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DIFFERENTIAL EQUATIONS EVERYWHERE
The laws and relations of physics are often formulated in terms of DEs. Usually,

analytical solutions are hard to come by, therefore numerical integration schemes
are wanted:

Section 4. Ordinary Differential Equations

A Section 5. Partial Differential Equations



4. Ordinary Differential Equations

Euler’s integration scheme:
respect it, but don’t use it!

Ordinary Differential Equations (ODE):
Find the solution y(x) of
L(z,y,¢,y",...y™) = 0
(v = dy/dx etc.)
In physics:

— mostly first or second order
— usually given in explicit form, vy = f(x,y) or vy’ = g(z,y)



4. Ordinary DE

Second order DE may be written as 2 DEs of first order: v = z(z,y); 2’ = g(z,vy).

Example:
Harmonic oscillator: Instead of d?z/dt? = —w3z, write
dx ~dv 5
— = , — = —wjT
dt dt
or
d x O 1
= L-y, where y= and L =
dt v —wg O



4. Ordinary DE

— If the values of y, ¢’ etc. are all given at zg:
—=Initial Value Problem (IVP).

— If y, ¢/ etc. are given at several points zg, z1,...:
—= Boundary Value Problem (BVP).

Typical IVP: equations of motion d°z/dt> = K/m; x(0) and z'(0) given
Typical BVP: potential equation d?¢/dz? = p(z); ¢(x) given at boundary points



4. Ordinary DE

Initial VValue Problems of First Order

2 guinea pigs will often be used:

(1) Relaxation equation

dy

= —Ay, with y(t=0) =
= Y y( ) = yo

(2) Harmonic oscillator in linear form

— = L.y, wWwhere y= and L =
dt v —w% 0]



4. Ordinary DE

Euler-Cauchy Algorithm
Apply DNGF approximation

dy Ay,

— = of(At
Al o+ ol(An)]
to the linear DE and find the Euler-Cauchy (EC) formula
Ay
= = fn+ O[(At
= fatOl(AY)]

or

Y41 = ¥Yn + At + O[(AL)?]

Algebraically and computationally simple, but useless:

— Only first order accuracy

— Unstable: small aberrations from the true solution tend to grow in the course

of further steps. —



4. Ordinary DE

Apply EC to the relaxation equation d%—g” = —Ay(?):

Yn+1 — (1_)‘At)yn

/

EC, At=2.0

EC applied to the equation dy/dt = —Ay, with A = 1 and yo = 1: unstable for
AAL > 2



4. Ordinary DE

Stability and Accuracy of Difference Schemes:

Let y(¢t) be the exact solution of a DE, and e(t) an error: at time ¢,, the algorithm

produces y, + e;.

—t,41? For EC, y,1 1+ ewt1 =y, + e, +f(y, +e,)At. Generally,

YTL+1 + Cht+1 — T(Yn + en)
Expand around the correct solution:
dT
dy y
or
dT
€h+1 (Y) e = G- €en
dy ly,

The matrix G is called amplification matrix. All its eigenvalues must be within the

unit circle:

lgil < 1, foralli



4. Ordinary DE

Example: EC + Relaxation equation
T(yn) = (1_>‘At) Yn

1—AAt < 1

For A = 1 this condition is met whenever At < 2. —Check the previous figure!

Example: EC + Harmonic oscillator

The amplification matrix is

drT’
¢ = IO 1A
dy ly,
with eigenvalues g1 > = 1 £ iwwgAt, so that
12| = \/1 + (wo At)? > 1 always!!

—=EC applied to the harmonic oscillator is never stable.



4. Ordinary DE

Explicit Methods
— Euler-Cauchy (from DNGF; see above)
— Leapfrog algorithm (from DST):

Yot+t1 — Yn-1 + £, 2At + O[(At)s]
Yongs = ¥Yn+Ffotr12At+ O[(AL)3]

Example: Relaxation equation

Yn+1 — Yn-1— 20t Yy, + O[(At)3]

Always unstable!

Example: Harmonic oscillator

Yn+1 — 2AtL - Yn + Yn-1
Marginally stable for all At and w3.
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4. Ordinary DE

Implicit Methods
Much more stable!
— First order scheme (from DNGB): Insert

d v
T = e oolag]
dt |, At

in dy/dt = f[y(t)] to find

y'rL—I—l = Y + fn+1At + O[(At)2]
If f(y) is linear, f,4 1 =L-y,q:

Ynp1 = [I— LAt -y, 4+ O[(At)?]

Always stable for relaxation equation and harmonic oscillator.
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4. Ordinary DE

— Second order implicit scheme (from adding the DNGF formulae at ¢, and t,41,
respectively):

At
Yo+t1 — Yau + 7[fn + fn+1] + O[(At)3]
Iff,=L-y, etc.:

Yngr = [[-L571- [T+ L5 -y, + O[(At)?]

Always stable for relaxation equation and harmonic oscillator.
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4. Ordinary DE

Predictor-Corrector Method:
Explicit predictor / implicit corrector

f(o f(t )

A

(@)
PC method: a) EC ansatz: step function for f(t); bsbéeneral predictor-corrector

schemes: 1... linear NGB extrapolation; 2... parabolic NGB extrapolation

13



4. Ordinary DE

Predictor step:
— Extrapolate the function f(t), using an NGB polynomial, into [t,,t,+1].

— Formally integrate the r.h.s. in dy/dt = f(t):
—= Adams-Bashforth predictor:

2 1 O o2 33

— Truncate at some term to obtain the various predictors in the table.

14



4. Ordinary DE

Predictors for first order differential equations:
Y1 =yn + Atfa+ O[(At)?] (Euler — Cauchy!)
At
+ S Bfa—faal+ O[(At)’]
At
+ 5[23fn = 16fu-1+ 5fu2] + OL(AL)]

+ %[55 fo = 59fn-1+ 37 fn2 — 9fn-3]
+0[(At)°]

Adams-Bashforth predictors
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4. Ordinary DE

Evaluation step:
As soon as the predictor yf;l is available, insert it in f(y):

iy = flybial

Corrector step:
— Again back-interpolate the function f(t), using NGB, but now starting at ¢,+1.
— Formally re-integrate the r.h.s. in dy/dt = f(t):
— Adams-Moulton corrector:
1

1 1
Yn+1l = Yn+ At |frnt1 — Evfn+1 — Evzfn—l—l — ﬂvg)fn—l—l — o

16



4. Ordinary

DE

Correctors for first order differential equations:
Ynt1 =Yn + Atfarq + O[(AL)7]
+ SR+l + 012D
+ I8P + 8 — fal +0[(ADY

A
+ Z2IOf sy + 1900~ 5fu1 + fu]
+0[(At)°]

Adams-Moulton correctors

Finally: evaluate f,4+1 = f(yn+1)-

17



4. Ordinary DE

Stability of PC schemes:
Intermediate between the lousy explicit and the excellent implicit methods.

Example: 2nd order PC + relaxation equation: stable for At < 2/A. (The bare pre-
dictor would have At < 1/A.)
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4. Ordinary DE

Runge-Kutta Method:

y(t)

=t |—

n+1

(a)

y(t)

(b)

a) EC formula (= RK of first order); b) RK of second order

19



4. Ordinary DE

Runge-Kutta of order 2:

ki = Atf(yn)
1
ko = Atf(yn+§k1)
Ynt1 = Yo+ ko + O[(AL)%]

(Also called half-step method, or Euler-Richardson algorithm.)

20



4. Ordinary DE

A much more powerful method that has found wide application is the RK algo-
rithm of order 4, as described in the table.

Runge-Kutta of order 4 for first-order ODE:

ki = At f(yn)
1
ko = Atf(yn+ 5’61)
1
ks = At f(yn + §k2)
ka = At f(yn + k3)

1
Ynt1 =Yn + Ik + 2k2 4 ks + ka] + O[(At)°]

21



4. Ordinary DE

Advantages of RK:

— Self-starting (no preceding y,_1... needed)
— Adjustable At

But:

— Several evaluations of f(y) per step; may be too expensive

Stability of RK:
Half-step + relaxation equation: At < 2/\.
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4. Ordinary DE

Exercise: Test various algorithms by applying them to an analytically solvable prob-
lem, as the harmonic oscillator or the 2-body Kepler problem. Include in your code
tests that do not rely on the existence of an analytical solution (energy conserva-
tion or such.) Finally, apply the code to more complex problems such as the anhar-

monic oscillator or the many-body Kepler problem.
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4. Ordinary DE

Initial Value Problems of Second Order

d2y
— = bly,dy/dt
=Y = bly, dy/d]

Example: generic equation of motion,
d’r 1

2 = K]
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4. Ordinary DE

Verlet Method:
Apply DDST,
d2y 52

= —(At)2+0[( At)?]

to find

Yn+1 = 2Un — Yn—1 + bn(AL)% + O[(AL)*]

Note: velocity v = y does not appear explicitly. Use the crude estimate

vn = 5yt — o1l + O(AN?]

25



4. Ordinary DE

Stability of the Verlet scheme:

Harmonic oscillator:

Ynt1 = 2Un — Yn—1 — WiYn(AL)?
leads to

g—(2-a)g+1=0
with o = wgAt. The root

2 4
g=(1—%):ﬁ: %—az

is imaginary for a < 2, with |g]? = 1.

26



4. Ordinary DE

Equivalent formulations: Verlet leapfrog and Velocity Verlet.

Verlet leapfrog:

vn-|—1/2 — Un—l/Q + bnAt
1
Vp = E(Un—|—1/2 + v,_1/2) (if desired)
Ynt1 = Un+ Vpg124t 4+ O[(AL)?]

Leapfrog version of the Verlet method

27



4. Ordinary DE

Velocity Verlet:

At)?
Yntl = Yn + vnAt+ bn( 2) + Oo[(At)*]
At
Un+1/2 — ’Un‘|‘bn?
Evaluation step yp+1 — bp41
At
Upt1l = ’Un+1/2+bn+17

Swope’s formulation of the Verlet algorithm
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4. Ordinary DE

Predictor-Corrector Method for 2nd order ODE:

Predictor step:

In d?y/dt?> = b(t) replace the function b(t) by a NGB polynomial and integrate
twice.

(At)? [bn + %Vbn + 15—2V26n + gv%n + .. ]

19

> |bnt 3 + "t

A specific predictor of order k is found by using terms up to order V¥=2p,. Thus
the predictor of third order reads

: (At)? 1
y5+1—yn—ynAt

v3b+ ]

GPL AL — g At = (At)? Bb - %bn_ll + O[(At)*]
: (At)? 1
Yni1 — Yn — YnAt = 5 [36 — gbn 1] + Oo[(At)*]

29



4. Ordinary DE

For a compact notation we define the vector

bk = {bn7 bn—17 @0 bn—k—|—2}T
and the coefficient vectors c; and d;. Then

Predictor of order k for second order DE:

JE At — At = (At)3cy - by + O[(ADFH]
P : _(Av)? k+1
Ypnt1 — Yn — YnDL = > dy - by + O[(At)"7]
The first few vectors ci,d; are given by
Cyr = 1 d2 =1
. 3/2 . 4/3
e=(13) a=(13)

30



4. Ordinary DE

Evaluation step:
Insert the preliminary result v/’ ;,9. ., in the physical law for b[y, 9]:

bn—l—l = b[y5+1a95+1]

Corrector step:
Insert bf;rl in a NGB formula centered on t,4; and re-integrate twice:

: : 1
: (At)? 2 .
Yn+1 — Y Yy 5 +1 3 +1 12 +1 180 +1

31



4. Ordinary DE

Defining the vector

by = {b\i1,bns- buit+3}’

and coefficient vectors eg, fi, we write

Corrector of order k for second-order DE:
Unt1At — YAt = (At)%ey - by, + O[(At)FH!]
: (At)? P k41
Yntl — Yn — Un Dt = > fr - by, + O[(At)"™7]

The first few coefficient vectors are

e2=1 f2:1

32



4. Ordinary DE

Nordsieck Formulation of the PC Method:

Instead of threading a NGB polynomial through preceding points, expand y(t)
about t,. == “Taylor predictor” (e.g. of order 3):

oo = et inart i S5, B0 4 oans
Y1 At = I At+ Yn (AL)2+ Yy, ( t)3 + o[(Aat)Y]
y5+1(A2f)2 = yn(AQf)er i (At)S +0[(At)]
T (ﬁf)s = i (At)3 +ol(At)
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4. Ordinary DE

Defining the vector

Yn
?)nAtQ
Zn = .. (At
i 2!)
and the (Pascal triangle) matrix
(1 1 1 1 \
0O 1 2 3 .
A = O O 1 3
' .1

we have

P —
Zn+1—A'Zn

Now evaluate: —

34



4. Ordinary DE

Evaluation step:

Insert z,, in the force law: b2, = byl |, 40 ]

Corrector step:

Define the deviation v = [b

P
n—+1

— 4P 182 and write the corrector as

P
Zn+1 = Zp41 + e

with an optimized coefficient vector c¢c. The first few vectors are

1/6
. 5{6
1/3

19/120 (
3/4
1 ,
1/2
1/12 \

3/20
251 /360
1
11/18
1/6
1/60

)

/
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4. Ordinary DE

Advantages of Nordsieck PC:

— Self-starting
— Adjustable time steps

Stability: Again, between explicit (bad) and implicit (good).

36



4. Ordinary DE

Runge-Kutta Method for 2nd order ODE:

4th order RK for velocity independent forces:
Let b = b(y); then

b1 = b[yn]

by = b |yn+ ynAQt]

b = by + n ot + bl(Aj)Q]

ba = b -yn + g At + bz(AQt)Ql
Unt1 = Un + Ag[bl + 2bs + 2bs + ba] + O[(At)®]
Yn+1 = Yn + UL+ (& t)Q[bl + b2 + b3] + O[(At)°]

37



4. Ordinary DE

4th order RK for velocity dependent forces:

If b =0b(y,y), use
b1
b

b3
ba
yn—|—1 = yn

Yn+1 — Yn

b[ynayn]

b Yn + yn + b1
b |yn + yn + b1
b |yn + yn At + b3

A
?t[bl + 2bs + 2b3 + bsa] + O[(A)?]

Yn At +

(A t)2

(At)?

ay’n +b1—

8 2
At]

(At)?

7yn + b2_

8 2 |

At)?
( 2) , Un + b3 AL

[b1 + b2 + b3] + O[(At)°]

At ]

38



4. Ordinary DE

Advantages of RK:

— Self-starting
— Adjustable time steps

But: Repeated evaluation of the acceleration b(y) in a single time step

39



4. Ordinary DE

Exercise: Write a code that permits to solve a given second-order equation of mo-
tion by various algorithms. Apply the program to problems of point mechanics and
explore the stabilities and accuracies of the diverse techniques.

40



4. Ordinary DE

Boundary Value Problems

Examples:
— Poisson’s and Laplace's equations, d?¢/dx? = —p(x), or
do
- b —e
dx
de
dr p(x)

where p(x) is a charge density. (Laplace: p(z) = 0). Another physical problem
described by the same equation is the temperature distribution along a thin rod:
d?T/dz?> = 0.

— Time independent Schroedinger equation for a particle of mass m in a potential
U(zx):

2 m
% = —g(x)y, with g(z) = 2h—2[E —U(z)]

41



4. Ordinary DE

The general 1-dimensional BVP reads

dyi
dx
with N boundary values required. Typically there are

n1  boundary values a; (j =1,...n1) at z = z1, and

np = N —njy boundary values b, (k=1,...n2) at z = x».

The quantities y;,a; and by may simply be higher derivatives of a single solution

function y(x). Two methods are available:

— Shooting method
— Relaxation technique

= fi(z,y1,...yn); i=1,...N

42



4. Ordinary DE

Shooting Method:

— Transform the given boundary value problem into an initial value problem with
estimated parameters

— Adjust the parameters iteratively to reproduce the given boundary values

43



4. Ordinary DE

First trial shot: Augment the ni1 boundary values given at x = x1 by no =N —nq

estimated parameters

al) = {a,(gl); k=1,...n}"

to obtain an IVP. Integrate numerically up x = x>. The newly calculated
values of b, at © = z»,

b® = BV k=1,...n0}7

will in general deviate from the given boundary values b = {b;;...}7. The
difference vector e(M = b)) — b is stored for further use.

Second trial shot: Change the estimated initial values a; by some small amount,

a® = a® 4 fa, and once more integrate up to z = z». The values b,(f) thus
obtained are again different from the required values b;: e(® =b{® _ b,

Quasi-linearization: Assuming that the deviations e and e(® depend linearly

on the estimated initial values a(® and a(?), compute that vector a‘® which
would make the deviations disappear:

b@) . b(l)

a§-2) _ a§-1)

a® = aW_A-1.eM  with 4, =

Iterate the procedure up to some desired accuracy.

44



4. Ordinary DE

Example:

= = _—(1jy)2 with y(0) = y(1) =0

* First trial shot: Choose a(1) = 4/(0) = 1.0. Applying 4th order RK with Az = 0.1
we find b)) = y,..(1) = 0.674. Thus e =p(1) —y(1) = 0.674.

* Second trial shot: With a(? = 1.1 we find 5 = 0.787, i.e. ¢(2 = 0.787.
* Quasi-linearization: From
a@ _ 4@

3 1)
a - = 4a b(2) — p(»)

o)

we find a® = 0.405 (= v/(0)).
Iteration: The next few iterations yield the following values for a (= 3'(0)) and

b(=y(1)):
4™ p(n)

n
3 0.405 —0.041
4 0.440 0.003
5 0.437 0.000
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4. Ordinary DE

Relaxation Method:

Discretize z to transform a given DE into a set of algebraic equations. For example,
applying DDST to

dz2 = b(z,y)

we find
d?y N 1
de2 = (Azx)2
which leads to the set of equations
Yi+1 — 2Yi + Yi—1 —bi(Aac)2 = 0, 1=2,..M -1

Since we have a BVP, y1 and yj; will be given.

lyi+1 — 2yi + yi—1]
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4. Ordinary DE

* Let y(I) = {y;} be an inaccurate (estimated?) solution. The error components
e = Yi+1 — 2Yi + Yi-1 —bi(Aw)Q, 1=2,...M -1

together with e; = ey = 0 then define an error vector e().

How to modify y(I) to make ) disappear? —=Expand e¢; linearly:

ei(Yi-1 + Ayi—1,Yi + AYi, Yiv1 + Ayit1) =~
Oe; de; Oe;
~ e + Ay 1+ —Ay; + Ayit1
0yi—1 dyi OyYi+1
=e; + aiAyi—1 + Bildyi + vilDyiy1 (i=1,...M)

This modified error vector is called e(2). We want it to vanish, e(2) = 0:

1 0 0 ..
A-Ay = —e® with A=| @@ P2 12 O
0 1

Thus our system of equations is tridiagonal: —Recursion technique!
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4. Ordinary DE

Example:
d2y
—2 = ———— _ with y(0)=y(1)=0
T2 1122 y(0) = y(1)
DDST leads to e; = y;41 — 2y; + yi—1 + (Az)2/(1 + y;)2. Expand:
Oe; Oe; Oe; Azx)?
o = 2 —1; =t =1 B= e:—2[1+(—x)3] i=2,.. . M—1
Oyi-1 0Yi+1 Oy; (14 )
Start the downwards recursion: gy -1 = —ay/By = 0 and hy 1 = —epn /By = 0.
—qy —1 —e; — h;
gi-1 — = , hii=——
Bi +vigi Bi+ gi Bi + gi
brings us down to gi, hi. Putting
—e1 — v1h1
Ayl == — 61(: 0)
B1+ 7191

we take the upwards recursion
Ayiy1 = gilDyi+hi; i=1,...M -1

Improve y; — y;+Ay; and iterate.
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