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5. Partial Differential Equations

- Waves: a hyperbolic-advective
J process

Partial Differential Equations (PDE):
Most important in physics: quasilinear PDEs of second order:

d%u 0%u O

U ou Ou
ai1—— + 2a a2p—— z,y,u,—,—) = 0
155 + 12(‘3x8y+ 253 + f(=z,y 2’ By
hyperbolic: a11a22 — a%z <0 (e.g. a2 = 0, a11a22 < O)
parabo/ic: aii1a22 — a%z =0 (or aio — O, a1i1an2 = O)

elliptic: a11a22 — a%z >0 (or a2 =0, a11a20 > O)
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Examples:
2, 2
hyperbolic Qg %t’g = f(x,t) Wave equation
IE
2 2
ng %tg — a%_q; = f(z,t) Wave with damping
2
parabolic p9iu _ Ou _ f(z,t) Diffusion equation
Ox?2 Ot
h? 9%u : :
2 532 5 T h —U(x)u=0 Schroedinger equation
o 0%u 4 O%u : :
— = = P tial ation
elliptic 522 + e p(x,y) otential equati
52 52 _ : :
8—1;% ayg h2 RU(x)u =0 Schroedinger equation,
(or ... =¢€u) stationary case
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hyperbolic <= jnitial value problems
parabolic
elliptic <—> boundary value problems

Conservative hy-
perbolic and parabolic equations, describing the transport of conserved quantities,
may be written as

ou
V.
ot !
where u(r,t) (scalar or vector) is the density of a conserved quantity, and j(r,t)
the respective local “flux density”, or “current density’ .

How come? —
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(1) Consider the electromagnetic wave equation in 2D:

0%E, ,0%E,
= c
ot? Ox?
which is equivalent to
OF, 0B, 0B, OF,
— = C — C—
ot ox ot ox
—=>conservative-hyperbolic, with u =u = (E,, B;), and j = j(u) = —c(B;, Ey).

(2) Consider the diffusion equation in 1D:

2
Ou — D8_“ — Q(Da_“)
ot ox? Ooxr Oz

—=-conservative-parabolic, with j = j(Vu) = Dou/0z.
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Initial Value Problems I: Conservative-hyperbolic DE
ou 0]
ot ox

Best (i.e. most stable, exact, etc.): Lax-Wendroff technique

Approach via:

— FTCS
— Lax
— Leapfrog
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FTCS Scheme; Stability Analysis
Writing u? = u(z;,t,) and using DNGF for the time derivative (FT, “forward-
time”), and DST for the space derivative (CS, for ‘“centered-space”), we write

ou/0t = —0j/0x as

1 1
+1 ~ . .
At [u? - u?] ~ 9 Ax [‘]?—"1 _J?_l}
At
1 . .
“?Jr =uj — Az 51 — 351

n+tl QO O O
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Stability analysis (J. v. Neumann):
At time t,, expand u(z,t):

E ( n zka:J

where k = 27l/L (1 = 0,1,...). Insert this in u** = T[u?] to find each Fourier
component’s propagation law, Uyt = g(k) UP.

—=Stable if |g(k)| <1 for all k.

Application to FTCS -+ advective equation with j = cu:

g(k) Upeiar = Ugeiar — ;275 Up [¢hGHDAT _ ik(Gi=1)Az)
or
c At
g(k) = 1- < sin kAx
xr

Obviously, |g(k)| > 1 for any k; the FTCS method is inherently unstable.
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Lax Scheme

Replacing in the FTCS formula the term u? by its spatial average [u?+1 —|—u§‘_1]/2,
we approximate du/0t = —39j/0x by

1 At . .
u?_i_l =3 [u;'l+1 + u}l—l} YN [J?—I-l _J?—l}

n+1 O Q O
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Stability / Friedrichs-L 6wy condition:
Insert Fourier expanded u(x) in Lax formula to find

At
g(k) = cos kAx — i<

sin kAx
Ax

The condition |g(k)| < 1 is tantamount to

lc| At

Az

<1

N
7 N
n /. ‘ ‘\
7 N
7 N

. : : :

j-1 ] j+l
Region below the dashed line: physically relevant for u;.”rl, according to z(t,+1) =
z(tn) £ |c| At

N
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Close scrutiny shows that LAX solves not the original PDE but

ou ou  (Azx)?6%u
= _—e—+
ot Oz 2At Ox?

The additional diffusive term makes the method stable. However, it is an artefact
and should be small:

Az |5%ul
c|lAt >> ——
! 2 |oul

10
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Leapfrog Scheme (LF)
Use DST for 8/0t: Ou/dt ~ (u™t! —um~1)/2At to find the leapfrog expression

At
n+1 n—1 __ n n
YT T T AL [Jj+1 = Jj-]

n+l O @) O
|

® H\ ®

\

I
n-1 @ ‘ o
5 B R P
Stability requires once more that cAt/Azxz <1 (CFL condition)

11
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Lax-Wendroff Scheme (LW):

n+1 o Q o
|
A——n
Ve N\ I Vs \
/ N\ Ve N\
n &—m— N /@Y
j-1 j j+l1

e Lax method with half-step: Az/2, At/2:
nt1/2 1, At o
Uitz = 5 uj, +uf] - 2Ax J51 — 37

and analogously for u"+11/22 .

e Evaluation, e.g. for the advective case j = C : u:

n+1/2 -n+1/2
i+1/2 =7 Jjt+1/2

u

e /eapfrog with half-step:

Wt = o ﬂ[jnﬂp -n—|—1/2]

i = W T AL it T2

12
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Stability:
Once more assuming j = cu and using the ansatz U,?“ = g(k)U} we find
g(k) = 1—iasin kAz —a?(1 — cos kAz),

with a = cAt/Ax. The requirement |g|? < 1 leads once again to the CFL condition,
cAt/Az <1.

13
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Resume: Conservative-hyperbolic DE

ou _ _9j
ot ox

— Use Lax-Wendroff!
— If not, use at least Lax, but see that in addition to CFL,
Az |5%ul

|du|

lc|At >>

— Forget FTCS and Leapfrog!

14
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Initial Value Problems II: Conservative-parabolic DE

Diffusion:
ou 0, Ou ou )\82u

U _ 9\ o U0
5%~ 9292 " ot T Nox2

Best: 2 second-order schemes

— Crank-Nicholson
— Dufort-Frankel

But: first-order algorithms perform well, too

— FTCS (one up for old Leonhard E.!)
— Implicit (even better — good enough for many purposes!)

15
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FTCS Scheme:

In Ou/0t = \0%u/0x?, replace du/Ot by DNGF and 8%u/0z? by DDST formula:
— “forward time-centered space’” algorithm,
1 A
n—+1 n _ n n n
At [“j - “j] = () Uiy — 2uj + uf ]
Using a = AAt/(Ax)? this is

1
u;-H_ = (1 —2a)u; + a(uj_; +ujyq)

O O

?
® ® o

16
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Stability:

For the k-dependent growth factor we find g(k) = 1 — 4a sin® %22, which tells us
that for stability the condition is

(Az)? _
= T
— 2
where 7 is the characteristic time for the diffusion over a distance Az (i.e. one
lattice space).

At

The FTCS scheme is simple and stable, but inefficient.

Exercise: Remember the thermal conduction problem we considered earlier? If you
haven’'t done it then, do it now, using FTCS. Interpret the behavior of the solu-
tion for varying time step sizes in the light of the above stability considerations.

17
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Implicit Scheme of First Order:
Take the second spatial derivative at time t,41 instead of ¢,:

1 A
+1 _ +1 +1 +1
T ] = e [ 2
O O O
|
|
|
o ® o

Again defining a = AAt/(Ax)?, we find, for each space point z; (j=1,2,..N —1),

1 1 1
—augbj_l + (1 + 2a)u§L+ — au?_tl = uy

18
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Let the boundary values ug and uy be given; the set of equations may then be
written as

A . un—l—l — un
with
1 0 0 . . 0 \
—a 14+2a —a O . 0
0 . . 0] .

—a 1+2a

e

—Solve by Recursion!

19
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Stability:
We find
1
1 4+ 4a sin®(kAxz/2)

Since |g| < 1 under all circumstances, we have here an unconditionally stable al-
gorithm!

g =

Exercise: Apply the implicit technique to the thermal conduction problem discussed
before. Consider the efficiency of the procedure as compared to FTCS. Relate the
problem to the Wiener-Levy random walk.

20
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Crank-Nicholson Scheme (CN):
As before, replace du/0t by Ayu/At = (ut1 —u?)/At.

Noting that this approximation is in fact centered at ¢,,,/5, introduce the same
kind of time centering on the right-hand side: taking the mean of éfu” (= FTCS)
and §7u"*! (= implicit scheme) we write

1 n n A n n n n n n
e [ ] = gy (Gt -2t ) + i — 20 4wy
® ® ®
|
|
|
® ® ®

The Crank-Nicholson formula is of second order in At.

21
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Defining a = AAt/2(Ax)? we may write CN as

1 1 1
—a,u?j'l + (1 + 2a)u§b+ — au?i'l = au; 1 + (1 —2a)uj + aujyq

or
Ayt = B.u"
with
/ 1 0 0 : : 0 \ 1 0 0o . . O\
—a 142a —a O . 0 a 1—-2a a O . 0
A= 0 . : : 0 . B= 0 : .. 0 :
. . . —a 142a -—-a . . .. a 1—2a a
\ . . . 0 0 1 \ . o o0 1)

Tridiagonal —Solve by Recursion!

22
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Stability of CN:
The amplification factor is

;0
g(k) = 1—2a Sl.nQ(k:Aa:/Q) <1
14 2a sin“(kAxz/2)

which makes the CN method unconditionally stable.

23
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Example: The time-dependent Schroedinger equation,

Ou : : _0?
a — —’LH’U,, with H:ﬁ‘l‘U(%)
when rewritten a la Crank-Nicholson, reads
St —ufl = —J[(H) + (Hu)j]
52 n-|—1 +1 2 n
= —_ U.u" U
Doz TUNT T gy T UM

With a = At/2(Az)? and b; = U(z;)At/2 this leads to

(ia)u}t 4+ (1 — 2ia 4+ ib)u)™ + (ia)ulf] =
= (—ta)uj_; + (1 + 2ia — ibj)u; + (—ia)ujyq

Again, we have a tridiagonal system which may be inverted very efficiently by re-
cursion.

24
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Dufort-Frankel Scheme (DF):
DST in time and space, but in place of —2u? use —(u}*' 4 u}™1):
1 A
n+1 n—1 _ n n+1 n—1 n
o 157 7] = e L T R
or, with a = 2AAt/(Azx)?,

l—a a
+1 “1
Wit ST Ty, Mt

O Q O

|
|
° | ®
|
I

The DF algorithm is of second order in At. In contrast to CN, it is an explicit
expression for u;”_l'l.

25
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Stability:

1
T a cos kAz £ /1 — a?sin?kAxz
1+4+a

Considering in turn the cases a?sinkAz > 1 and ... < 1 we find that [g|2 < 1
always; the method is unconditionally stable.

26
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Resume: Conservative-parabolic DE

ou )\82u

ot o2

— Use Crank-Nicholson! (2nd order implicit scheme; needs recursion)
— If too lazy for implicit scheme, use Dufort-Frankel (2nd order explicit)
— If 1st order is sufficient, use implicit scheme

27
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Boundary Value Problems: Elliptic DE
Standard problem: two-dimensional potential equation,

0%u . O%u
0332 + 8y2 — —p(w,y)

For general p(z,y) this is Poisson’s equation; if p = 0 it is called Laplace’s equation.

Assuming Ay = Ax = Al we have

1 2 2
(Al)2 [52' uiyj + 9 ui’j] — T Pij
or
1
(A1) [wit1; — 2uig 4 w1+ w1 — 2uig + uiio1] = —pi;

(i=1,2,...N; §=1,2,...M)

28
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Construct a vector v of length N.M by linking together the rows of the matrix
{uij}:
Vpr = Uiy, with T:(i—l)M+j
The potential equation then reads
Vr—M + Vr—1 — 4vr + Ur+41 Sl Ur4+M — _(Al)zpr

or

with b = —(Al)Q{pl, . .. pN.M}T and

(—4 1 ... 1 \

1 —4 1

29
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Treating the boundaries:

Assume u;; = uy; to be given along the sides: =1 = u}; etc.

i,

— ]
o o o o o
(1,1)
(o) . . . (o)
i (o) . . . (o)
(o) . ° . (o)

©o o o o o
(5,5)

At the interior points we have

—4vr +vg+vi2 = —(AD%p22—ud; —uj,
etc., vielding a modified system matrix A and vector b.

30
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Relaxation and Multigrid Techniques

Now apply any one of the iterative techniques to solve for the vector v. In partic-

ular, the Jacobi scheme reads
(AD)?
4

1
vitl = [I+ZA] vt 4 p
A sparsely populated —>Gauss-Seidel, SOR

To speed up convergence, use the multigrid method:
— Relax the small-wavelength modes of v on the fine grid

— Double the grid width (coarsening) to get faster relaxation for the long modes

— Interpolate to recover the fine grid

Of course, this is done in a cascade, going back and forth between very coarse

and fine grids.

31
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ADI Method for the Potential Equation

Alternating Direction Implicit technique: In addition to v, construct another long
vector w by linking together the columns of the matrix {u;;}:

Ws = Uij, with Sz(j—l)N-l-i

The discretized potential equation is then
Wer1 — 2ws + Ws—1 + Vg1 — 20 Fvrm1 = —(AD)?p;
or
Ai-v+A>-w = b

with tridiagonal matrices A; and A>: —>Recursion method

32
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Fourier Transform Method (FT)
Let wp; = uprg and ugo = up ny (Periodic boundary conditions.) Then we may write

1 M—-1N-1
T — Z Z U, —e—2mikm/M —2minl/N
- m,n
’ MN
m=0 n=0
with
M—-1N-1
Um,n — uk,l€2mkm/M627rznl/N
k=0 1=0
A similar expansion is used for the charge density py ;:
M-1N-1
Rm,n — pk,l€27rzk:m/Me27rznl/N
k=0 1=0

33
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Inserting these expressions in

2
Upt1] — Uk + up—17 + upi+1 — 2upg Fupi-1 = —(ADpiy
we find

U _ _I:im,n(Al)2
™t 2[cos 2mm /M 4 cos 2nn/N — 2]

FT method for periodic boundary conditions:
e Determine R, , by Fourier analysis of p;;
e Compute Uy, from R, , according to the above equation
e Insert U, in the Fourier series for uy

Use Fast Fourier Transform! (INV In N operations instead of N2.)

Variants of the method cover other than periodic boundary conditions.
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