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2. Linear Algebra

2. Linear Algebra

Carl Gustav Jacob Jacobi taught
us to relax

Subject too large, excellent textbooks

Many library subroutines exist

But: “physical” matrices often simple in structure

Specific algorithms that may (may!) be self-programmed
We will concentrate on Relaxation Methods

But before that, some general remarks —
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Given f(x) , introduce finite differences
— Vectorf = (fy; k=1,...,M)

2. Linear Algebra

Similarly, given f(z,y) or f(x,t)
— Matrix F = [fi,j] = [f(:ci,yj); t=1,...M; j=1,...N]

Approximate the various differentials by differences:
— Convert Partial Differential Equations (PDES) into Systems of Linear Equat-

ions A -x = b.

As a rule A has a simple structure: sparse, diagonally dominated, positive definite,

etc.
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Fundamental manipulations:

e Invert a matrix:

A «— Al

e Find the solution to the system of equations:
A-x = b

e Find the eigenvalues \; and the eigenvectors a; of a quadratic matrix:

A — N\ I 0 .
(A—X\T)-a 0 t1=1,...N

(will be skipped in this course)
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2. Linear Algebra

Solve A -x = b exactly:
e Gauss Elimination and Back Substitution
e Householder Transformation
e LU Decomposition

e Recursion Method
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Gauss Elimination and Back Substitution:

ail ai2 . . Q1N 1 b1
a1 a2

aNN TN bn

Convert this to triangular form:

/ / /
all a;}2 o o o 5171 b]_

0 a5

0 .. 0 adyy TN by

Then solve the system by Back Substitution.
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LU Decomposition:
Split A into a Lower and an Upper triangular matrix:

A = L-U

Then solve by substitution.

Householder Transformation:

Systematic procedure to strip off elements in rows or columns
of A:

Given A — A’ triangular, tridiagonal, or otherwise simple.

Recursion:

Find solution x if A is tri-diagonal (maybe after Householder).
More on Recursion =
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2. Linear Algebra

Recursion Method:

With
( 1 v1 O
azx B2
A — 0 a3 /33
the system of equations reads
B1x1 + v1 22

o; Ti—1 + Bixi + Vi i1
an Ty-1 + BN TN

Introducing auxiliary variables g; and h; by the recursive ansatz

Li4+1

gzi+hiii=1,...,N—1
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we find the “downward recursion formulae”

2. Linear Algebra

—apn b by
gN-1 = —— N-1 = —
BN BN
9'1_—_% h'1_—bi_%hi' 1 = N-—-1 2
- Bi+vigi ‘ Bi+vigi T

Having arrived at g1 and h; we insert the known values of g;, h; in the “upward

recursion formulae”

b7
r1 =
B1+791
Tiv1 = gizi+h; i=1,... N—-1

(The equation for the starting value z; follows from Biz1 + yiz2o = b1 and zp =
g1x1 + h1.)
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Example: In A -x = b, let

61 v1 0 O 2 1 0 O 1
:a262720_2310 | 2
A=10 a3 B v | =l o1 a2 and b= | g
0 0 as Ba 0 01 3 4

Downward recursion: g3 = —aa/B84 = —1/3, ha = bs/Bs = 4/3, and

1= 3 922—3/10 . h2:1/10
1=2: g1 =-20/27 , hy=19/27
Upward recursion: z; = 8/34, and
i=1: zo = 9/17
7, = 2 . T3 = —1/17
i=3: gy = 23/17
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Solve A -x = b by iteration:
e Jacobi Relaxation
e Gauss-Seidel Relaxation (GSR)

e Successive Over-Relaxation (SOR)

But first: “Iterative Improvement”. —

10
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Iterative Improvement

Let x be the exact solution of A -x = b,
and let x’ be an inaccurate (or estimated) solution vector, such that x=x"+6x.

Inserting this into the given equation we find
A-6x = b—-—A-x'"=c¢c

which may be solved for 6x. (Use double precision!)

11



2. Linear Algebra

Example:

From
3 1 2 -3 —2
A-dx = — . =
2 3 4 4 -5
we find, using the decomposition

1 O 1 2
L = and U =
3 1 o -2
) so that x = < _14)
2

the correction vector

5x=(:

N = =t

12
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Relaxation methods:

Now interpret the improvement equation as an iterative formula:

A-(Xk_|_1—Xk) - b—A-Xk
Replace A on the left hand side by an easily invertible matrix B close to A:
B - (Xk_|_1—Xk.) - b—A-Xk.
or
xpr1 = B l.b4+B 1. [B-A] x

This procedure converges to the solution of A-x = b if |xp4+1 — Xk| < |Xx — Xg—1]-
This is the case if all eigenvalues of the matrix B! . [B — A] are situated within

the unit circle.

13
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Divide the given matrix according to A = D + L + R where D contains only the
diagonal elements of A, while L and R are the left and right parts of A, respectively.

Choose B = D and write the iteration formula as

Jacobi Relaxation:

D-Xk_|_1:b-|—[D—A]-Xk

or

aiiwgk_l_l) = bi_zaijmgk); ’i:1,...,N
J7F

14
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Example: In A-x=Db let
31 3
2 4 2

Starting from the estimated solution

1.2
Xp =
0.2

and using the diagonal part of A,

>=(5 4)

in the iteration we find the increasingly more accurate solutions
0.933 1.033 1
X1 = C Xo = etc. = Xoo =
—0.100 0.033 0]

15
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2. Linear Algebra

Convergence rate:
Writing the Jacobi scheme in the form
Xpp1 = D .b+D ' [D-A]l-x,=D'.-b+J-x;
with the Jacobi block matrix
J = D' [D-A]=-D!. [L+R]

convergence requires that all eigenvalues of J be smaller than one (by absolute
value). Denoting the largest eigenvalue (the spectral radius) of J by \;, we have

for the asymptotic rate of convergence

|Xk4+1 — X
|Xk—x| %|)\J—1|

ry =

In the above example Ay = 0.408 and r =~ 0.59.

16
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Gauss-Seidel Relaxation (GSR):

Somewhat faster convergent than Jacobi.
Choose B=D + L (i. e. lower triangle):

[D—|—L]-Xk_|_1:b—R°Xk

Solving the set of implicit equations
aiz{ D + 3 ayatY = b ayal;i=1,.. N
J<t J>i
iSs not quite as simple as solving the explicit Jacobi equations. However, since the
matrix D 4+ L is triangular the additional effort is affordable.

17
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Example: With the same data as in the previous example we find the first two

improved solutions
0.933 0.989
X1 = , X2 = .
0.033 0.006

18
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2. Linear Algebra

The convergence rate of the GSR scheme is governed by the matrix

G = —[D+L]'R
It can be shown that the spectral radius of G is given by
g = A\

so that the rate of convergence is now

rg ~ ‘)\?f—1|

In our example A\¢ = 0.17 and r =~ 0.83.

19
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Successive Over-Relaxation (SOR):

At each iteration step, compute the new vector xj;4; using GSR; then “mix it"”
with the previous vector x;:

SOR __ GSR
Xpi1 = wxppr + (1 —w)xg

The “relaxation parameter” w may be varied within the range 0 < w < 2 to
optimize the method.

The complete iteration formula is

[D+L]-Xk+1:wb—[R—(l—w)A]-Xk

A single row in this system of equations reads

Qi x§k+1) -+ Z aij x§k+1) = wb —w Z aij $§k) +
7<t 7>
+(1—w)2aijmj(k) i=1,...,N
J<i

20
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The rate of convergence of this procedure is governed by the matrix

S = —[D4+L] - [R-(1—w)A]
The optimal value of w is given by

2
Wopt —
: 14 /11— 22

yielding

As =

Ay :
1+4,/1-—X2

The asymptotic rate of convergence is

rs =~ |As—1|

21
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2. Linear Algebra

Example: With the same data as before we find an optimal relaxation parameter
wept = 1.046, and from that r, = 0.95. The first two iterations yield

0.921 0.994
X1 = , Xo = .
0.026 0.003

22
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During the first few iterative steps the SOR procedure may give rise to overshoot-
ing corrections — particularly if w is distinctly larger than 1. — Adjust w on the
fly: Start out with w = 1, then approach wqp:.

Chebyscheff Acceleration:

e Split the solution vector x in even and odd elements: x., X,; do the same with
b.

e The two subvectors x., and x, are iterated in alternating succession, with the
relaxation parameter being adjusted according to

w® = 1
1
W = —=
1—A2/2
1
w(k-l_l) = I{; — 1,. oo

1—Xwk)/4’

23
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Sample Application of Linear Algebra: Thermal Conduction
Again, discretize the equation of thermal conduction,
oT(x,t) )\82T(a:,t)
ot - 0x2
Earlier we applied DNGF to the |.h.s. and DDST at time t, to the r.h.s.:

T (w,t) 8217
Ox? T (Azx)?
In this manner we arrived at the “FTCS-"formula.

Now we may use the DDST formula at time t,41,

T (x,t) 62T+
0x? T (Ax)?

24
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This leads us to the “implicit scheme of first order”
1 1 A +1 +1 +1
Kt[']}n+ - Tl = (Aa:)Q[T’Z‘l =277 + T 7]

which may be written, using a = XA At/(Axz)?,

—aT" 4+ (1 + 2a) T — T =T

i+1 )
or
A - T’n—l—l — Tn

where (for fixed Ty and Ty)
1 0 0 0
—a 14+2a —a O 0

A= 0 0

O 0 1

Invert this tridiagonal system by the Recursion Method.

25
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2. Linear Algebra

Exercise: Redo the earlier exercise on One-dimensional thermal conduction by ap-

plying the implicit scheme in place of the FTCS method. Use various values of

At (and therefore a.) Compare the efficiencies and stabilities of the two methods.

26
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Sample Application of Linear Algebra: Potential Equation
Discretize the elliptic PDE

?u  O*u
st oo =r
Ox Oy
—
1
(Dx)? w15 — 2ui5 + wim15 + wigpa — 2w+ uii-1] = —pi

t1=1,...N;, 3 =1,... M

Combining the N row vectors {u;;; 7 = 1,... M} sequentially to a vector v of
length N.M we may write these equations in the form

A-v=Db

where A is a sparse matrix, and where the vector b contains the charge density p
and the given boundary values of the potential function .

Solve by applying any of the Relaxation Methods.
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