next up previous
Next: 4.1.5 Predictor-Corrector Method Up: 4.1 Initial Value Problems Previous: 4.1.3 Explicit Methods


4.1.4 Implicit Methods

Much more stable!

- First order scheme (from DNGB): Insert
$\displaystyle \left. \frac{d\mbox{$\bf y$}}{dt} \right\vert _{n+1}$ $\textstyle =$ $\displaystyle \frac{\nabla
\mbox{$\bf y$}_{n+1}}{\Delta t}+O[\Delta t]$  

in $d\mbox{$\bf y$}/dt=f[\mbox{$\bf y$}(t)]$ to find
$\displaystyle \mbox{$\bf y$}_{n+1}$ $\textstyle =$ $\displaystyle \mbox{$\bf y$}_{n}+\mbox{$\bf f$}_{n+1} \Delta t + O[(\Delta t)^{2}]$  

If $\mbox{$\bf f$}(\mbox{$\bf y$})$ is linear, $\mbox{$\bf f$}_{n+1}=\mbox{${\bf L}$} \cdot \mbox{$\bf y$}_{n+1}$:
$\displaystyle \fbox{$ \displaystyle
\mbox{$\bf y$}_{n+1}=[\mbox{${\bf I}$}-\mbox{${\bf L}$} \Delta t]^{-1} \cdot \mbox{$\bf y$}_{n}
+O[(\Delta t)^{2}]
$}$      



Stability:

\begin{displaymath}
\mbox{$\bf e$}_{n+1}=[\mbox{${\bf I}$}-\mbox{${\bf L}$} \Del...
...{$\bf e$}_{n}
\equiv \mbox{${\bf G}$} \cdot \mbox{$\bf e$}_{n}
\end{displaymath}

(a) Relaxation equation: $\mbox{${\bf G}$}=G=1/(1+\lambda \Delta t)$, thus $\vert g\vert<1$ for any $\lambda>0$.

(b) Harmonic oscillator:

\begin{displaymath}
\mbox{${\bf G}$} \equiv [\mbox{${\bf I}$}-\mbox{${\bf L}$} \...
...\vspace{-9pt}\\ -\omega_{0}^{2}\Delta t&1\end{array} \right)$}
\end{displaymath}

with eigenvalues

\begin{displaymath}
g_{1,2}=\frac{1}{1+(\omega_{0} \Delta t)^{2}} [1 \pm i \omega_{0} \Delta t]
\end{displaymath}

Thus

\begin{displaymath}
\vert g\vert^{2}=\frac{1}{1+(\omega_{0} \Delta t)^{2}} < 1 \;\;\;
{\rm for}\;\;{\rm all}\;\; \Delta t
\end{displaymath}

$\Longrightarrow$Method is always stable for relaxation equation and harmonic oscillator.

- Second order implicit scheme (from adding the DNGF formulae at $t_{n}$ and $t_{n+1}$, respectively):
$\displaystyle \mbox{$\bf y$}_{n+1}$ $\textstyle =$ $\displaystyle \mbox{$\bf y$}_{n} +\frac{\Delta t}{2}[\mbox{$\bf f$}_{n}+\mbox{$\bf f$}_{n+1}]
+O[(\Delta t)^{3}]$  

If $\mbox{$\bf f$}_{n}=\mbox{${\bf L}$} \cdot \mbox{$\bf y$}_{n}$ etc.:
$\displaystyle \fbox{$
\mbox{$\bf y$}_{n+1}=[\mbox{${\bf I}$}-\mbox{${\bf L}$} \...
...{${\bf L}$} \frac{\Delta t}{2}] \cdot \mbox{$\bf y$}_{n}
+O[(\Delta t)^{3}]
$
}$      



Always stable for relaxation equation and harmonic oscillator.


next up previous
Next: 4.1.5 Predictor-Corrector Method Up: 4.1 Initial Value Problems Previous: 4.1.3 Explicit Methods
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001