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3. Stochastics

3. Stochastics

John von Neumann, playing randomly

- Statistics turned upside down

- Production of Random Numbers and Random Sequences with desired properties
- Random paths through real space (diffusion) or phase space (Monte Carlo Si-
mulation)

- Application of MC to optimization and minimization problems



3. Stochastics

Equidistributed Random Variates:
- Linear Congruential Generators
- Shift Register Generators

Other Distributions:

- Transformation Method

Box-Muller Method for the Normal Distribution
Rejection Method

Multivariate Gaussian Distribution
Equidistribution in Orientation Space

Random Sequences:

- Markov Chains and the Monte Carlo method
- Stochastic Optimization

- Simulated Annealing

- Genetic Algorithms
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Linear Congruential Generators:

Iny1 =[al,+b] modm

where a is some (odd) multiplicative factor, m is the largest integer (hardware-
dependent, e.g. m = 232), and b is relatively prime with respect to m.

To obtain random numbers z,, of type real, equidistributed over the interval (0, 1),
divide I,, by m.

—=Library or internal routines RAND, RND, RAN etc.
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To minimize serial correlations:

“Erasing tracks:”

1. Produce a list RLIST (i) of Z equidistributed random numbers z; €
(0,1);i=1...Z. (eg., Z=097.)

2. Sample an additional random number y in (0,1).

3. Determine a pointer index j € [1, Z] according to

j=1+int(y-2Z)

(int(r) ... largest integer smaller than the real number r.)
4. Use the element RLIST () corresponding to j as the output random
number.

5. Put y = RLIST(j) and replace RLIST(j) by a new random number
€ (0,1); return to (3).
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Shift Register Generators:

(Also “Tausworthe” or “XOR" generators) Originally for the production of random
bits, but one may always generate 16, 32, etc. bits at a time and combine them
to a computer word.

Let bits b1, bo,..b, be already given; then

bn_|_1 = bp Dby D... Dby,
with k<m < ..<n, and @ ... “exclusive or’ (XOR)
To find optimal indices (k,m,...,n): see the theory of “primitive polynomials

modulo 2".

“Exhaustive” property: Starting such a recursion with an arbitrary combination
of n bits (except 0...0), all possible configurations of n bits will be realized just
once before a new cycle begins.
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Example: (1,3) is one of the optimal combinations. Starting with the sequence
{b1,b2,b3} = {101} and applying bas = b3z & b; etc., we find the sequence, reading
from left to right,

101001110100111010011101 ...

It is evident that indeed all possible 3-bit groups (except 000) occur before the se-
gquence repeats.
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A very popular prescription is the “R250" algorithm of Kirkpatrick-Stoll, based on
m = 103 and n = 250:

Is =I5 103 @ Is_250

23|
C

For the first 250 random integers, use a linear congruential generator.
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Other Distributions:

Transformation of probability densities:
Given p(z) and a bijective mapping y = f(z); = f~1(y); then

lp(y)dy| = |p(z)dz]
or

df ~*(y)

p(y) =

%= =1y )]‘

P(x) y=f(x)
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This relation holds for any kind of density.

Example: The spectral density of black body radiation is usually written in terms
of the angular frequency w:

w3 1
we3 ew/kT — ]

If we prefer to give the spectral density in terms of the wave length A = 2n¢/w, we
have

__ h (2mc 3 1 2me

a3\ e(hc/N)/ET _ 1 \ )2

Exercise: A powder of approximately spherical metallic grains is used for sintering.
The diameters of the grains obey a normal distribution with (d) = 2um and o =
0.25um. Determine the distribution of the grain volumes.

I(w) =

IA) = I[w(A)]

dw
d\
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Transformation Method:

Given a probability density p(z):
Find a bijective mapping y = f(x) such that the distribution of y is p(y) = c:

df (x) df(z)| 1
- —p(w)

or‘

p(z) = ‘ ‘

It is easy to see that

f@) = Ple)= /xp<a:’)dw'

fulfills this condition, with ¢ = 1.

10
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Transformation method:
Let p(z) be a desired density, with y = P(z) = [ p(2')dz’. Assume that
P~1(y) be known.
e Sample y from an equidistribution in the interval (0, 1).
e Compute z = P~ 1(y).
The variable z then has the desired probability density p(x).

Example: Let

1 1
w14 22

Then y = P(z) = 1/2+4 (1/x) arctan z, with the inverse P~1(y) = tan[r(y — 1/2)].
T herefore:

p(x) = (Lorentzian), ze(Z£oo)

e Sample y equidistributed in (0,1).
e Compute z = tan[r(y — 2)].

11
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a x=P '(y) b

y is sampled from an equidistribution € (0,1) and =z = P~ 1(y).
— The regions where P(xz) is steeper (i.e. p(z) is large) are hit more frequently.
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Generalized Transformation Method:

Same as before, but with n-tuples of random variates:
Let x = (x1,...,2n), XeD,, and y = f(x) with yeD,. Then

ox

oy
(|6x/dy]| ... Jacobi determinant of the transformation x = f~'(y).)

p(y) = px)

The following procedure for the production of Gaussian random variates may be
understood as an application of this. —

13
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Normal distribution: *

Box-Muller technique:
o Sample (ylng) S (071)2

e Construct
r1 = +/—21In y; COS 2mwy>
xo2 = +/—21In y; sin 27y-

x1, x> are then normal-distributed and statistically independent. Gaus-
sian variates with given variances af, ag are obtained by multiplying z1
and xo> by their respective o;.

*A “quick and dirty” method to produce almost normal variates goes as follows:
ify=xz1+ ...+ 2, is the sum of n = 10 — 15 equidistributed random numbers

in (—=0.5,0.5), then the distribution of z =y +/12/n is almost normal.

14
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Rejection Method:
A classic: created by John von Neumann, applicable to almost any p(z).

Rejection method:

Let [a,b] be the allowed range of values of the variate z, and p,, the
maximum of the density p(x).
1. Sample a pair of equidistributed random numbers, =z € [a,b] and
Yy € [ngm]-
2. If y < p(x), accept = as the next random number, otherwise return
to step 1.

15
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p(x)

[ agcept

a b

The method is simple and fast, but it becomes inefficient whenever the area of
the rectangle [a,b] ® [0, p.] is large compared to the area below the graph of p(z).
Otherwise, the “Improved Rejection Method” may be applicable: —

16
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Improved rejection method:
Let f(x) be a test function similar to p(x), with

fl@) > p(z); z€la,b]

F(z) = [ f(z) dz is assumed to be known and invertible
1. Pick a random number z € [a,b] from a distribution with density

pa) = I
F(b) — F(a)
by using the transformation method. Pick an additional random

number y equidistributed in the interval [0, f(x)].
2. If y < p(x) accept z as the next random number, else return to

Step 1.

17
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Multivariate Gaussian Distribution:

_1 .
p(wl,.,,,xn):\/ﬁe szgwxzmj

or
1 -1x"GX — 1 e_% Q

PO) = g = J(2n)' S

with the covariance matrix of the x;

(1) (@1 22)
S = G l= E (x3)

S = |S| is the determinant of this matrix. S and G are symmetric, their eigenvalues

are called o2 and ; (sorry!).

18
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Example: Assume that two Gaussian variates have the variances s11 = (z2) = 3,
s22 = (x3) = 4, and the covariance s12 = (z1 z2) = 2:

1 1
S:<3 2>-G=S_1=<§ —z>
' _ 1 3

Zx ~7 3

The quadratic form @Q in the exponent is then Q = (1/2) z2—(1/2) z1 z2+(3/8) 23 .,
and the lines of equal density (that is, of equal Q) are ellipses which are inclined

with respect to the z1 > coordinate axes:
XZ

A

e R
_— |

SR X,
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Rotate the axes of the ellipsoids Q = const to coincide with the coordinate axes:
—=> Cross correlations vanish!

Principal axis transformation:
o Determine eigenvalues ~; and eigenvectors g; of G. (Use NAG-
FO2AMF, ESSL-SSYGV, or your own code.)
e Combine the n column vectors g, into a matrix T. This matrix
diagonalizes G (and consequently @.)
Since T is orthogonal (T = T 1) it diagonalizes not only G = S~! but
also S itself. = S~ ! need never be computed!

Having found T, we arrive at the following prescription for the production of
correlated Gaussian variables: —

20
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Multivariate Gaussian distribution:

Let the covariance matrix S be given.
e Determine, by principal axis transformation, the diagonalization

matrix T for S (This step is performed only once.)
e Generate n mutually independent Gaussian random variates y; with

the variances o?2.
e Transform the vector y = (y1...y,)? according to

x = T-y

The n elements of the vector x are then random numbers obeying the
desired distribution.

Let's try it out: —

21
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Example: Once more, let

3 2 1 _1
S = ( ) , with the inverse G = ( ¢ )
2 4 1 3

NI

4 8

Principal axis transformation: The eigenvalues of S are a%’Q = (7T£V17)/2 =
5.562|1.438, and the corresponding eigenvectors are

0.615 0.788 0.615 0.788
S1 = So — Thus T =
0.788 —0.615 0.788 —-0.615

Generator: To produce pairs (z1,z2) of Gaussian random numbers with the given
covariance matrix:

e Draw y; and yo> Gaussian, uncorrelated, with variances 5.562 and 1.438.
e Compute z1 and x> according to

1 0.615 0.788 1
x> ] \ 0.788 —0.615 Yo

22
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Exercise: Write a program that generates a sequence of bivariate Gaussian ran-
dom numbers with the statistical properties as assumed in the foregoing example.
Determine (z%), (x3), and (z1x2) to see if they indeed approach the given values

of 3, 4, and 2.

23
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Homogeneous distributions in Orientation Space:

Equidistribution on the unit circle:
e Draw a pair of equidistributed random numbers (y1,y2) € (—1,1)2;
compute r? = y? + y3; if necessary, repeat until r2 < 1.
e x1 =yi1/r and xo = yo/r are the cartesian coordinates of points that
are homogeneously distributed on the circumference of the unit
circle.

Equidistribution on a spherical surface:
e Draw pairs of random numbers (y1,y2) € (—1,1)2 until r? =

y? +y3 < 1.
e [ he quantities

r1 = 2y1v1-— r2
292V 1 — r?

1—2r°

are then the cartesian coordinates of points out of a homogeneous
distribution on the surface of the unit sphere.

2

I3

(Generalization to hyperspherical surfaces: see Vesely, Comp. Phys.)

24
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Random Sequences:

So far: random numbers, preferably no serial correlations (z, z,+k)-
Now: sequences of r. n. with given serial correlations.

Let {z(¢t)} be an ensemble of functions of time ¢t. Then

dPi(x;t

Pi(z;t) = P{x(t) <z} and pi(z;t) = 1;—38)
95

are the probability distribution and the respective density.

Example: Let zo(t) be a deterministic function of time, and assume that the quan-
tity z(t) at any time t be Gauss distributed about the value zo(t):

3 o — 2oV /0
2

pi1(x;t) =
2To

A random process is called a random sequence if the variable ¢t may assume only
discrete values {t;; k = 0,1,...}. In this case one often writes z(k) for z(t).

25
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The foregoing definitions may be generalized in the following manner:

Pg(wl,wg;tl,tz) = P{w(tl) < wl,w(tg) < CCQ}

Po(x1,...;2nt1,...,ty) = Plx(t1) <z1,...,2(tn) < x,}

Thus P»(..) is the compound probability for the events z(t1) < z1 and z(t2) < z».
These higher order distribution functions and the corresponding densities

dnpn(a?l, RN/ S 2 I ,tn)
dxqi ... dxy,
describe the random process in ever more — statistical — detail.

po(T1, .. o1, . tn) =

26
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Stationarity: A random process is stationary if

Pn(xl,...,a:n;tl,...,tn) — Pn(a:]_,...,wn;t]_-I_t,-.-,tn-l_t),
This means that the origin of time is of no importance:

pi(z;t) = p1(x) and p2(x1,x2; t1,t2) = pa(x1,z2;ts — t1)

Autocorrelation:

b b
((0) z(7)) = //w1w2p2($1,332;7)d901dw2,

For 7 — O the autocorrelation function (acf) approaches the variance (z2). For
finite 7 it tells us how rapidly a particular value of z(t) will be “forgotten”.

27
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Gaussian process: The random variables z(t1),...,z(t,) obey a multivariate Gaus-
sian distribution. The covariance matrix elements are (z(0) z(¢t; — ¢t;)), i.e. the
values of the autocorrelation function at the specific time displacement:

Ly — 1 e_lQ
p2(z1,z2;T) NCOTRO 2
with
Q = (z%)x] — 2(x(0)z(7))z1 22 + (%) 23
So(7)
and
$2(r) = [S2(0)] = (222 — (2(0) a(r))?

28
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Markov Process: A stationary random sequence {z,;n = 0,1...} has the Markov
property if its “memory” goes back only one time step:

p(zn|Tn-1...71) = p(an|Tn-1)
where the conditional density

b2 (wn—la CCn)
p1 (mn—l)

is the density of z, under the condition that z(n — 1) = z,,_1.
Thus all statistical properties of the process are contained in pa(z,_1,xn).

p(zn|zn—1,7)

An even shorter memory would mean that successive elements of the sequence
were not correlated at all.

29
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Gaussian Markov processes: To describe them uniquely not even pa(...) is needed.

If the autocorrelation function (x(n) x(n+41)) is known, p2(..) and consequently all
statistical properties of the process follow.

Note: The acf of a stationary Gaussian Markov process is always an exponential:
(z(0)z(1)) = (2°)e 7"
or

<$(n)$(n—|—k)> — <£C2>e_ﬂAtk

How to produce a Markov sequence? —>

30
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Generating a stationary Gaussian Markov sequence:
Solve the stochastic differential equation

z(t) = —p=(t)+ s(t)

with a stochastic “driving” process s(t), assumed to be uncorrelated Gaussian
noise, i.e. Gauss distributed about (s) = 0, with (s(0) s(t)) = Ad(¢).

The general solution to this equation reads
t
z(t) = =z(0)e Pt 4 / e Pt g(¢) at!
0

Inserting t = ¢, and t = t,4+1 = t, + At one finds that

At
(thr1) = z(tn)e PR+ / e BAL=) gt + ¢') dt!
0

31
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At any time ¢, the values of z(¢t) belong to a stationary Gauss distribution with
(%)= A/283, and the process {z(t,)} has the Markov property.

The integrals

At
z(tn) = / e BALE) ot + ) dt!
0

are elements of a random sequence, with z Gauss distributed with zero mean and
(z(tn) z(th+r)) = 0 for k %= 0. Their variance is

A
<22> — _(1 . e—QﬂAt)
20
Here is the resulting recipe for generating a stationary, Gaussian Markov sequence:
—

32
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“Langevin Shuffle” :

Let the desired stationary Gaussian Markov sequence {z(n); n =0,...}
be defined by the autocorrelation function

A
k — —Bk At
(@ atnt+B) = e
with given parameters A, 8 and At. Choose a starting value z(0),
either as z(0) = 0 or from a Gauss distribution with (z) = 0 and
(%) = A/28.
e Draw z(n) from a Gaussian distribution with (z) = 0 and
A
<22> — _(1_6—2,6’At)
2p

e Construct
z(n+1) = z(n)e P2+ 2(n)
The random sequence thus produced has the desired properties.

If BAt K 1, replace the exponential by its linear Taylor approximation.
The iteration prescription then reads z(n+1) = z(n) (1 — B At) +2'(n),
where z'(n) is Gaussian with (z/?) = A At (1 — B At).

33
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Exercise: Employ the above procedure to generate a Markov sequence {z,} with a
given 8. Check if the sequence shows the expected autocorrelation.

34
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Wiener-Lévy Process (Unbiased Random Walk)
With g8 =0 in the above differential equation, we find

x(n+1) = z(n)+ z(n)
where z(n) is Gaussian with
At
z(n) = / sty +t)dt' (z) =0 (z°) = AA¢t
0
Since z and z are uncorrelated, we have

(l2(n)]?) = nAAt

Example: Let = be one cartesian coordinate of a diffusing particle. Then {[z(n)]?)
is the mean squared displacement after n time steps. In this case we may relate the
coefficient A to the diffusion constant according to A = 2D.

35
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Wiener-Lévy process:

Let AAt be given. Choose z(0) = 0.
e Pick z(n) from a Gauss distribution with variance AAt.

e Compute
z(n+1) = z(n)+ z(n)

The random sequence thus produced is a nonstationary Gaussian pro-
cess with variance [z(n)]? = n A At.

Exercise: 500 random walkers set out from positions z(0) homogeneously dis-
tributed in the interval [—1,1]. The initial particle density is thus rectangular.
Each of the random walkers is now set on its course to perform its own one-
dimensional trajectory, with A At = 0.01. Sketch the particle density after 100,

200, ... steps.

36
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It is not really necessary to draw z(n) from a Gaussian distribution. If z(n) comes
from an equidistribution in [—Ax/2, Az/2], the “compound” z-increment after
every 10 — 15 steps will again be Gauss distributed (central limit theorem).

We may even discretize the z-axis: z = 0, Az with equal probability 1/3: after
many steps, and on a scale which makes Ax appear small, the results will again
be the same.

To simulate 2- or 3-dimensional diffusion, apply the above procedure independently
to 2 or 3 coordinates.

37
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Markov Chains (Biased Random Walk)
A Markov sequence of discrete z, is called a Markov chain.

We generalize the discussion to “state vectors” {x,,a =1,... M}. The conditional
probability

Pog = P{x(n) =xg|x(n—1) =Xa}
is called transition probability between the states a and £.

Let M be the total number of possible states. The M x M-matrix P = {p,s} and
the M-vector p consisting of the individual probabilities p, = P{x = x,} determine
the statistical properties of the Markov chain uniquely.

38
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A Markov chain is reversible if

PaPap — PpPRa (1)
— Meaning?

The M? elements of the matrix P are not uniquely defined by the M(M — 1)/2

reversibility conditions. =—=-For a given distribution density p there are many
reversible transition matrices. — “Asymmetrical rule” (N. Metropolis):

39
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N. Metropolis’ asymmetric rule:

Let Z be the number of states xz accessible from x,, and let the a
priori access probability be m,s3 = 1/Z. Then

Paf = Taf if pg > pa
Pap — Tap ZP;_Z if Pp < Pa

—=>p.3 IS reversible!

40
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Monte Carlo Method
Central theorem:

If the stationary Markov chain characterized by p = {p.} and P = {p,3} is
reversible, then each state x, will be visited, in the course of a sufficiently
long chain, with the relative frequency p,.

—Here is yet another recipe for generating random numbers with a given prob-
ability density p:

41
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Random numbers a la Metropolis:

Let p = {pa; @ = 1,2,...} be the vector of probabilities of the events
T = zo. 10 generate a random sequence {z(n)} in which the relative
frequency of the event z(n) = z, approaches pq:

e After the n-th step, let z(n) = z,. Draw a value zz from a region
around z,, €.g. according to

r3 = 2o + (£ — 0.5) Ax

where ¢ € (0,1).

o If for ps = p(zp) we have pg > p., then let z(n + 1) = z3.

o If pg < pa, then pick a random number £ € (0,1); if £ < pg/pa, let
z(n + 1) = zp,; else put z(n+ 1) = z,.

Adjust the parameter Az such that approximately one out of two trial
moves leads to a new state, z(n + 1) = z3.

Warning: The random numbers thus produced are serially correlated:

42
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Exercise: Let p(z) = Aexp[—z?] be the desired probability density. Apply the
Metropolis’ prescription to generate random numbers with this density. Confirm

that (z(n) x(n+k)) # O.

Advantage of Metropolis’ method: only pg/p. is needed, not p,.

—=Statistical-mechanical Monte Carlo simulation: only relative thermodynamic
probabilities needed!

43
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Stochastic Optimization

Finding the global extremum of a function of many variables:

— Nonlinear fit to a set of table values

— improvement of complex electronic circuits (“travelling salesman problem™)

— find the most stable (i. e. lowest energy) configuration of microclusters or

biopolymers.

Two methods:
— Simulated Annealing
— Genetic Algorithims

44
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Simulated Annealing
Consider a Metropolis walk through the space of ‘“states” x, with
pa = Aexp—pU(x)

where U(zx1,...x)7) is a “cost function” to be minimized, and 3 a tunable parameter
(a reciprocal “temperature”.)

— Low B ==-smaller variation of p,; higher U(x) are accessible

— High 8 =—=x will tend to go “downhill”

45
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Simulated Annealing:
Draw a starting vector x° = {z9,...2%,} at random, and choose a high
initial “temperature” kT

Carefully lower the temperature: —=-regions with lower U(x) will be
visited more frequently than the higher ranges.

Finally, for kKT" — 0 the system point will come to rest in a minimum
that very probably (not with certainty!) will be the global minimum.

46
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Exercise: Create (fake!) a table of “measured values with errors” according to

yi = f(xi;c1,...06) + &, 1=1,20 (2)

with & coming from a Gauss distribution with suitable variance, and with the
function f defined by

f(x; C) — Cle—CQ(CE — c3)2 + 646—05(517 — (;6)2 (3)

(c1...c6 being a set of arbitrary coefficients).

Using these data, try to reconstruct the parameters ci...cg by fitting the theoret-
ical function f to the table points (z;,y;). The cost function is

U(e) = Z [vi — £ (@i; ©)]° (4)

Choose an initial vector c® and perform an MC random walk through c-space, slowly
lowering the temperature.
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Genetic Algorithms

Evolution of biological systems:
— Adaptation of species to external conditions: optimization

— Adaptation strategy itself has evolved over time: sexual reproduction

—More sex:

48
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Consider some oscillatory function f(x) of a single variable, having one global mini-
mum within the range of definition, xe[a, b]. Find z* with f(z*) = min{f(z), ze[a,b]}.

1. Start with a population of randomly chosen numbers (individuals), {z%¢[a, b],

i=1,...N}. (N is kept constant.)

— “Gene": bit string of z9

— “Fitness”: low f; = f(x?) = high fitness and vice versa

— Relative fitness (probability of reproduction): p; = fi/ Z,fV:l fi. This is a
probability density, and P(x;) = P, = Z;zlpj is its cumulative distribution
function.

. Draw N individuals in accordance with their reproduction probability (Trans-
formation method!).

The new population {z}, + = 1,... N} is fitter than the original one. How-
ever, thus far we have remained at the level of primitive selective reproduction
without mutation or sexual crossover.

. Pick pairs of individuals at random and submit their genetic strings are to
crossover:

() Draw a position m within the bit strings; () swap the bits following m
between the two strings. The number of such pairings, the ‘crossover rate”,

49



should be around 0.6 N. The resulting set {z, ¢« = 1,...N} is called the
offspring population.

4. Finally, mutation comes into play: within each string z! every single bit is
reversed with a probability pmw = 0.01.

The resulting population is regarded as the next generation, {a:}, t=1,...N},
and we are back at step 2.

Exercise: Apply the simple genetic algorithm to find the minimum of the function

[2 sin(102—1)]°4+10 (z—1)? within the interval [0, 2].



