plot the PCF and see whether it resembles the one given in the Figure.

6. Simulation (StatMech)

30
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Autocorrelation Functions
The prime example is the velocity autocorrelation

C(t) = (vi(0)-vi(t))
Simple kinetic theory predicts C(t) < e~*; instead, Alder found C(t) o t=3/2.
Significance:
The diffusion constant D of a liquid is given by

o0

1
D = gO/C(t)dzt

—Strongly affected by the long time tail of C(t): increase by 30% over Kinetic
theory.

31



& 6. Simulation (StatMech)

0.06
0.05 - )
0.04 -
0.03 -

0.02

0.01 |

-0.01

0 0.5 1 1.5 2 25 3 3.5 4 4.5
t

Velocity autocorrelation function of the Lennard-Jones fluid

To calculate simple autocorrelation functions in a computer simulation, proceed
as follows: —

32
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Calculation of the velocity acf:

e At regular intervals of 20 — 100 time steps, mark starting values {a(tom), m =
1,...M}. Since in the further process only the preceding M =~ 10— 20 starting
values are required, it is best to store them in registers that are cyclically
overwritten.

e At each time ¢t,, compute the M products
zm = a(ty)-altom), m=1,...M

and relate them to the (discrete) time displacements At,, = t, — tom; a par-
ticular At,, defines a channel number

k = Atn/At

indicating the particular histogram channel to be incremented by z,. To
simplify the final normalization it is recommended to count the number of
times each channel k is incremented.

33
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Exercise: Run your MD program for 2000 time steps and store the velocity vector
of a certain particle (say, no. 1) at each time step. Write and test a program that
evaluates the autocorrelation function of this vector.

6. Simulation (StatMech)

Exercise: Using the experience gathered in the above exercise, write a procedure
that computes the velocity ACF, averaged over all particles, during an MD simu-
lation run.

Plot the ACF and see whether it resembles the one given in the Figure.

34
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Stochastic Dynamics

Langevin’s equation of motion for a heavy solute particle in a sea of light solvent
particles:

v(t) = —nv(t)+a(?)

with

(v(0)-a(t)) = O for t>0

2nkT
(a(0)-a(t)) = 3——46(2)
m

In addition to the autocorrelation of the quantity a(t) we need the statistical
distribution of |a|: ==assume Gauss distribution!

35
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Using the definitions
e(t) = e_nt, f(t) = 1_—677t
n

and

At At

V, = /e(At —tHa(t, + 1), R, = /f(At —tHa(t, +t)

0 0

the stepwise solution to Langevin’'s equation may be written as

[ A\ [ W
Vntl — Vne(Al)+ Vg

'nt1 = TIn + v f(At) + R,

where the elements of the stochastic vectors V,,, R,, are bivariate Gaussian variates

with (Vn> = <Rn> = O, <VnVn_|_1> = <Ran_|_1> = 0, and

36
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(Vie) = %T[l—e?(m)}
(R2) — n’z_; 2nAt — 3+ 4e(At) — 2(AL)]
(VaRa) = = f2(A0)

— Remember? We know how to sample correlated Gaussian variates. (See Chapter
3. Stochastics)

37



