Introduction to Computational Physics

University of Maribor, Summer Term 2003

Franz J. Vesely University of Vienna

www.ap.univie.ac.at/users/Franz.Vesely/

3. Stochastics

3. Stochastics

John von Neumann, playing randomly

- Statistics turned upside down
- Production of Random Numbers and Random Sequences with desired properties
- Random paths through real space (diffusion) or phase space (Monte Carlo Simulation)
- Application of MC to optimization and minimization problems

Equidistributed Random Variates:

- Linear Congruential Generators
- Shift Register Generators

Other Distributions:

- Transformation Method
- Box-Muller Method for the Normal Distribution
- Rejection Method
- Multivariate Gaussian Distribution
- Equidistribution in Orientation Space

Random Sequences:

- Markov Chains and the Monte Carlo method
- Stochastic Optimization
- Simulated Annealing
- Genetic Algorithms

Linear Congruential Generators:

$$I_{n+1} = [a I_n + b] \mod m$$

where a is some (odd) multiplicative factor, m is the largest integer (hardware-dependent, e.g. $m=2^{32}$), and b is relatively prime with respect to m.

To obtain random numbers x_n of type *real*, equidistributed over the interval (0,1), divide I_n by m.

⇒ Library or internal routines RAND, RND, RAN etc.

To minimize serial correlations:

"Erasing tracks:"

- 1. Produce a list RLIST(i) of Z equidistributed random numbers $x_i \in (0,1)$; i=1...Z. (e.g., Z=97.)
- 2. Sample an additional random number y in (0,1).
- 3. Determine a pointer index $j \in [1, Z]$ according to

$$j = 1 + \operatorname{int}(y \cdot Z)$$

- $(int(r) \dots largest integer smaller than the real number r.)$
- 4. Use the element RLIST(j) corresponding to j as the output random number.
- 5. Put y = RLIST(j) and replace RLIST(j) by a new random number $\in (0,1)$; return to (3).

Shift Register Generators:

(Also "Tausworthe" or "XOR" generators) Originally for the production of *random bits*, but one may always generate 16, 32, etc. bits at a time and combine them to a computer word.

Let bits $b_1, b_2, ...b_n$ be already given; then

$$b_{n+1} = b_k \oplus b_m \oplus \ldots \oplus b_n,$$

with k < m < ... < n, and \oplus ... "exclusive or" (XOR)

To find optimal indices (k, m, ..., n): see the theory of "primitive polynomials modulo 2".

"Exhaustive" property: Starting such a recursion with an arbitrary combination of n bits (except 0...0), all possible configurations of n bits will be realized just once before a new cycle begins.

3. Stochastics

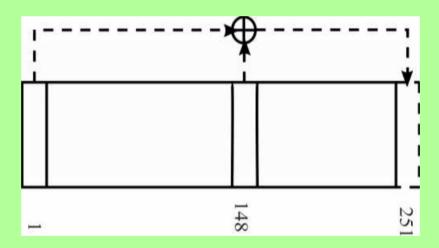
Example: (1,3) is one of the optimal combinations. Starting with the sequence $\{b_1,b_2,b_3\}=\{101\}$ and applying $b_4=b_3\oplus b_1$ etc., we find the sequence, reading from left to right,

101 001 110 100 111 010 011 101 ...

It is evident that indeed all possible 3-bit groups (except 000) occur before the sequence repeats.

A very popular prescription is the "R250" algorithm of Kirkpatrick-Stoll, based on m=103 and n=250:

$$I_s = I_{s-103} \oplus I_{s-250}$$



For the first 250 random integers, use a linear congruential generator.

Other Distributions:

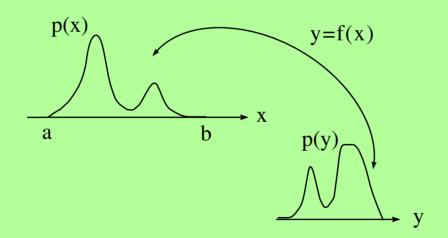
Transformation of probability densities:

Given p(x) and a bijective mapping y = f(x); $x = f^{-1}(y)$; then

$$|p(y) dy| = |p(x) dx|$$

or

$$p(y) = p(x) \left| \frac{dx}{dy} \right| = p[f^{-1}(y)] \left| \frac{df^{-1}(y)}{dy} \right|$$



This relation holds for any kind of density.

Example: The spectral density of black body radiation is usually written in terms of the angular frequency ω :

$$I(\omega) = \frac{\hbar\omega^3}{\pi c^3} \frac{1}{e^{\hbar\omega/kT} - 1}$$

If we prefer to give the spectral density in terms of the wave length $\lambda \equiv 2\pi c/\omega$, we have

$$I(\lambda) = I[\omega(\lambda)] \left| \frac{d\omega}{d\lambda} \right| = \frac{\hbar}{\pi c^3} \left(\frac{2\pi c}{\lambda} \right)^3 \frac{1}{e^{(hc/\lambda)/kT} - 1} \left(\frac{2\pi c}{\lambda^2} \right)$$

Exercise: A powder of approximately spherical metallic grains is used for sintering. The diameters of the grains obey a normal distribution with $\langle d \rangle = 2 \mu m$ and $\sigma = 0.25 \mu m$. Determine the distribution of the grain volumes.

Transformation Method:

Given a probability density p(x):

Find a bijective mapping y = f(x) such that the distribution of y is p(y) = c:

$$p(x) = c \left| \frac{dy}{dx} \right| = c \left| \frac{df(x)}{dx} \right| \text{ or } \left| \frac{df(x)}{dx} \right| = \frac{1}{c} p(x)$$

It is easy to see that

$$f(x) = P(x) \equiv \int_a^x p(x')dx'$$

fulfills this condition, with c = 1.

Transformation method:

Let p(x) be a desired density, with $y = P(x) = \int p(x')dx'$. Assume that $P^{-1}(y)$ be known.

- ullet Sample y from an equidistribution in the interval (0,1).
- Compute $x = P^{-1}(y)$.

The variable x then has the desired probability density p(x).

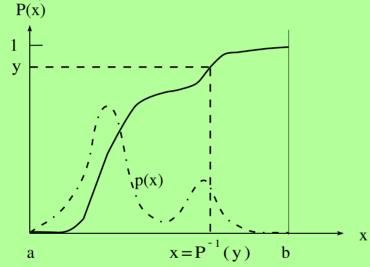
Example: Let

$$p(x) = \frac{1}{\pi} \frac{1}{1 + x^2}$$
 (Lorentzian), $x \in (\pm \infty)$

Then $y = P(x) = 1/2 + (1/\pi)$ arctan x, with the inverse $P^{-1}(y) = \tan[\pi(y - 1/2)]$. Therefore:

- Sample y equidistributed in (0,1).
- Compute $x = \tan[\pi(y \frac{1}{2})]$.

Geometrical interpretation:



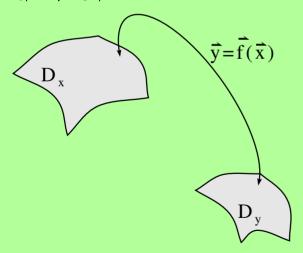
y is sampled from an equidistribution $\in (0,1)$ and $x=P^{-1}(y)$. \Longrightarrow The regions where P(x) is steeper (i.e. p(x) is large) are hit more frequently.

Generalized Transformation Method:

Same as before, but with *n*-tuples of random variates: Let $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{x} \in D_x$, and $\mathbf{y} = \mathbf{f}(\mathbf{x})$ with $\mathbf{y} \in D_y$. Then

$$p(\mathbf{y}) = p(\mathbf{x}) \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \right|$$

 $(|\partial \mathbf{x}/\partial \mathbf{y}| \dots$ Jacobi determinant of the transformation $\mathbf{x} = \mathbf{f}^{-1}(\mathbf{y})$.)



The following procedure for the production of Gaussian random variates may be understood as an application of this. \Longrightarrow

Normal distribution: *

Box-Muller technique:

- Sample $(y_1, y_2) \in (0, 1)^2$
- Construct

$$x_1 = \sqrt{-2 \ln y_1} \cos 2\pi y_2$$

 $x_2 = \sqrt{-2 \ln y_1} \sin 2\pi y_2$

 x_1, x_2 are then normal-distributed and statistically independent. Gaussian variates with given variances σ_1^2 , σ_2^2 are obtained by multiplying x_1 and x_2 by their respective σ_i .

^{*}A "quick and dirty" method to produce almost normal variates goes as follows: if $y = x_1 + ... + x_n$ is the sum of n = 10 - 15 equidistributed random numbers in (-0.5, 0.5), then the distribution of $z \equiv y \sqrt{12/n}$ is almost normal.

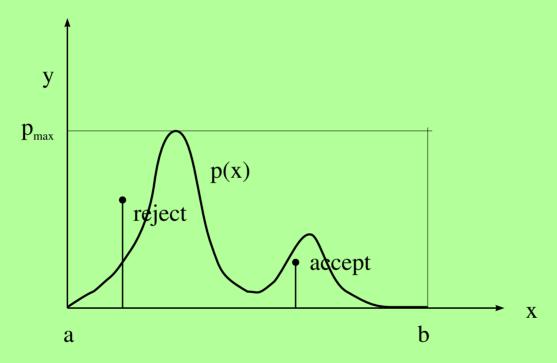
Rejection Method:

A classic: created by John von Neumann, applicable to almost any p(x).

Rejection method:

Let [a,b] be the allowed range of values of the variate x, and p_m the maximum of the density p(x).

- 1. Sample a pair of equidistributed random numbers, $x \in [a,b]$ and $y \in [0,p_m]$.
- 2. If $y \leq p(x)$, accept x as the next random number, otherwise return to step 1.



The method is simple and fast, but it becomes inefficient whenever the area of the rectangle $[a,b]\otimes [0,p_m]$ is large compared to the area below the graph of p(x). Otherwise, the "Improved Rejection Method" may be applicable: \Longrightarrow

Improved rejection method:

Let f(x) be a test function similar to p(x), with

$$f(x) \geq p(x); x \in [a,b]$$

 $F(x) \equiv \int f(x) dx$ is assumed to be known and invertible

1. Pick a random number $x \in [a,b]$ from a distribution with density

$$\bar{p}(x) = \frac{f(x)}{F(b) - F(a)}$$

by using the transformation method. Pick an additional random number y equidistributed in the interval [0, f(x)].

2. If $y \le p(x)$ accept x as the next random number, else return to Step 1.

Multivariate Gaussian Distribution:

$$p(x_1,...,x_n) = \frac{1}{\sqrt{(2\pi)^n S}} e^{-\frac{1}{2}\sum \sum g_{ij} x_i x_j}$$

or

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n S}} e^{-\frac{1}{2}\mathbf{X}^T \cdot \mathbf{G} \cdot \mathbf{X}} \equiv \frac{1}{\sqrt{(2\pi)^n S}} e^{-\frac{1}{2}Q}$$

with the *covariance matrix* of the x_i

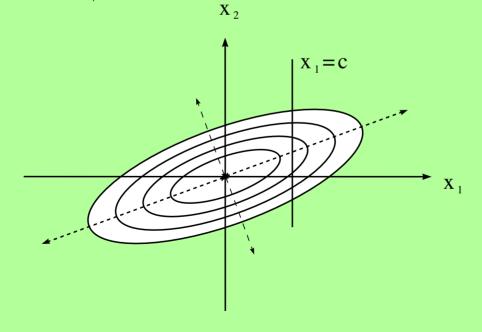
$$\mathbf{S} \equiv \mathbf{G}^{-1} \equiv \left(\begin{array}{ccc} \langle x_1^2 \rangle & \langle x_1 x_2 \rangle & \dots \\ \vdots & \langle x_2^2 \rangle & \dots \\ & & \ddots \end{array} \right)$$

 $S \equiv |\mathbf{S}|$ is the determinant of this matrix. \mathbf{S} and \mathbf{G} are symmetric, their eigenvalues are called σ_i^2 and γ_i (sorry!).

Example: Assume that two Gaussian variates have the variances $s_{11} \equiv \langle x_1^2 \rangle = 3$, $s_{22} \equiv \langle x_2^2 \rangle = 4$, and the covariance $s_{12} \equiv \langle x_1 x_2 \rangle = 2$:

$$S = \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}; G \equiv S^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{8} \end{pmatrix}$$

The quadratic form Q in the exponent is then $Q = (1/2) x_1^2 - (1/2) x_1 x_2 + (3/8) x_2^2$, and the lines of equal density (that is, of equal Q) are ellipses which are inclined with respect to the $x_{1,2}$ coordinate axes:



Rotate the axes of the ellipsoids Q = const to coincide with the coordinate axes: \implies cross correlations vanish!

Principal axis transformation:

- Determine eigenvalues γ_j and eigenvectors \mathbf{g}_j of \mathbf{G} . (Use NAG-F02AMF, ESSL-SSYGV, or your own code.)
- ullet Combine the n column vectors ${f g}_j$ into a matrix ${f T}$. This matrix diagonalizes ${f G}$ (and consequently Q.)

Since T is orthogonal $(T^T = T^{-1})$ it diagonalizes not only $G \equiv S^{-1}$ but also S itself. $\Longrightarrow S^{-1}$ need never be computed!

Having found T, we arrive at the following prescription for the production of correlated Gaussian variables: \Longrightarrow

Multivariate Gaussian distribution:

Let the covariance matrix S be given.

- ullet Determine, by principal axis transformation, the diagonalization matrix ${f T}$ for ${f S}$ (This step is performed only once.)
- Generate n mutually independent Gaussian random variates y_i with the variances σ_i^2 .
- ullet Transform the vector $\mathbf{y} \equiv (y_1 \dots y_n)^T$ according to

$$x = T \cdot y$$

The n elements of the vector \mathbf{x} are then random numbers obeying the desired distribution.

Let's try it out: \Longrightarrow

Example: Once more, let

$$\mathbf{S} = \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}, \text{ with the inverse } \mathbf{G} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{8} \end{pmatrix}$$

Principal axis transformation: The eigenvalues of S are $\sigma_{1,2}^2 = (7 \pm \sqrt{17})/2 = 5.562|1.438$, and the corresponding eigenvectors are

$$\mathbf{s}_1 = \left(\begin{array}{c} 0.615 \\ 0.788 \end{array} \right) \quad \mathbf{s}_2 = \left(\begin{array}{c} 0.788 \\ -0.615 \end{array} \right) \quad \text{Thus} \quad \mathbf{T} = \left(\begin{array}{c} 0.615 & 0.788 \\ 0.788 & -0.615 \end{array} \right)$$

Generator: To produce pairs (x_1, x_2) of Gaussian random numbers with the given covariance matrix:

- Draw y_1 and y_2 Gaussian, uncorrelated, with variances 5.562 and 1.438.
- ullet Compute x_1 and x_2 according to

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.615 & 0.788 \\ 0.788 & -0.615 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

3. Stochastics

Exercise: Write a program that generates a sequence of bivariate Gaussian random numbers with the statistical properties as assumed in the foregoing example. Determine $\langle x_1^2 \rangle$, $\langle x_2^2 \rangle$, and $\langle x_1 x_2 \rangle$ to see if they indeed approach the given values of 3, 4, and 2.

Homogeneous distributions in Orientation Space:

Equidistribution on the unit circle:

- Draw a pair of equidistributed random numbers $(y_1, y_2) \in (-1, 1)^2$; compute $r^2 = y_1^2 + y_2^2$; if necessary, repeat until $r^2 \le 1$.
- $x_1 \equiv y_1/r$ and $x_2 \equiv y_2/r$ are the cartesian coordinates of points that are homogeneously distributed on the circumference of the unit circle.

Equidistribution on a spherical surface:

- \bullet Draw pairs of random numbers $(y_1,y_2)\in (-1,1)^2$ until $r^2\equiv y_1^2+y_2^2\leq 1.$
- The quantities

$$x_1 = 2y_1\sqrt{1-r^2}$$

 $x_2 = 2y_2\sqrt{1-r^2}$
 $x_3 = 1-2r^2$

are then the cartesian coordinates of points out of a homogeneous distribution on the surface of the unit sphere.

(Generalization to hyperspherical surfaces: see Vesely, Comp. Phys.)

Random Sequences:

So far: random numbers, preferably no serial correlations $\langle x_n x_{n+k} \rangle$. Now: sequences of r. n. with given serial correlations.

Let $\{x(t)\}\$ be an ensemble of functions of time t. Then

$$P_1(x;t) \equiv \mathcal{P}\left\{x(t) \leq x\right\} \quad \text{and} \quad p_1(x;t) \equiv \frac{dP_1(x;t)}{dx}$$

are the probability distribution and the respective density.

Example: Let $x_0(t)$ be a deterministic function of time, and assume that the quantity x(t) at any time t be Gauss distributed about the value $x_0(t)$:

$$p_1(x;t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} [x - x_0(t)]^2 / \sigma^2}$$

A random process is called a *random sequence* if the variable t may assume only discrete values $\{t_k; k = 0, 1, ...\}$. In this case one often writes x(k) for $x(t_k)$.

The foregoing definitions may be generalized in the following manner:

$$P_{2}(x_{1}, x_{2}; t_{1}, t_{2}) \equiv \mathcal{P}\{x(t_{1}) \leq x_{1}, x(t_{2}) \leq x_{2}\}$$

$$\vdots$$

$$P_{n}(x_{1}, \dots, x_{n}; t_{1}, \dots, t_{n}) \equiv \mathcal{P}\{x(t_{1}) \leq x_{1}, \dots, x(t_{n}) \leq x_{n}\}$$

Thus $P_2(...)$ is the compound probability for the events $x(t_1) \le x_1$ and $x(t_2) \le x_2$. These higher order distribution functions and the corresponding densities

$$p_n(x_1,\ldots,x_n;t_1,\ldots,t_n) = \frac{d^n P_n(x_1,\ldots,x_n;t_1,\ldots,t_n)}{dx_1\ldots dx_n}$$

describe the random process in ever more – statistical – detail.

Stationarity: A random process is stationary if

$$P_n(x_1,\ldots,x_n;t_1,\ldots,t_n) = P_n(x_1,\ldots,x_n;t_1+t,\ldots,t_n+t),$$

This means that the origin of time is of no importance:

$$p_1(x;t) = p_1(x)$$
 and $p_2(x_1,x_2;t_1,t_2) = p_2(x_1,x_2;t_2-t_1)$

Autocorrelation:

$$\langle x(0) x(\tau) \rangle \equiv \int_a^b \int_a^b x_1 x_2 p_2(x_1, x_2; \tau) dx_1 dx_2,$$

For $\tau \to 0$ the autocorrelation function (acf) approaches the variance $\langle x^2 \rangle$. For finite τ it tells us how rapidly a particular value of x(t) will be "forgotten".

Gaussian process: The random variables $x(t_1), \ldots, x(t_n)$ obey a multivariate Gaussian distribution. The covariance matrix elements are $\langle x(0) x(t_j - t_i) \rangle$, i.e. the values of the autocorrelation function at the specific time displacement:

$$p_2(x_1, x_2; \tau) = \frac{1}{\sqrt{(2\pi)^2 S_2(\tau)}} e^{-\frac{1}{2}Q}$$

with

$$Q \equiv \frac{\langle x^2 \rangle x_1^2 - 2\langle x(0)x(\tau) \rangle x_1 x_2 + \langle x^2 \rangle x_2^2}{S_2(\tau)}$$

and

$$S_2(\tau) \equiv |\mathbf{S}_2(\tau)| = \langle x^2 \rangle^2 - \langle x(0) x(\tau) \rangle^2$$

Markov Process: A stationary random sequence $\{x_n; n = 0, 1...\}$ has the Markov property if its "memory" goes back only one time step:

$$p(x_n|x_{n-1}\dots x_1) = p(x_n|x_{n-1})$$

where the conditional density

$$p(x_n|x_{n-1};\tau) = \frac{p_2(x_{n-1},x_n)}{p_1(x_{n-1})}$$

is the density of x_n under the condition that $x(n-1) = x_{n-1}$. Thus all statistical properties of the process are contained in $p_2(x_{n-1}, x_n)$.

An even shorter memory would mean that successive elements of the sequence were not correlated at all.

3. Stochastics

Gaussian Markov processes: To describe them uniquely not even $p_2(...)$ is needed. If the autocorrelation function $\langle x(n) x(n+l) \rangle$ is known, $p_2(..)$ and consequently all statistical properties of the process follow.

Note: The acf of a stationary Gaussian Markov process is always an exponential:

$$\langle x(0) x(\tau) \rangle = \langle x^2 \rangle e^{-\beta \tau}$$

or

$$\langle x(n) x(n+k) \rangle = \langle x^2 \rangle e^{-\beta \Delta t k}$$

How to produce a Markov sequence? ⇒

Generating a stationary Gaussian Markov sequence:

Solve the stochastic differential equation

$$\dot{x}(t) = -\beta x(t) + s(t)$$

with a stochastic "driving" process s(t), assumed to be uncorrelated Gaussian noise, i.e. Gauss distributed about $\langle s \rangle = 0$, with $\langle s(0) s(t) \rangle = A \, \delta(t)$.

The general solution to this equation reads

$$x(t) = x(0) e^{-\beta t} + \int_0^t e^{-\beta(t-t')} s(t') dt'$$

Inserting $t = t_n$ and $t = t_{n+1} \equiv t_n + \Delta t$ one finds that

$$x(t_{n+1}) = x(t_n) e^{-\beta \Delta t} + \int_0^{\Delta t} e^{-\beta(\Delta t - t')} s(t_n + t') dt'$$

At any time t, the values of x(t) belong to a stationary Gauss distribution with $\langle x^2 \rangle = A/2\beta$, and the process $\{x(t_n)\}$ has the Markov property.

The integrals

$$z(t_n) \equiv \int_0^{\Delta t} e^{-\beta(\Delta t - t')} s(t_n + t') dt'$$

are elements of a random sequence, with z Gauss distributed with zero mean and $\langle z(t_n) z(t_{n+k}) \rangle = 0$ for $k \neq 0$. Their variance is

$$\langle z^2 \rangle = \frac{A}{2\beta} (1 - e^{-2\beta \Delta t})$$

Here is the resulting recipe for generating a stationary, Gaussian Markov sequence: \Longrightarrow

"Langevin Shuffle":

Let the desired stationary Gaussian Markov sequence $\{x(n); n = 0, \ldots\}$ be defined by the autocorrelation function

$$\langle x(n) x(n+k) \rangle = \frac{A}{2\beta} e^{-\beta k \Delta t}$$

with given parameters A, β and Δt . Choose a starting value x(0), either as x(0) = 0 or from a Gauss distribution with $\langle x \rangle = 0$ and $\langle x^2 \rangle = A/2\beta$.

• Draw z(n) from a Gaussian distribution with $\langle z \rangle = 0$ and

$$\langle z^2 \rangle = \frac{A}{2\beta} (1 - e^{-2\beta \Delta t})$$

Construct

$$x(n+1) = x(n) e^{-\beta \Delta t} + z(n)$$

The random sequence thus produced has the desired properties.

If $\beta \Delta t \ll 1$, replace the exponential by its linear Taylor approximation. The iteration prescription then reads $x(n+1) = x(n) (1-\beta \Delta t) + z'(n)$, where z'(n) is Gaussian with $\langle z'^2 \rangle = A \Delta t (1-\beta \Delta t)$.

3. Stochastics

Exercise: Employ the above procedure to generate a Markov sequence $\{x_n\}$ with a given β . Check if the sequence shows the expected autocorrelation.

Wiener-Lévy Process (Unbiased Random Walk)

With $\beta = 0$ in the above differential equation, we find

$$x(n+1) = x(n) + z(n)$$

where z(n) is Gaussian with

$$z(n) \equiv \int_0^{\Delta t} s(t_n + t') dt' \langle z \rangle = 0 \langle z^2 \rangle = A \Delta t$$

Since z and x are uncorrelated, we have

$$\langle [x(n)]^2 \rangle = n A \Delta t$$

Example: Let x be one cartesian coordinate of a diffusing particle. Then $\langle [x(n)]^2 \rangle$ is the mean squared displacement after n time steps. In this case we may relate the coefficient A to the diffusion constant according to A=2D.

Wiener-Lévy process:

Let $A\Delta t$ be given. Choose x(0) = 0.

- Pick z(n) from a Gauss distribution with variance $A\Delta t$.
- Compute

$$x(n+1) = x(n) + z(n)$$

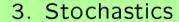
The random sequence thus produced is a nonstationary Gaussian process with variance $[x(n)]^2 = n A \Delta t$.

Exercise: 500 random walkers set out from positions x(0) homogeneously distributed in the interval [-1,1]. The initial particle density is thus rectangular. Each of the random walkers is now set on its course to perform its own one-dimensional trajectory, with $A \Delta t = 0.01$. Sketch the particle density after 100, 200, ... steps.

It is not really necessary to draw z(n) from a Gaussian distribution. If z(n) comes from an equidistribution in $[-\Delta x/2, \ \Delta x/2]$, the "compound" x-increment after every 10-15 steps will again be Gauss distributed (central limit theorem).

We may even discretize the x-axis: $z=0, \pm \Delta x$ with equal probability 1/3: after many steps, and on a scale which makes Δx appear small, the results will again be the same.

To simulate 2- or 3-dimensional diffusion, apply the above procedure independently to 2 or 3 coordinates.



Markov Chains (Biased Random Walk)

A Markov sequence of discrete x_{α} is called a *Markov chain*.

We generalize the discussion to "state vectors" $\{\mathbf{x}_{\alpha}, \alpha = 1, \dots M\}$. The conditional probability

$$p_{lphaeta} \;\; \equiv \;\; \mathcal{P}\left\{\mathbf{x}(n) = \mathbf{x}_eta \,|\, \mathbf{x}(n-1) = \mathbf{x}_lpha
ight\}$$

is called *transition probability* between the states α and β .

Let M be the total number of possible states. The $M \times M$ -matrix $\mathbf{P} \equiv \{p_{\alpha\beta}\}$ and the M-vector \mathbf{p} consisting of the individual probabilities $p_{\alpha} \equiv \mathcal{P}\{\mathbf{x} = \mathbf{x}_{\alpha}\}$ determine the statistical properties of the Markov chain uniquely.

A Markov chain is reversible if

$$p_{\alpha} p_{\alpha\beta} = p_{\beta} p_{\beta\alpha} \tag{1}$$

– Meaning?

The M^2 elements of the matrix ${\bf P}$ are not uniquely defined by the M(M-1)/2 reversibility conditions. \Longrightarrow For a given distribution density ${\bf p}$ there are many reversible transition matrices. \Longrightarrow "Asymmetrical rule" (N. Metropolis):

N. Metropolis' asymmetric rule:

Let Z be the number of states \mathbf{x}_{β} accessible from \mathbf{x}_{α} , and let the a priori access probability be $\pi_{\alpha\beta}=1/Z$. Then

$$p_{lphaeta} = \pi_{lphaeta} \qquad \qquad ext{if} \ \ p_eta \geq p_lpha \ p_{lphaeta} = \pi_{lphaeta} rac{p_eta}{p_lpha} \qquad \qquad ext{if} \ \ p_eta < p_lpha \$$

 $\Longrightarrow p_{\alpha\beta}$ is reversible!

Monte Carlo Method

Central theorem:

If the stationary Markov chain characterized by $\mathbf{p} \equiv \{p_{\alpha}\}$ and $\mathbf{P} \equiv \{p_{\alpha\beta}\}$ is reversible, then each state \mathbf{x}_{α} will be visited, in the course of a sufficiently long chain, with the relative frequency p_{α} .

 \Longrightarrow Here is yet another recipe for generating random numbers with a given probability density p:

Random numbers à la Metropolis:

Let $\mathbf{p} \equiv \{p_{\alpha}; \ \alpha = 1, 2, \ldots\}$ be the vector of probabilities of the events $x = x_{\alpha}$. To generate a random sequence $\{x(n)\}$ in which the relative frequency of the event $x(n) = x_{\alpha}$ approaches p_{α} :

• After the n-th step, let $x(n) = x_{\alpha}$. Draw a value x_{β} from a region around x_{α} , e.g. according to

$$x_{\beta} = x_{\alpha} + (\xi - 0.5) \, \Delta x$$

where $\xi \in (0,1)$.

- If for $p_{\beta} \equiv p(x_{\beta})$ we have $p_{\beta} \geq p_{\alpha}$, then let $x(n+1) = x_{\beta}$.
- If $p_{\beta} < p_{\alpha}$, then pick a random number $\xi \in (0,1)$; if $\xi < p_{\beta}/p_{\alpha}$, let $x(n+1) = x_{\beta}$; else put $x(n+1) = x_{\alpha}$.

Adjust the parameter Δx such that approximately one out of two trial moves leads to a new state, $x(n+1) = x_{\beta}$.

Warning: The random numbers thus produced are serially correlated: $\langle x(n) x(n+k) \rangle \neq 0$.

Exercise: Let $p(x) = A \exp[-x^2]$ be the desired probability density. Apply the Metropolis' prescription to generate random numbers with this density. Confirm that $\langle x(n) x(n+k) \rangle \neq 0$.

Advantage of Metropolis' method: only p_{β}/p_{α} is needed, not p_{α} .

⇒Statistical-mechanical Monte Carlo simulation: only *relative* thermodynamic probabilities needed!

Stochastic Optimization

Finding the global extremum of a function of many variables:

- Nonlinear fit to a set of table values
- improvement of complex electronic circuits ("travelling salesman problem")
- find the most stable (i. e. lowest energy) configuration of microclusters or biopolymers.

— . . .

Two methods:

- Simulated Annealing
- Genetic Algorithms

Simulated Annealing

Consider a Metropolis walk through the space of "states" \mathbf{x}_{α} with

$$p_{\alpha} = A \exp{-\beta U(\mathbf{x})}$$

where $U(x_1,\ldots x_M)$ is a "cost function" to be minimized, and β a tunable parameter (a reciprocal "temperature".)

- Low $\beta \Longrightarrow$ smaller variation of p_{α} ; higher $U(\mathbf{x})$ are accessible
- High $\beta \Longrightarrow x$ will tend to go "downhill"

Simulated Annealing:

Draw a starting vector $\mathbf{x}^0 \equiv \{x_1^0, \dots x_M^0\}$ at random, and choose a high initial "temperature" kT.

Carefully lower the temperature: \Longrightarrow regions with lower $U(\mathbf{x})$ will be visited more frequently than the higher ranges.

Finally, for $kT \to 0$ the system point will come to rest in a minimum that very probably (not with certainty!) will be the global minimum.

Exercise: Create (fake!) a table of "measured values with errors" according to

$$y_i = f(x_i; c_1, \dots c_6) + \xi_i, \quad i = 1, 20$$
 (2)

with ξ_i coming from a Gauss distribution with suitable variance, and with the function f defined by

$$f(x; \mathbf{c}) \equiv c_1 e^{-c_2(x - c_3)^2} + c_4 e^{-c_5(x - c_6)^2}$$
(3)

 $(c_1 \dots c_6)$ being a set of arbitrary coefficients).

Using these data, try to reconstruct the parameters $c_1 \dots c_6$ by fitting the theoretical function f to the table points (x_i, y_i) . The cost function is

$$U(\mathbf{c}) \equiv \sum_{i} [y_i - f(x_i; \mathbf{c})]^2$$
 (4)

Choose an initial vector ${f c}^0$ and perform an MC random walk through ${f c}$ -space, slowly lowering the temperature.

Genetic Algorithms

Evolution of biological systems:

- Adaptation of species to external conditions: optimization
- Adaptation strategy itself has evolved over time: sexual reproduction

 \Longrightarrow More sex:

Consider some oscillatory function f(x) of a single variable, having one global minimum within the range of definition, $x \in [a, b]$. Find x^* with $f(x^*) = \min\{f(x), x \in [a, b]\}$.

- 1. Start with a population of randomly chosen numbers (individuals), $\{x_i^0 \epsilon [a,b],$ i = 1, ... N. (N is kept constant.)

 - "Gene": bit string of x_i^0 "Fitness": low $f_i \equiv f(x_i^0)$ = high fitness and vice versa
 - Relative fitness (probability of reproduction): $p_i \equiv f_i / \sum_{i=1}^N f_i$. This is a probability density, and $P(x_i) \equiv P_i \equiv \sum_{j=1}^i p_j$ is its cumulative distribution function.
- 2. Draw N individuals in accordance with their reproduction probability (Transformation method!).

The new population $\{x_i', i = 1, ... N\}$ is fitter than the original one. However, thus far we have remained at the level of primitive selective reproduction without mutation or sexual crossover.

- 3. Pick pairs of individuals at random and submit their genetic strings are to crossover:
 - () Draw a position m within the bit strings; () swap the bits following mbetween the two strings. The number of such pairings, the "crossover rate",

should be around 0.6 N. The resulting set $\{x_i'', i = 1, ... N\}$ is called the *offspring* population.

4. Finally, mutation comes into play: within each string x_i'' every single bit is reversed with a probability $p_{mut} \approx 0.01$.

The resulting population is regarded as the next generation, $\{x_i^1, i=1,...N\}$, and we are back at step 2.

Exercise: Apply the simple genetic algorithm to find the minimum of the function $[2\sin(10x-1)]^2+10(x-1)^2$ within the interval [0,2].