
qRSt: A probabilistic Robinson-Schensted
correspondence for Macdonald polynomials

Florian Aigner

joint work with Gabriel Frieden

Arbeitsgemeinschaft Diskrete Mathematik @ Wien, 10.11.2020



Outline

The classical Robinson-Schensted correspondence

Macdonald polynomials

Probabilistic bijections

A probabilistic Robinson-Schensted correspondence

Properties of qRSt

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



Semistandard Young tableaux

Let λ be a partition. A semistandard Young tableau (SSYT) T of shape
λ is a filling of the cells of λ with positive integers such that

the rows are weakly increasing from left to right,

the columns are strictly increasing from bottom to top (French
notation).

Denote by xT =
∏

i x
#i ’s in T
i

Example. T =
1 1 2 3 3
2 3 4 4
4 5

xT = x21 x
2
2 x

3
3 x

3
4 x5

A standard Young tableau (SYT) T of shape λ is an SSYT having each
of the integers 1, . . . , |λ| exactly once as an entry. Denote by SYT(λ)
(SSYT(λ)) the set of SYTs (SSYTs) of shape λ.
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Schur polynomials

Definition

Let λ be a partition. The Schur polynomial sλ(x) is defined as the sum∑
T∈SSYT(λ)

xT .

Theorem (Cauchy identity)

For two sequences of indeterminates x = (x1, x2 . . .) and y = (y1, y2, . . .),
we have

∑
A=(ai,j )

∏
i,j

(xiyj)
ai,j =

∏
i,j

1

1− xiyj
=
∑
λ

sλ(x)sλ(y).

In this talk we are interested in the squarefree part, i.e., the coefficient of
x1 · · · xny1 · · · yn.
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Robinson-Schensted via local growth rules

The Robinson-Schensted correspondence is a bijection

Sn ↔
⋃
λ`n

SYT(λ)× SYT(λ).

For two partitions λ, µ write µl λ if the Young diagram of µ is obtained
from the Young diagram of λ by deleting a box.

Fλ

Identify

µl λ with the removed (red) box,

ν m λ with the added (blue) box.

For a partition λ define Fλ as

Fλ : {µl λ} ∪ {λ} → {ν m λ},
mapping a removed box to an
added box in the next row,

λ to the added box in the first row.
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Fomin growth diagram

We consider a permutation matrix as an n × n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅
P

Q

X

X

X

λ λ

λ λ

for λ 6= ρ

ρ ∩ λ ρ

λ ρ ∪ λ

λ λ

λ Fλ(λ)

X for µl λ

µ λ

λ Fλ(µ)
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Fomin growth diagram

We consider a permutation matrix as an n × n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅
P

Q

X

X

X

The ith partition along the right
(bottom) boundary give the shape
of the subtableau of P (Q) with
entries at most i .

In our example we obtain

(P,Q) =

(
1 2
3

,
1 3
2

)
.
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Up and Down operator

We define the up operator U and down operator D on the Q-vector
space generated by all partitions as

Uλ =
∑
νmλ

ν, Dλ =
∑
µlλ

µ.

Example. U
( )

= + , D
( )

= .

Theorem
The two operator satisfy the commutation relation

DU − UD = I .

The squarefree part of the Cauchy identity is direct consequence of the
commutation relation.

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



Up and Down operator

We define the up operator U and down operator D on the Q-vector
space generated by all partitions as

Uλ =
∑
νmλ

ν, Dλ =
∑
µlλ

µ.

Example. U
( )

= + , D
( )

= .

Theorem
The two operator satisfy the commutation relation

DU − UD = I .

The squarefree part of the Cauchy identity is direct consequence of the
commutation relation.

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



Bijective proof of the commutation relation

The commutation relation DU = UD + I is equivalent to

|{ν m λ}| = |{µl λ} ∪ {λ}|, ∀λ,
|{ν m λ, ρ}| = |{µl λ, ρ}|, ∀λ 6= ρ.

F row
λ F col

λ
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Back to local growth rules

Let Fλ : {µl λ} ∪ {λ} → {ν m λ} be a bijection. The local growth rules
turn out to be a reincarnation of the commutation relation for the up-
and down-operators.

λ λ

λ λ

I

I

I I

for λ 6= ρ

ρ ∩ λ ρ

λ ρ ∪ λ

U

U

D D

λ λ

λ Fλ(λ)

X

I

U

I D

for µl λ

µ λ

λ Fλ(µ)

U

U

D D
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Macdonald Polynomials I

The Macdonald polynomials Pλ(x; q, t) are a basis for the symmetric
functions over Q(q, t). We define them and their dual basis Qλ(x; q, t) as

Pλ(x; q, t) =
∑

T∈SSYT(λ)

ψT (q, t)xT ,

Qλ(x; q, t) =
∑

T∈SSYT(λ)

ϕT (q, t)xT ,

where ψ,ϕ are certain rational functions in q, t.

The Macdonald polynomials Pλ(x; q, t) specialise to

Schur polynomials for q = t,

Hall-Littlewood polynomials for q = 0,

q-Whittaker polynomials for t = 0.
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Macdonald Polynomials II

Theorem (Macdonald)

Let x = (x1, x2, . . .) and y = (y1, y2 . . .) be two sets of variables. Then

∏
i,j≥1

∞∏
k=0

1− txiyjq
k

1− xiyjqk
=
∑
λ

Pλ(x; q, t)Qλ(y; q, t).

Again we are interested in the squarefree part, i.e., the coefficient of
x1 · · · xny1 · · · yn. In this case the above becomes∑

σ∈Sn

(1− t)n

(1− q)n
=
∑
λ`n

∑
(P,Q)∈SYT(λ)2

ψP(q, t)ϕQ(q, t).
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The case n = 2

(1− t)3(1− q2)

(1− q)3(1− qt)

(1− t)(1− t2)

(1− q)(1− qt)

(1− t)2

(1− q)2

(1− t)2

(1− q)2

(
1 0
0 1

)

(
0 1
1 0

)
1 2 , 1 2

1
2
,

1
2

weight of A A (P,Q) ψP(q, t)ϕQ(q, t)
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The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined “recursively”:

ψT (q, t) =
∏
i

ψT (i)/T (i−1)(q, t), ϕT (q, t) =
∏
i

ϕT (i)/T (i−1)(q, t),

where T (i) is the shape of the subtableau of an SSYT T of entries at
most i . The ψ,ϕ are again rational functions in q, t.

We define the (q, t)-up and down operator as

Uq,tλ =
∑
νmλ

ψν/λ(q, t)ν, Dq,tλ =
∑
µlλ

ϕλ/µ(q, t)µ.

Theorem

The (q, t)-up and down operator satisfy the commutation relation

Dq,tUq,t − Uq,tDq,t =
1− q

1− t
I .
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An equivalent formulation

The commutation relation

Dq,tUq,t = Uq,tDq,t +
1− q

1− t
I ,

is equivalent to the two equations∑
νmλ,ρ

ψν/λ(q, t)ϕν/ρ(q, t) =
∑
µlλ,ρ

ϕλ/µ(q, t)ψρ/µ(q, t),

∑
νmλ

ψν/λ(q, t)ϕν/λ(q, t) =
1− q

1− t
+
∑
µlλ

ϕλ/µ(q, t)ψλ/µ(q, t),

for all λ 6= ρ.
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Probabilistic bijections

Let k be a field and X ,Y be two sets equipped with weight functions
ω : X → k, ω : Y → k . A probabilistic bijection from (X , ω) to (Y , ω) is
a pair of k-valued “probabilities” P(x → y),P(x ← y) such that∑

y∈Y

P(x → y) = 1 ∀x ∈ X ,

∑
x∈X

P(x ← y) = 1 ∀y ∈ Y ,

ω(x)P(x → y) = ω(y)P(x ← y) ∀x ∈ X , y ∈ Y .

Lemma

If P,P is a probabilistic bijection from (X , ω) to (Y , ω), then∑
x∈X

ω(x) =
∑
y∈Y

ω(y).
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The weighted sets

We regard the sets {µl λ} ∪ {λ} and {ν m λ} with weights

ω(µ) =

{
1 µ = λ,
1−q
1−t ϕλ/µ(q, t)ψλ/µ(q, t) otherwise,

ω(ν) =
1− q

1− t
ψν/λ(q, t)ϕν/λ(q, t).

Hence, we need to show
∑

µlλ or µ=λ

ω(µ) =
∑
νmλ

ω(ν).

We prove this by finding a probabilistic bijection Pλ,Pλ from
({µl λ} ∪ {λ}, ω) to ({ν m λ}, ω).
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A few more notations

Denote by

(h1, . . . , hd) the horizontal segment lengths on the boundary of λ,

(v1, . . . , vd) the vertical segment lengths on the boundary of λ.

v1

v2

v3

v4

h1

h2

h3

h4
Let

xi := h1 + . . .+ hi ,

yi := v1 + . . .+ vi .

Define for 0 ≤ r , s ≤ d

λ(+s) by adding a box to λ in
row ys + 1,

λ(−r) by deleting a box of λ in
row yr ; λ

(−0) = λ.
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The probabilities

Write pr ,s := Pλ
(
λ(−r) → λ(+s)

)
and pr ,s := Pλ

(
λ(−r) ← λ(+s)

)
. Then

p0,s =

d∏
i=1

(qxs tys − qxi−1tyi )

d∏
i=0
i 6=s

(qxs tys − qxi tyi )

, p0,s =

d∏
i=1

(qxs−1tys+1 − qxi−1tyi )

d∏
i=0
i 6=s

(qxs−1tys+1 − qxi tyi )

,

and for r > 0,

pr ,s =
d∏

i=0
i 6=s

qxr−1+1tyr−1 − qxi tyi

qxs tys − qxi tyi

d∏
i=1
i 6=r

qxs tys − qxi−1tyi

qxr−1+1tyr−1 − qxi−1tyi
,

pr ,s =
d∏

i=0
i 6=s

qxr−1tyr − qxi tyi

qxs−1tys+1 − qxi tyi

d∏
i=1
i 6=r

qxs−1tys+1 − qxi−1tyi

qxr−1tyr − qxi−1tyi
.
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Our main Theorem

Theorem (A.-Frieden)

The pair Pλ,Pλ are a probabilistic bijection from ({µl λ} ∪ {λ}, ω) to
({ν m λ}, ω).

The probabilities Pλ,Pλ are defined such that

ω
(
λ(−r)

)
Pλ
(
λ(−r) → λ(+s)

)
= ω

(
λ(+s)

)
Pλ
(
λ(−r) ← λ(+s)

)
,

holds for all 0 ≤ r , s ≤ d . Therefore, it suffices to prove

d∑
s=0

Pλ
(
λ(−r) → λ(+s)

)
= 1 ∀ 0 ≤ r ≤ d ,

d∑
r=0

Pλ
(
λ(−r) ← λ(+s)

)
= 1 ∀ 0 ≤ s ≤ d .
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About the proof

We present the proof for
∑d

s=0 Pλ(λ→ λ(+s)) = 1. By definition we have

d∑
s=0

Pλ(λ→ λ(+s)) =
d∑

s=0

d∏
i=1

(qxs tys − qxi−1tyi )

d∏
i=0
i 6=s

(qxs tys − qxi tyi )

.

Let us write ai = qxi tyi and bi = qxi−1tyi in the above expression.

The right hand side is actually the leading coefficient of the polynomial
(in x)

d∑
s=0

d∏
i=1

(as − bi )
d∏

i=0
i 6=s

x − ai
as − ai

=
d∏

i=1

(x − bi )

,

and hence equal to 1.
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The probabilistic local growth rules

Let λ 6= ρ be partitions and ν m λm µ. We assign a partition to the
bottom right corner of a square according to one of the four cases and
their corresponding probabilities.

λ λ

λ λ

1

ρ ∩ λ ρ

λ ρ ∪ λ

1

λ λ

λ ν

X

Pλ(λ→ ν)

µ λ

λ ν

Pλ(µ→ ν)

For the qRSt algorithm we use the probabilistic local growth rules instead
of the deterministic ones.

Theorem (A.-Frieden)

The qRSt algorithm allows a probabilistic bijection proof of the
square-free part of the Cauchy identity. For q = t = 0 we obtain the RS
row insertion.
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Inverting q and t

The Macdonald polynomials are invariant under inverting q and t,

Pλ(x; q−1, t−1) = Pλ(x; q, t), Qλ(x; q−1, t−1) = Qλ(x; q, t).

The weights ω, ω are also invariant, the probabilities Pλ,Pλ however not!

Define new probabilities

Pcol
λ = Pλ|(q,t) 7→(q−1,t−1) ,

Pcol
λ = Pλ

∣∣
(q,t) 7→(q−1,t−1)

.

Theorem (A.-Frieden)

The maps Pcol
λ ,Pcol

λ are probabilistic bijections. The induced RS
algorithm specialises for q, t → 0 to the column insertion version of
Robinson-Schensted.
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Specialisations of qRSt

qRSt

Macdonald polynomials

t-RS
(row insertion)

q → 0

Hall-Littlewood polynomials

q-RS
(row insertion)

Borodin-Petrov’16
Matveev-Petrov ’17

t → 0

q Whittaker polynomials

q-RS
(column insertion)
O’Connell-Pei’13

Pei’14

t →∞, q → q−1

t-RS
(column insertion)
Bufetov-Petrov’15
Bufetov-Matveev’18

q →∞, t → t−1

RS (row insertion)

t → 0 q → 0

Schur polynomials

RS (column insertion)

q → 0 t → 0

q-Plancherel measure
(for σ = id)

q = t

Plancherel measure
(for all σ)

q → 1
q → 0 q →∞
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exterior (q, t)-Hook walks I

1 Start with a cell c = (x , y) “far away”, i.e., x > λ1, y > λ′1.

2 Choose c ′ ∈ armλ(c) ∪ legλ(c) with

P(c → c ′) =


qa(c)−i

t`(c)(1− q)

1− qa(c)t`(c)
if c ′ = (x − i , y) ∈ armλ(c)

t j−1
1− t

1− qa(c)t`(c)
if c ′ = (x , y − j) ∈ legλ(c).

3 Repeat until we reach an exterior corner of λ.

armλ(c)

legλ(c)

c

c1

c2

c3
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exterior (q, t)-Hook walks II

These walks are similar to the (q, t)-walks of Garsia and Haiman which
generalise Greene–Nijenhuis–Wilf hook walks.

Let P(ν|c) be the probability that the exterior (q, t)-Hook walk ends at
the exterior corner corresponding to ν m λ.

Theorem (A.-Frieden)

Let c = (x , y) with x > λ1, y > λ′1, then

P(ν|c) = Pλ(λ→ ν).
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