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Reading Matter:

Vesely:

Computational Physics — An Introduction Plenum Press, New
York 1994. Second edition to appear 2001.

Do not ask me about this one.

Potter:
Computational Physics. Wiley, New York 1980.

Very valuable text, in some places too demanding for the beginner.

Hockney, Eastwood:

Computer Simulation Using Particles. McGraw-Hill, New York 1981.

Very good, particularly, but not exclusively, for plasma physicists, covers large
areas of computational physics, in spite of the seemingly restrictive title.



Press, Flannery, Teukolsky, Vetterling:
Numerical Recipes in Fortran. Cambridge University Press, Cambridge 1992.
Excellent handbook of modern numerical mathematics; comes with sample pro-

grams in various programming languages.

Giordano:

Computational Physics. Prentice-Hall, New Jersey 1997.

This is one of those texts in which little is said about the origin of the the algo-
rithms used. However, it is redeemed by its large collection of charming physical
applications. Use it together with a more method-oriented text.

Gould, Tobochnik:

Introduction to Computer Simulation Methods: Application to Physical Systems.
Addison-Wesley, Reading 1996.

Nice “hands-on’” introduction; starts out with elementary physics problems and
works up to such cutting-edge applications as dynamical quantum simulation and

renormalization.



Garcia:
Numerical Methods for Physics. Prentice Hall, New Jersey, 1999.

Carefully organized introduction to the field, presents many examples, including
code and graphics.

Gershenfeld:

The Nature of Mathematical Modeling. Cambridge University Press, Cambridge
19909.

Grand tour through applied mathematics, covering analytical, numerical and ob-
servational models.



BASIC TOOLS OF OUR TRADE

Most of the methods used by computational physicists are drawn from three areas

of numerical mathematics, namely from

Calculus of Differences

Linear Algebra

Stochastics




1. Finite Differences

Yes, Computational Physics is
that old!

Difference calculus:
Use finite differences in place of infinitesimal differentials:
Given f(z), let zpx = kAz (k= 1,2,...)



1. Finite differences

History: opposite route

Kepler 2- and 3-body problems (chaos!)

Difference calculus remains applicable for any number of bodies and any potential
Price paid: only tabulated trajectory



1. Finite differences

Given equidistant table values f; = f(xz), define

Afi, = fiy1— fr Forward Difference
Vfir = fi— fre1 Backward Difference
(ka = fk—|—1/2 — fk—1/2 Central Difference (*)

(*) Table values at x4,/ not given; please have patience! In an emergency, use
the “central mean”

1
Ofk = pofr = > 6 frt1/2 + 6 fe_12]
= %[fk+1 — fr-1]

which uses only table values.



ss
m 1. Finite differences

Recursive definition:

A°f, = Afip1— Afe = figo — 2fet1 + fr
VZ2fi = ... (Exercise!?)
52fk = 5fk-|-1/2 — 5fk,-—1/2

fr+1—2fk + fr—1 (%)

etcetera.

(*) Here is the reward for your patience!



1. Finite differences

Application of Finite Differences:
Difference Quotients

e Construct interpolation polynomials F(z) using forward, backward, or central
differences. These are known as Newton-Gregory (Forward or Backward) and
Stirling polynomials: NGF, NGB, ST, for short.

e Differentiate these polynomials, arriving at F'(x) and F"(z) etc.

e Insert z = x;, to get approximations to the derivatives at xz;.



1. Finite differences

First Derivatives

Replacing dz by Az and df by A fi, V fr, or d fr we arrive at various approximations
to the first derivative of f at xy:

DNGF
(Differentiated Newton-Gregory Forward):

1 A%f, | D3
Fk~A—$[Afk—2+3—]
Example:
1 [ A2
Fk/ — A—x_Afk_ ka]‘FO[(Aw)Q]
S I Py —§f] +0[(Ax)?]
= A 2 k+2 k1= STk x
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1. Finite differences

DNGB
(Differentiated Newton-Gregory Backward):

, 1 V2fe | V3
Fy = Aw[wm +— +]
Example:
1 [ \V&
Fkl = A— Vi + fk]+0[(AfL')2]
a:_
_ | 2 1 O[(Az)?]
= A—w_ifk_ fk—1+§fk—2 + O[(Az

11



i
m 1. Finite differences
DST

(Differentiated Stirling):

1 1 1
F' ~ — |udf — —ud3 — s>
2 Ao 10 fr g™ fk+30,u fr +

Example:

B = o [u6fil + Ol(Aay?

— ﬁ [fe+1 — fre—1] + O[(Am)Q]
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1. Finite differences

Comparison of various simple approximations to the first differential quotient:

DNGF : F}
DNGB: F}
DST: F|

if’“ + O[Az] = — [fk—l—l fr] + O[Az]
ka- —+0[Az] = — [fk — fe—1] + O[Ax]
,Lifk + O[(A-’E)Q] — I [fi+1 — fr—1] + O[(Az)?]
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1. Finite differences

Second Derivatives

The same procedure as before yields

DDNGF:
B = (Alx)z A f, — N3 f + %A4fk = .-
Example:
B! = 3O+ 0(80)
1

[fx+2 — 2fk+1 + fi] + O(Ax)
(pretty bad!)

(Az)?

14



1. Finite differences

Let’s try again....
DDNGB:

Fk”

Example:

Fk” —

1
(Az)?

Q

11
V2 fe + V3 fi + Ev4fk + ...

AV f+0(8a)
: Alw)z [fi — 2fe 1 + feo] + O(Ax)

(pretty bad, too!)
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1. Finite differences

And the winner is...

DDST:
"o i 2 i 4 i 6r _
~ Ay 0% fx 125 fk+905 Je— ...
Example:
B = (Ala:)252fk+0 ((Az)?]
— (Ala:)z [fet1 — 2fx + frio1] + O [(Az)?]

(much better!)
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E, 1. Finite differences

Finite Differences in Two Dimensions

Let f(x,y) be given for equidistant values of z and y, respectively:

fi;i = f(xo+iAz,yo+ jAy)
We will use the short notation

_ Of(=z,y)
fo = - dxr

etc. for the partial derivatives of the function f with respect to its arguments.
Note: One of the arguments may be the time t: f = f(z,t) etc.

For the numerical treatment of partial differential equations (PDEs) we again have
to construct discrete approximations to the partial derivatives at the base points

17



f, ' 1. Finite differences

First derivatives in 2 dimensions

Using the DNGF, DNGB, or DST approximation of lowest order, we have

[FL];; = Aix [fix15 — fig] +O0lAz] = —= me + O[Az]
or
1 Vif;
[Py ~ Ao Ui = fiosgl + 01l = V09 4+ O[Aal
or
1 1J1
[Fliy & Saz [fitrs = fimag] +Ol(A2)] = Af L+ 0[(Az)?]

Again, the central difference scheme is superior.

But what about second derivatives? —>
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1. Finite differences

Second derivatives in 2 dimensions

By again fixing one of the independent variables — y, say — and considering only
fzz, We obtain, in terms of the Stirling (centered) approximation,

1
[Fralij = (Am)2[fi-|—1,j —2fij + fi-15] + Ol(Ax)?]
= Sy oA
- (Az)?

Analogous (and less accurate) formulae are valid within the NGF- and NGB-
approximations, respectively.

What about mixed derivatives? —
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1. Finite differences

Mixed derivatives

Approximating f;, use the same kind of approximation with respect to both the
z- and the y-direction. (This may not hold if x and y have a different character,

e.g. one space and one time variable.)

Stirling:
[Fwy]z',j ~
1
ANz Ay [fit141 — fitrj-1 — ficr 1 + fimrj-1] + OlAzAy]
poi | 05 fig
= ’ OlAzA
Az [ Ay + OlAzAy]

Now for the curvature of f(x,y): —

20



Ei
E,, 1. Finite differences

Curvature of a function f(zx,vy)

To find the local curvature at the grid point (z,57) we have to apply the nabla
operator V twice.(*) There are two ways:
Either “difference” along the grid axes,

1

Vif(z,y) = (D)2 e o e e i — ]
or apply “diagonal differencing”, writing
Vf(z,y) =
1

2(Al)? fitvg+1 + ficrtr + ficr1 + fivr-1 — 4]

(*) Note that the nabla operator V mentioned here is not to be mixed up with
the backward difference for which we use the same symbol.
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1. Finite differences

Physical Examples:

A. Newton’ equation for an oscillator
d?z
dt?

— —UJS T

8%z,

B = —wgzn + O[(AL)?]

Tnt1 = 2Tn — Tn-1 + (—wizn) (AL)% + O[(AL)?]

Step-by-step integration!

Applicable for any right hand side, and for any number of coupled equations

of motion!
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1. Finite differences

Exercise:

a) Write a program to tabulate and/or draw the analytical solution to the HO
equation. (You may achieve a very concise visualization by displaying the trajectory
in phase space, i.e. in the coordinate system {z; z}; where for x the approximation
T ~ (Tp41 — Tn—1)/2At may be used.) Choose values of w2, At and zo,zo, and
use these to determine the exact value of x;. Starting with g and x;, employ
the above algorithm to compute the further path {z,;n = 2,3,...}. Test the
performance of your program by varying At and w%.

b) Now apply your code to the anharmonic oscillator

d?z
ol —wix — px
To start the algorithm you may use the approximate value given by

(At)?

1 ~ xo+ oAt + zo

== Applet HarmOsci
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1. Finite differences

B. Thermal Conduction
0T (z,t) )\BQT(x, t)
ot Ox?

o 1 2 . . . . N-1 N

Writing T* = T'(z;,tn), = “FTCS scheme” (“forward-time, centered-space”)

1 n n )\ n mn n
Kt[T’ +1_Tz.] ~ W[ v — 2T + T 4]

or

T = (1 - 2a)T" + (T, + T",), with a=DAt/(Azx)?

for i=1,...N —1 (and 79", Tet! given as boundary conditions).
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1. Finite differences

Exercise: Let us divide the rod into N = 10 pieces of equal length, with node

points + = 0,... N, and assume the boundary conditions T7'(0,t) = T§ = 1.0 and
T(L,t) = T7y, = 0.5. The values for the temperature at time ¢t = O (the initial
values) are TY = T9 = ... TP =1.0 and T = T?9 = ...Tg =0.5 (step function).
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