next up previous
Next: 2.5 Sample Applications Up: 2.4 Eigenvalues and Eigenvectors Previous: 2.4.1 Largest Eigenvalue and


2.4.2 Arbitrary Eigenvalue/-vector: Inverse Iteration

Task: Find the eigenvalue $\lambda_{n}$ nearest to some given number $\lambda$.

Method: Start with arbitrary vector $\vec{x}_{0}$, and proceed:

\fbox{
\begin{minipage}{480pt}
\begin{displaymath}
\vec{x}_{k}\,'= \left[ \mbox{...
...k}\,'}{\left\vert \vec{x}_{k}\,' \right\vert }
\end{displaymath}\end{minipage}}

After a few iterations the vector

\begin{displaymath}
\vec{x}_{k} \propto \sum_{i=1}^{N} c_{i} \, \left[ \lambda_{i} - \lambda
\right]^{-k} \, \vec{a}_{i}
\end{displaymath}

will approach

\begin{displaymath}
\vec{x}_{k} \rightarrow c_{n} \, \left[ \lambda_{n} - \lambda
\right]^{-k} \, \vec{a}_{n}
\end{displaymath}

To evaluate $\lambda_{n}$, use

\fbox{
\begin{minipage}{480pt}
\begin{displaymath}
\lambda_{n} - \lambda = \frac...
...a + \frac{1}{\vec{x}_{k-1} \cdot \vec{x}_{k}'}
\end{displaymath}\end{minipage}}



EXAMPLE: Use $\mbox{${\bf A}$}$ as before, but search in the vicinity of $\lambda=1$:

\begin{displaymath}
\left[ \mbox{${\bf A}$} - \lambda \, \mbox{${\bf I}$} \right...
...gin{array}{cc}3&-1\\ \vspace{-9pt}\\ -2&2\end{array} \right)$}
\end{displaymath}

Starting out from

\begin{displaymath}
\vec{x}_{0}=\mbox{$\left( \begin{array}{r} 1 \\ \vspace{-9 pt}\\ 0 \end{array} \right)$}
\end{displaymath}

we get

\begin{displaymath}
\vec{x}_{1}=\mbox{$\left( \begin{array}{r} 0.832 \\ \vspace{...
... 0.709 \\ \vspace{-9 pt}\\ -0.705 \end{array} \right)$}\,\dots
\end{displaymath}

From

\begin{displaymath}
\vec{x}_{5}\,'=\mbox{$\left( \begin{array}{r} 0.708 \\ \vspace{-9 pt}\\ -0.707 \end{array} \right)$}
\end{displaymath}

we have $\vec{x}_{5}\,' \cdot \vec{x}_{4}=1.0015$, yielding $\lambda_{n}=2.001$.

The exact eigenvalues are $5$ and $2$; the eigenvector corresponding to $\lambda=2$ is

\begin{displaymath}
\vec{a}=\mbox{$\left( \begin{array}{r} 0.707 \\ \vspace{-9 pt}\\ -0.707 \end{array} \right)$}
\end{displaymath}




Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001