next up previous
Next: 4.1.2 Stability and Accuracy Up: 4.1 Initial Value Problems Previous: 4.1 Initial Value Problems


4.1.1 Euler-Cauchy Algorithm



Apply DNGF approximation
$\displaystyle \left. \frac{d\mbox{$\bf y$}}{dt} \right\vert _{t_{n}}$ $\textstyle =$ $\displaystyle \frac{\Delta \mbox{$\bf y$}_{n}}{\Delta t} + O[(\Delta t)]$  

to the linear DE and find the Euler-Cauchy (EC) formula
$\displaystyle \frac{\Delta \mbox{$\bf y$}_{n}}{\Delta t}$ $\textstyle =$ $\displaystyle f_{n} + O[(\Delta t)]$  

or

\fbox{
\parbox{300pt}{
\begin{displaymath}
\mbox{$\bf y$}_{n+1}=\mbox{$\bf y$}_{n}+\mbox{$\bf f$}_{n} \Delta t + O[(\Delta t)^{2}]
\end{displaymath}}
}

Algebraically and computationally simple, but useless:

- Only first order accuracy

- Unstable: small aberrations from the true solution tend to grow in the course of further steps. $\Longrightarrow$

Apply EC to the relaxation equation $\frac{dy(t)}{dt}=-\lambda y(t)$:
$\displaystyle y_{n+1}$ $\textstyle =$ $\displaystyle (1-\lambda \, \Delta t) \, y_{n}$  





EC applied to the equation $dy/dt=-\lambda y$, with $\lambda=1$ and $y_{0}=1$: unstable for $\lambda \Delta t > 2$

Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001