next up previous
Next: 5.3.3 Fourier Transform Method Up: 5.3 Boundary Value Problems: Previous: 5.3.1 Relaxation and Multigrid


5.3.2 ADI Method for the Potential Equation

Alternating Direction Implicit technique: In addition to $\mbox{$\bf v$}$, construct another long vector $\mbox{$\bf w$}$ by linking together the columns of the matrix $\{ u_{i,j}\}$:

$\displaystyle w_{s}$ $\textstyle =$ $\displaystyle u_{i,j} \,,\;\;\;{\rm with}\;\;s=(j-1)N+i$  

Conversely,

\begin{displaymath}
j=\mbox{int} \left( \frac{s-1}{N}\right)+1 ; \;\;
i=\left[ (s-1) \; \mbox{mod} \; N \right] + 1
\end{displaymath}



The discretized potential equation is then
$\displaystyle w_{s+1}-2w_{s}+w_{s-1}+v_{r+1}-2v_{r}+v_{r-1}$ $\textstyle =$ $\displaystyle - (\Delta l)^{2} \rho_{i,j}$  

or
$\displaystyle \mbox{${\bf A}$}_{1} \cdot \mbox{$\bf v$} + \mbox{${\bf A}$}_{2} \cdot \mbox{$\bf w$}$ $\textstyle =$ $\displaystyle \mbox{$\bf b$}$  

$\mbox{${\bf A}$}_{1}$ acts on the ``rows'' of the $u_{i,j}$ lattice, $\mbox{${\bf A}$}_{2}$ effects the ``columns'' only:
Figure 5.6: ADI method
\begin{figure}\includegraphics[width=330pt]{figures/f5adi_new_1.ps}\end{figure}
Both $\mbox{${\bf A}$}_{1}$ and $\mbox{${\bf A}$}_{2}$ are tridiagonal, and not pentadiagonal as the original matrix $\mbox{${\bf A}$}$. $\Longrightarrow$Recursion method

\fbox{
\parbox{510pt}{
{\bf ADI method:}
\begin{eqnarray}
(\mbox{${\bf A}$}_{1}+...
...ox{$\bf v$}^{n+1/2} - \omega \mbox{$\bf w$}^{n+1/2})
\nonumber \end{eqnarray}}
}

The optimal value of the relaxation parameter is given by

\begin{displaymath}
\omega = \sqrt{\lambda_{1} \lambda_{2}} \, ,
\end{displaymath}

where $\lambda_{1}$ and $\lambda_{2}$ are the smallest and largest eigenvalue, respectively, of the matrix $\mbox{${\bf A}$}$. In the specific case of the potential equation, assuming a lattice with $M=N$, we have $\omega \approx \pi/N$.

EXERCISE: Apply the ADI method to the Laplace problem with $M=N=5$.


next up previous
Next: 5.3.3 Fourier Transform Method Up: 5.3 Boundary Value Problems: Previous: 5.3.1 Relaxation and Multigrid
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001