next up previous
Next: 2.5.2 Potential Equation in Up: 2.5 Sample Applications Previous: 2.5 Sample Applications

2.5.1 Thermal Conduction in 1D

Again, discretize the equation of thermal conduction,
$\displaystyle \frac{\partial T(x,t)}{\partial t}$ $\textstyle =$ $\displaystyle \lambda \frac{\partial^{2} T(x,t)}{\partial x^{2}}$  

Earlier we applied DNGF to the l.h.s. and DDST at time $t_{n}$ to the r.h.s.:
$\displaystyle \frac{\partial T(x,t)}{\partial x^{2}}$ $\textstyle \approx$ $\displaystyle \frac{\delta_{i}^{2}T_{i}^{n}}{(\Delta x)^{2}}$  

In this manner we arrived at the ``FTCS-''formula.

Now we may use the DDST formula at time $t_{n+1}$,

$\displaystyle \frac{\partial T(x,t)}{\partial x^{2}}$ $\textstyle \approx$ $\displaystyle \frac{\delta_{i}^{2}T_{i}^{n+1}}{(\Delta x)^{2}}$  



This leads us to the ``implicit scheme of first order''
    $\displaystyle \frac{1}{\Delta t} [T_{i}^{n+1}-T_{i}^{n}]
=\frac{\lambda}{(\Delta x)^{2}} [T_{i+1}^{n+1}-2T_{i}^{n+1}+T_{i-1}^{n+1}]$  

which may be written, using $a \equiv \lambda\,\Delta t/(\Delta x)^{2}$,
$\displaystyle -a T_{i-1}^{n+1}+(1+2a)T_{i}^{n+1}-aT_{i+1}^{n+1}=T_{i}^{n}$      

or
    $\displaystyle \mbox{${\bf A}$} \cdot \mbox{$\bf T$}^{n+1} = \mbox{$\bf T$}^{n}$  

where (for fixed $T_{0}$ and $T_{N}$)
    $\displaystyle \mbox{${\bf A}$} \equiv
\left(
\begin{array}{cccccc}
1 & 0 & 0 & ...
... & 0 & . \\
. & . & . & . & . & . \\
. & . & . & 0 & 0 & 1
\end{array}\right)$  


Invert this tridiagonal system by the Recursion Method.




EXERCISE: Redo the earlier exercise on One-dimensional thermal conduction by applying the implicit scheme in place of the FTCS method. Use various values of $\Delta t$ (and therefore $a$.) Compare the efficiencies and stabilities of the two methods.



next up previous
Next: 2.5.2 Potential Equation in Up: 2.5 Sample Applications Previous: 2.5 Sample Applications
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001