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The Analog of Electric and Magnetic Fields
in Stationary Gravitational Systems

Franz Embacher!
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Newtonian and Machian aspects of the stationary gravitational fleld are brought
into formal analogy with a stationary electromagnetic field. The electromagneric
vector potential equals (up to a factor) the timelike Killing vector fleld. The
current density is given by the contraction of the Killing vector with the Ricci
tensor. A coordinate-dependent split in electric and magnetic field vectors is
given, and some results of classical electrodynamics are used to illustrate the
analogy. In the linearized theory, the usual Maxwell equations are obtained. The
analogy also holds from the point of view of particle motion. The geodesic
equation is brought into a special form that exhibits an analog to the Lorentz
Jorce. Two examples (which have played an important role in the theoretical
discovery of Machian effects) are considered.

1. INTRODUCTION

Roughly speaking, the time component 8oo Of a space-time metric
corresponds—when evaluated in appropriate coordinates—to the Newtonian
potential (in the linearized theory of gravity it is coupled to the mass
density), whereas the mixed components g, give rise to additional rotational
effects (dragging of local reference frames, “Machian effects”). The analysis
of the stationary field equations exhibits a “magnetic” character of these
phenomena, while the Newton-like properties could be regarded as the
“electric” aspect. These two aspects can properly be separated (by means of
different physical effects described by different physical quantities) only
when a flat background metric is used, i.e., in a weak-field approximation.
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Nevertheless a formal separation with the aim to obtain Maxwell-like
equations may be done in the exact case.

In Section 2, the field equations are written down in two different ways.
Section 3 describes the physical interpretation of the Thirring—Lense
frequency, which may be extracted from the g,; components. In Section 4, a
short motivation for the analogy in question is given, and in Section 5 the
connection between an electromagnetic field tensor in a stationary space-time
and the electric and magnetic field vectors is written down. In Section 6, the
analogy is developed by an appropriate ansatz for the electromagnetic
potential vector. The corresponding current density turns out to be a kind of
matter current density. Section 7 specializes to the linearized theory and to
the slow motion limit and shows that each stationary solution of the
Maxwell equations with positive charge density provides a model for a
weakly gravitating system. In Section 8, two examples (a slowly rotating
spherical star and a slowly rotating spherical mass shell) are considered. In
Section 9, the study of particle motion in a stationary gravitational field
exhibits an analog to the Lorentz force in classical electrodynamics. The
equations of motion are established for the two examples of Section 8 and
are compared with the historical results of Thirring and Lense.

2. THE FIELD EQUATIONS

Let (M, g) be a stationary space-time, i.e., there exists a timelike Killing
vector field &% (£%¢, < 0 everywhere on M ); here the signature of the metric
iIs —+++; Greek indices run from O to 3 and Latin indices from 1 to 3.

Then there exists a coordinate system‘” in which &* = 05, t :=x°, and
S i=—£*¢, = —gq,. The line element can accordingly be written as

ds* = —f(dt — g, dx")* + y,, dx' dx*
The g, do not depend on ¢ and y, is the “true spatial metric”®:
Yik = ik — &0 &oi o

Let S be the hypersurface given by ¢ = 0; Yix 18 considered as a (positive
definite) metric on $®; its inverse is given by

8 :=/""gy is a vector field on S@; g'= g In order to establish an
appropriate form of the field equations, we replace g; by another vector field
on S:

o™ :=f3/15mkD1gk (1a)
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where &' =y='2 y.=det(y,), and D, is the covariant derivative with
respect to the y,, on S. Thus 5™ is subject to the condition

D,(f~%")=0 (1b)

Expressed in terms of these fields on S, Einstein’s field equations R up =
87(T,, — 38,,R®,) read (cf. Refs. 2 and 3):

S, = 3D )DY) +b'by = YRoy = 16nf(Ty, + 4/T,) (2a)

3f ™D, b, = R} = 82T% (2b)
Pk __fl/ZDilef‘l/Z + lzf‘z(y”‘b,,,b’" — bibk) =Rk
= 8n(T™* — Yy'k1= ) (2¢)

where 4, is the Laplacian with respect to y,,, #* the Ricci tensor of Vi and
R*" the Ricci tensor of 8-

In this paper we shall deal with Eq. (1) and (2) that are relevant for f
and b'. As is well known, 3/ plays the role of the Newtonian gravitational
potential; cf. Ref 4, p. 452, and Ref. 5). Now let us focus out attention on b';
b’ can be calculated from the 4-vector®

w* = %e‘“"’”.favﬂfy 3)
(twist of &%, Thirring—Lense frequency). In fact,
w;=—1b;, w,=0
w'=—{b,  w’=—1g',
Since w*¢, =0, w* is tangential to S and can therefore be considered as a
vector on 5. As a consequence, w® is spacelike. By contrast, b’ can be
extended to the 4-vctor b, = —2w,,.

Equation (3) is the covariant formulation of (1a). With the aid of w*,
Eq. (1b) and (22), (2b) can also be expressed covariantly ®:

V.(f20*)=0 (Ib%)
fa,f— VEFV f + dotw, = 2fRaB€"<§B (2a")
£, 1, = 261oR ) & (20")

[The different exponentials of f in (1b) and (1b”) arise from different e-
tensors of y, and g,,: (—g)"* = (f y)/*.] Equations (3), (1b"), (2a’), and
(2b’) can replace Egs. (1a), (1b) and (2a), (2b).
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3. THE PHYSICAL MEANING OF o*

In the case of axial symmetry, the physical meaning of w* is as follows:
A stationary observer at rest on S (4-velocity u®=/""*¢*) will carry
torque-free gyroscopes along his world line. The gyroscopes’ angular
momenta S* are Fermi-Walker transported (Ref. 4, p. 1117):

u®V,S* =u*S,uv, ub
U, S*=0

When regarded in the observer’s proper time, they revolve uniformly
around the vector w* (telescopes that are directed toward fixed points on the
rotational axis of M serve as a kinematic reference frame; mathematically
speaking, it is Lie-transported). The angular velocity of this rotation is
(w*w,)"?. Here w* is the angular velocity vector of the gyroscopes’ angular
momenta (including the right-hand rule for the orientation). If S$* coincides
with w*, it will be at rest in the kinematic frame; w* itself is also Fermi—
Walker transported.

The vector w* describes the dragging of local reference frames by
rotating masses (“Machian effects”’"'"). Each timelike Killing vector field
&= provides a w* by construction of a coordinate system in which &* = d§.
Thus, all stationary observers are included. For a chosen &%, w* is a vector
field on M whose properties we are interested in.

In the stationary case without axial symmetry, the S* will no longer
revolve uniformly around w*, but some aspects of the statement given above
remain valid; the kinematic frame is Lie-dragged.®

In the vacuum case, (2b) states that b’ is curl-free and therefore locally
the gradient of a function .# on S:

b;=0,7
Analogously we may conclude®
V,0, =V, 0, =—,,,,EREE
from (3), and thus w, is a gradient. The identification of b, with w, gives
w, =—30,F

# is therefore called the Thirring—Lense (or twist) potential. For the
connection between f, #, the angular potential, and the multipole moments,
see Ref. 12. The field equations (2a’) and (1b’) read

[, f =V, [ —VEF Y, 5
fAF = 2VAV, &
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They can be unified by a complex function:

Reed,e=V* eV ¢
e=f+iF

This is the Ernst equation.”"® Thus, in the vacuum case, the Thirring—Lense

frequency is given by the gradient of the imaginary part of the Ernst function
(14)
€.

4. o* FOR A ROTATING STAR
In the Kerr metric*® (Boyer—Lindquist coordinates’®), & is given by

2Ma cos @
Fr0)= r’ +a*cos’ @
The flow lines of 8, for large r resemble those of a stationary magnetic
field which is generated by a charged rotating sphere. Condition (1b) means
that £~%/?b, is divergence-free on S. For large r (f— 1), b, itself becomes
divergence-free. Relation (2b) is an equation of type div B =j. These obser-
vations suggest that b; has properties resembling those of a magnetic field.
The linearized theory of gravity shows that w, is a dipole field at large
distances from the source (cf. Ref. 4, p. 1119).

Analogously, for weakly gravitating systems, —38,f plays the role of
the Newtonian gravitational field strength [f =exp(2y), w = Newtonian
potential®], and &,/ ~ 8= times the mass density [cf. Eq. (2a)]. Thus 39,/
obeys the Poisson equation for a stationary electric field with charge density
equalling the mass density of the gravitating system.

This analogy will be subject of the following considerations.

5. ELECTROMAGNETIC FIELD TENSOR ON M
Let F,, =—F,, be an electromagnetic field tensor in a stationary space-
time, i.e.,
VHF . =471,
VieFpp=0 (4)

F,,=08,4,—8,4,, V,j*=0

Mmv
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We use the same coordinate system as before. On can construct

generalizations of the electric and magnetic field vectors with respect to the

hypersurface S (cf. Ref. 17):
E,=F,¢

—___1 B
B# = —lgre yéaFﬁy

®)

Since E, ¢ = B*{, =0, E* and B* are tangeptial to S and therefore in fact
three-dimensional (E,=B,=0, E,=F,,, F*=f~"%mB ). The spatial
part of the current density is calculated as

4nj* = £~V %6H5D B, ©)
while its projection along £ is given by the more complicated formula
4nj,¢* =—V, E* + F, Vi @)

Iff~1and F,,V*{* = 0, then we obtain the flat stationary Maxwell source
equations for F,,,.

6. THE ANALOGY WITH THE STATIONARY
ELECTROMAGNETIC FIELD

If we want to identify &,/ and b, formally with a stationary elec-
tromagnetic field, we have to make an ansazz for F,,. Thus —3f could take
over the role of the electrostatic potential (whereas 1f corresponds to the
Newtonian potential; the different signs arise from the formal identification
of the mass density with the electric charge density). Equation (1a) suggests
a quantity like g, as the vector potential of the magnetic field. A possible
covariant combination of f and g, is £, = g,,. With an appropriate factor we
define

A, =—3,

which leads to
Fuu = _%(Vu éu - Vvéu) = Vvéu (8)
Using the identities
V.8 +V,¢,=0
V,¢* = 0 (corresponds to the Lorentz gauge)
Vir€y=Rop)&”



Electric and Magnetic Fields in Gravitation 727

for Killing vector fields and

vV, " =0
EV T* = i T =0
n (3 3t a
we obtain
VieFpy =0
471:[.,1 = VuFau = _RaB éB = —8n(TaB - %gaﬂ Tyy)éﬂ (9)

Vajazo

F,, obeys Egs.(4); the corresponding conserved current density j* is
composed of the energy current density T5&® and a vector parallel to &°.
This fact is the stronger reason for the analogy outlined here. The “matter
current” j* may formally be regarded as the source for the field F,,,ie, as
the charge current density (which is not coupled to the metric by the Einstein
equations!). Comparison of (5) with (3) gives

B* = p* = —1p* (10)
and the electric field vector is given by

Eu"’ V#(é"‘é )——auf (11)

As a gradient E,, is curl-free, and (1b) or (1b’) can be considered as an
analog of the divergence-freeness of the magnetic field. Equation (6) is iden-
tical with (2b), and (7) with (2a). When expressed in S, the four equations
relevant for £, and B, read (note that E' = y*E,, B = y**B,):

D(f~*/’B')=0  (D,B'=3""E;B")
eSD,E;=0

Sf~*e*D,B, = 4nj* = —RX

DIEI —f_lEiEl + Zf—-lBlBt = "'47;]-0 =R00

(12)

The quantity that corresponds to the electric charge,

0:= L jAdo, =—2 L (T — 164 T)é= do,
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is identical to the expression for the total gravitational mass given by
Komar.'®1? If S is asymptotically flat, Q reduces to the well-known surface
integral

_ 1 L7 _ _L [a£B]
Q‘Tz’L VuF™do, == VI d0ag
Then Q is identical to the ADM mass. %2

The source equation for E; is typical for general relativity, because E;
and B, appear as sources for E;.

Because of (12) we expect the flow lines of B; to be closed in
topologically reasonable cases (except for those lines that run to infinity).
Furthermore we obtain an analogy with Ampére’s law?? (total current
passing through a closed curve := surface integral of the current
density =closed line integral of the magnetic field =: “magnetic curcuit
voltage”). Let & be a 2-area in S (do, :=y'/* do}* is the covariant surface
element on & with respect to y;,). Then

47':L(f‘/2j" dak=£{s"“D,Bs dok=£st dx* (13)

If we take 0% as a closed flow line of B; (Fig. 1) and chose the orien-
tation such that the right-hand side of (13) becomes positive, then we may
conclude in a very heuristic manner, generalizing the well-known theorem of
classical electrodynamics: Each flow line of j* is surrounded by closed flow
lines of B;. The analogy of the “magnetic curcuit voltage” ¢ B, dx® is given
by a kind of total “matter current”

Ii={ jH(-g)"*dof
k'

Fig. 1. The analog of Ampére’s law: Each flow
line of j* generates closed flow lines of B,.
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\LE‘, dragging
ik

J
Fig. 2. In cases of simple matter curent
densities, the orientation of the frame
dragging is easily found:

ik k — dragging

— @
right-hand rule right-hand rule

For illustration we may calculate j* for an ideal fluid with 4-velocity u*:
J==2(p + p)utu & = 2(p + p)utf(u® — g,u')

In the case of rigid rotation, j* is zero if S is the rest frame of the fluid
(u* =f~"2¢*). Then B, is a gradient and has zero curcuit voltage; B, is
identically zero only in the static case (w* =0 is the condition for &% being
hypersurface-orthogonal ®),

The analogy between the Thirring-Lense potential and a stationary
magnetic field may be used to speculate about the nature of Machian effects
in more complicated matter distributions. The orientation of the frame
dragging is given by the direction of w, (near an isolated tube of j*: right-
hand rule applied twice: j* - w* - dragging; Fig. 2). For example, near the
equator of a rotating star, the frame dragging is antiparallel to the star’s
angular velocity. Of course, these arguments cannot replace an exact
analysis, but they might help imagination and intuition. In Section 8 we shall
consider two examples in the weak-field limit.

7. THE LINEARIZED THEORY

In the linearized theory of gravity (flat background, 8uv =My + Vors
[Wuol <€ 15 O(W?)=0; cf. Ref.4, p.435), Egs. (12) take the form of the
stationary Maxwell equations:

divB=rotE=0
rot B = 47j (14)
div E = 47;5°
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The additional assumption of small velocit'ies (sloyv motion limit, cf.
Ref. 4) and small pressures gives Tg= —p and Ty = —pv' (p = mass density,
v! = velocity). The current density then becomes

J* = (b, 2p0")
and thus
rot B = 8mpv =: 4mpv ¢
divE = 4mp

In this case, the Bianchi identity for T"" reduces to the matter continuity
equation,

div(pv) =0

which is valid because J,,j* = 0.

Each solution of the stationary Maxwell equations describing the field
of moving particles with positive charges provides a model for a weakly
gravitating system when its Newtonian and Machian aspects are considered.
The magnetic field corresponds to the Thirring—Lense frequency, and the
electric field corresponds to the negative of the gravitational field strength. In
the slow-motion limit the velocity of the charges corresponds to the double
velocity of matter, and the charge density corresponds to the matter density.

If large velocities are allowed, the connection between charge
density/velocity of the charges and mass density/velocity of matter becomes
slightly more complicated.

8. EXAMPLES

As a first example, let us consider a uniformly rotating charged sphere
with constant charge density p, radius R, and angular velocity £2 > 0. In
spherical coordinates and orthogonal components, the velocity field is given
by v,=vy=0, v,=Qrsin @ for r R (we assume slow motion limit, i.e.,
QR < 1). Thus we have to solve the Maxwell equations (14) with the three-
dimensional current density

jr=j6 =0
Jo=pRrsin @

We are especially interested in the magnetic field. The integration of the
Maxwell equations with the boundary condition |B|— 0 as r— oo gives
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B,=4npQ(3R* —4r*)cos ©
Bg =4npQ(3r* — iR sin O (15a)
B,=0

for the interior region r < R, and

87 R\?
B, =— — 2
. 15pg<r> R*cos ©
47 R\?3
B T emem— —— 2 1
=Tz p[)(r) R*sin @ (15b)
B =0

@

for the exterior region r > R. The B, are continuous across the surface r = R.
As stated in Section 7, the slowly rotating charged sphere is a model for a
slowly rotating star with constant mass density p, radius R, and angular
velocity 2., =12. In the weak-field and slow-motion limit Egs. (15)
describe the Thirring-Lense frequency w; = B;. The magnitude of the frame
dragging is given by

Wyrag = (wuw“)llz = lml

The flow lines of w, are given in Fig. 3. They provide an illustrative picture
of Machian effects inside and outside the star.

Near r=0, ® points into the positive z direction (upwards). Using
M= (4n/3)pR® for the mass of the star, the “dragging coefficient”"'?
becomes

2M  Schwarzschild radius

=0 R radius

wdrag

Q0

star

P N df'ogging?
e

Fig. 3. The flow lines of w, for a rigidly rotating star of constant mass density in the
slow-motion limit.

L
2
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In the exterior region, near the equator, r = R, ® = 7/2, the dragging is
antiparallel to the star’s angular momentum. Vector ® points into the
negative z direction (downwards). The dragging coefficient is therefore given
with a negative sign:

2 M

S R

wdrag
'Qstar

equator

Analogously one finds the dragging coefficient near the poles:

4 M

pole_ 5 R

wdras

'Qstar

On the ring @ = 7/2, r = R, the dragging becomes zero.
Comparison with the w, in the Kerr metric (Section 4) for large r gives

Ma = 3MQ,,, R?

This is the angular momentum of the star (3MR? is its moment of
inertia).®-1?
The second example is the rotating spherical shell. Setting

p=06(r—R)
(o = charge surface density) and
Jo=08R6(r —R)rsin @

we find the solution of the Maxwell equations

B, = %71_ 0$2R cos O

(16a)
8n )
B9=—TUQR sin @
for the interior region r < R, and
3
B,—.—8~n—a.Q (5—-) Rcos ®
3 r

(16b)

for the exterior region r > R. Here B, is continuous, Bg is not. The flow lines
are given in Fig. 4. Setting 0., = 32, we obtain a model for a rotating
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Fig. 4. The flow lines of w; for a rigidly rotating spherical shell of constant
surface mass density in the slow-motion limit.

spherical mass shell. The frequency wy,,, is constant in the interior region.
The dragging coefficient is given by (M = 4noR?)

— wdrag

'Qshell

wdrag

M
Qspen R

-4
—3

interior pole

in accordance with the result of Thirring”’; cf. Ref. 4, p. 547. In the exterior
region, near the equator, we have

2 M

3R

wdrag

'Qshell

equator

The Newtonian (“electric”) field E’ vanishes in the interior region
because of the constant surface density of the shell. The result of Thirring"®
for the rotating spherical shell is more exact, because he didnot restrict
himself to the slow-motion limit. Thus he did not neglect quantities of the
order of 22%,.,. If we want to express our fields within the same accuracy, we
have to set

Udpe = (1 = Vipen) "2 = 1+ 3Vipen
and thus
T% = gd(r — R)(1 + 2%, R* sin* O) (17

for the mass density. Therefore also a nonzero “electric” field £ !is generated
in the interior region that gives rise to additional effects (centripetal forces
on test particles). The reson for this field is that, due to (17), mass energy
appears larger near the equator than near the poles (relativistic mass
increase) and thus produces a gratitational field strength pointing toward the
equator region.

825/14/8-4
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Within higher accuracy, the simple relation Vi,er = 3Venarges 1S
destroyed, and we have to return to (14).

Finally, a last formula will be given (which may be applied exactly to
the exterior regions in our two examples). Applying the analysis of
magnetostatics to linearized theory, one finds that the Thirring—-Lense
frequency far from the source (which is assumed to be rotating with constant
angular velotity Q) is given by
I 3(Qx)x — Qr?

3

r r?

W=

where I is the moment of inertia of the source (cf. Ref. 4, p. 1119); IQ
corresponds to the magnetic dipole moment. This equation for o first
appeared in Ref. 24.

9. PARTICLE MOTION

The analogy of Newtonian and Machian aspects with an elec-
tromagnetic field remains a purely formal one unless it is shown that E' acts
on moving test particles like an electric field and that B' acts on them like a
magnetic field. In special relativity, the motion of a point particle with mass
m and charge e in an electromagnetic field is given by the Lorentz force

du®
ds

= F*by, (18)

with spatial components (w' := dx'/d, ordinary velocity)

dul o
m—ii—: (1—w?)~2g(E 4+ gitly, B)) (19a)

and the time component

%(m(l —w) V) = eE, W' (19b)

We are interested now in knowing if the geodesic motion of test
particles in a stationary gravitational field is somewhat similar to (19a) if E*
and B’ are taken from (10) and (11). We use the same coordinate system as
in the previous sections.
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Let u® =dx%(s)/ds be the 4-velocity of a neutral test particle,

u®u,=-—1, and V, :=u*V_ . The motion is described by the geodesic
equation
d*xe dx® dx®
VU= p 1% — = 20
=G s g =0 (20)

The fields E; and B, appear in the Christoffel symbols I'§;. We hope to give
the spatial part of this equation a form analogous to (19a). As the velocity
enters linear in (18) but quadratic in (20), we expect the factor (1 —w?)~!/2
to be replaced by a quantity like (1 —w?)~".

To construct a 3-velocity, we note that the projection

@ ._ @ -1
v i=ut + T8
is a vector tangential to S with components

i i

k
vi=u, V= U+ gillg = YV
vy=0, v = g;v'

Thus v’ = dx'/ds, v, = y,;v" may be regarded as a 3-vector on S (like E' and
BY). As u® is a unit vector, u° may be expressed as

w0 — gt = [f 71+ 0|2 =t = —f (21a)
Diract calculation of (u°)~' = ds/dt gives another form,
u'=[f(1 - gw) —ww' |72 =p(l — g;w)! (21b)

expressed through the ordinary velocity w' = dx/dt. In the linearized theory,
both 4 and u° reduce to the well-known factor (1 —w?)~"2 = (1 +v?)"%
The quantities v’ and w' are related by v’ = u’w'.

The Christoffel symbols may be calculated straightforwardly, using (1a)
and (11):

ri,=E

Toe=—8E" + 371 b"e !

L= T = 3f """ (&xbm' + &16mi') + 8k &/

I = g'E;

Io=f""E;~ g&"E,+ 3¢ b ey

L= 8 i~ (Evgi+ Ei8) + 3/ 78"b™ (&8 mnk + &kErmni)

+ &"E, 818 —1(0: 8k + 9, &)

where 4TS, are the Christoffel symbols with respect to yy.
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These expressions may be used to calculate the spatial components of
(20) (D, :==v'D)):
2,0 k 1
=Ly ory BB gy, 22)
The formal analogy to (19a) is obvious; u? plays the role of (1 —w?) ™!
as stated above. If we set v, = u"w, on the right-hand side of (22), the factor
uu® plays the same role. The left-hand side of (19a) is replaced by the three-
dimensional covariant acceleration with respect to y;,. Here —E' corresponds
to the electric field and b,,=—2B,, to the magnetic field when mass and
charge are set equal, m =e. The minus signs arise from the fact that the
electric repulsion of two positive charges is replaced by the gravitational
attraction of two masses. The factor 2, which replaces B, by b,,, arises from
the tensor character of the gravitational potentials g, :

ILauuP = Iiw®)? + 20 ugp’ + Iiyv*o!

The time component of (20) may be brought into the form

d
= w)=0 (23)

L.e., 4f is a constant of the motion. It is easily identified with the energy of
the particle: Since £ is a timelike Killing field, its scalar product with the
geodesic 4-momentum is conserved:

& i=—mltu, = —mu,=mf(u’ — g,v') = muf (24)

The energy conservation may be used to define the proper time s on the
hypersurface S without regard to the whole manifold (up to trivial scaling).
(If s is replaced by another, arbitrary, parameter, the quantity (24) will not
be constant.) Thus (22) and (23) give a full description of geodesic motion,
expressed with fields on S.

In the linearized theory, (22) reads

Do = (1 —w?)"(—=E"+ e™w,b)) (25)

which reduces, in the slow-motion limit (O(w?) = 0), to
——=——=—E"+¢*w,b, (26)

the exact formula for the nonrelativistic Lorentz force. In this limit, the
stationary gravitational field acts on a test particle with mass m exactly like
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a stationary electromagnetic field (—E, b) on a test particle with mass m and
charge m. The Newtonian approximation of this equation is

— =—F' (27

the “magnetic” term is a post-Newtonian correction (Machian part of the
gravitational force).

Let us evaluate (26) for two examples. First consider the rotating
spherical shell of Section 8. In the interior region, the equations of motion for
a test particle are [using (16a) and (10)], expressed in Cartesian coordinates,

v 8 M .
X=—--§——E.Qshe”y

. 8 M .
y=?i‘oshellx
Z=0

in accordance with Thirring’s'” result. As stated in Section 8, Thirring
obtained additional terms proportional to 22, arising from a nonzero E’.

As a second example, consider the exterior region of the rotating star of
Section 8: B' is given by (15b), and the “electric” field is

E.=Mr?
Equation (26) reads, in Cartesian coordinates,

2
= —‘5‘—Mast,,,1z2r-3 [y‘ (1 - iz—) +37 —~] Mr—x

2
j=—2 = M, R [ (1_3:_) +3zx ]—Mr‘3y

12 . . -
=—§-M.Qm,R2r‘3 [y—r—z——x—z] —Mr3z

This is exactly the result obtained by Thirring and Lense.'®

In conclusion we state that the Thirring—Lense frequency w, may be
regarded as a formal analog of a magnetic field (when the masses are iden-
tified with the charges) from two point of views: (i) from its generation by
mass-energy, cf. Eqs. (12), and (ii) from its action on test particles, cf.
Eq. (22). Twice a factor 2 arises (2Vpgiter = Veharges i1 Section 7 and
b;=—2B,) as a consequence of the remaining fundamental difference
between electromagnetism and gravity.
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