qRSt: A probabilistic Robinson-Schensted correspondence for Macdonald polynomials

Florian Aigner
joint work with Gabriel Frieden

Arbeitsgemeinschaft Diskrete Mathematik @ Wien, 10.11.2020

Outline

- The classical Robinson-Schensted correspondence
- Macdonald polynomials
- Probabilistic bijections
- A probabilistic Robinson-Schensted correspondence
- Properties of qRSt

Semistandard Young tableaux

Let λ be a partition. A semistandard Young tableau (SSYT) T of shape λ is a filling of the cells of λ with positive integers such that

- the rows are weakly increasing from left to right,
- the columns are strictly increasing from bottom to top (French notation).
Denote by $\mathbf{x}^{T}=\prod_{i} x_{i}^{\# \text { i's in } T}$

Example.

$$
T=\begin{array}{|l|l|l|l|}
\hline 4 & 5 & & \\
\hline 2 & 3 & 4 & 4 \\
\hline 1 & 1 & 2 & 3
\end{array} 3 \quad 3 \quad \mathbf{x}^{T}=x_{1}^{2} x_{2}^{2} x_{3}^{3} x_{4}^{3} x_{5}
$$

Semistandard Young tableaux

Let λ be a partition. A semistandard Young tableau (SSYT) T of shape λ is a filling of the cells of λ with positive integers such that

- the rows are weakly increasing from left to right,
- the columns are strictly increasing from bottom to top (French notation).
Denote by $\mathbf{x}^{T}=\prod_{i} x_{i}^{\# \text { i's in } T}$

Example.

$$
\left.T=\begin{array}{|l|l|l|l|}
\hline 4 & 5 & & \\
\hline 2 & 3 & 4 & 4 \\
\hline 1 & 1 & 2 & 3
\end{array}\right] \quad 3 \quad \mathbf{x}^{T}=x_{1}^{2} x_{2}^{2} x_{3}^{3} x_{4}^{3} x_{5}
$$

A standard Young tableau (SYT) T of shape λ is an SSYT having each of the integers $1, \ldots,|\lambda|$ exactly once as an entry. Denote by $\operatorname{SYT}(\lambda)$ $(\operatorname{SSYT}(\lambda))$ the set of SYTs (SSYTs) of shape λ.

Schur polynomials

Definition

Let λ be a partition. The Schur polynomial $s_{\lambda}(\mathbf{x})$ is defined as the sum

$$
\sum_{T \in \operatorname{SSYT}(\lambda)} \mathbf{x}^{T}
$$

Theorem (Cauchy identity)

For two sequences of indeterminates $\mathbf{x}=\left(x_{1}, x_{2} \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots\right)$, we have

$$
\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) .
$$

Schur polynomials

Definition

Let λ be a partition. The Schur polynomial $s_{\lambda}(\mathbf{x})$ is defined as the sum

$$
\sum_{T \in \operatorname{SSYT}(\lambda)} \mathbf{x}^{T}
$$

Theorem (Cauchy identity)

For two sequences of indeterminates $\mathbf{x}=\left(x_{1}, x_{2} \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots\right)$, we have

$$
\sum_{A=\left(a_{i, j}\right)} \prod_{i, j}\left(x_{i} y_{j}\right)^{a_{i, j}}=\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y})
$$

In this talk we are interested in the squarefree part, i.e., the coefficient of $x_{1} \cdots x_{n} y_{1} \cdots y_{n}$.

Robinson-Schensted via local growth rules

The Robinson-Schensted correspondence is a bijection

$$
S_{n} \leftrightarrow \bigcup_{\lambda \vdash n} \operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda) .
$$

Robinson-Schensted via local growth rules

The Robinson-Schensted correspondence is a bijection

$$
S_{n} \leftrightarrow \bigcup_{\lambda \vdash n} \operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)
$$

For two partitions λ, μ write $\mu \lessdot \lambda$ if the Young diagram of μ is obtained from the Young diagram of λ by deleting a box.

Identify

F_{λ}

- $\mu \lessdot \lambda$ with the removed (red) box,
- $\nu \gtrdot \lambda$ with the added (blue) box.

For a partition λ define F_{λ} as

$$
F_{\lambda}:\{\mu \lessdot \lambda\} \cup\{\lambda\} \rightarrow\{\nu \gtrdot \lambda\}
$$

- mapping a removed box to an added box in the next row,
- λ to the added box in the first row.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

Fomin growth diagram

We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.

The ith partition along the right (bottom) boundary give the shape of the subtableau of $P(Q)$ with entries at most i.

In our example we obtain

$$
(P, Q)=\left(\begin{array}{llll}
\left.\begin{array}{|ll}
3 & \\
1 & 2
\end{array}, \begin{array}{|ll}
2 & \\
\hline 1 & 3 \\
\hline
\end{array}\right) . . ~
\end{array}\right.
$$

Up and Down operator

We define the up operator U and down operator D on the \mathbb{Q}-vector space generated by all partitions as

$$
U \lambda=\sum_{\nu \gg} \nu, \quad D \lambda=\sum_{\mu \lessdot \lambda} \mu .
$$

Example. $u(\square)=\square+\square$, $D(\square)=\square$.

Up and Down operator

We define the up operator U and down operator D on the \mathbb{Q}-vector space generated by all partitions as

$$
U \lambda=\sum_{\nu \gtrdot \lambda} \nu, \quad D \lambda=\sum_{\mu \lessdot \lambda} \mu .
$$

Example. $U(\square)=\square+\square$,
$D(\square)=\square$.

Theorem

The two operator satisfy the commutation relation

$$
D U-U D=I .
$$

The squarefree part of the Cauchy identity is direct consequence of the commutation relation.

Bijective proof of the commutation relation

The commutation relation $D U=U D+I$ is equivalent to

$$
\begin{aligned}
|\{\nu \gtrdot \lambda\}| & =|\{\mu \lessdot \lambda\} \cup\{\lambda\}|, & \forall \lambda, \\
|\{\nu \gtrdot \lambda, \rho\}| & =|\{\mu \lessdot \lambda, \rho\}|, & \forall \lambda \neq \rho .
\end{aligned}
$$

Back to local growth rules

Let $F_{\lambda}:\{\mu \lessdot \lambda\} \cup\{\lambda\} \rightarrow\{\nu \gtrdot \lambda\}$ be a bijection. The local growth rules turn out to be a reincarnation of the commutation relation for the upand down-operators.

Back to local growth rules

Let $F_{\lambda}:\{\mu \lessdot \lambda\} \cup\{\lambda\} \rightarrow\{\nu \gtrdot \lambda\}$ be a bijection. The local growth rules turn out to be a reincarnation of the commutation relation for the upand down-operators.

Macdonald Polynomials I

The Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are a basis for the symmetric functions over $\mathbb{Q}(q, t)$. We define them and their dual basis $Q_{\lambda}(\mathbf{x} ; q, t)$ as

$$
\begin{aligned}
& P_{\lambda}(\mathbf{x} ; q, t)=\sum_{T \in \operatorname{SSYT}(\lambda)} \psi_{T}(q, t) \mathbf{x}^{T}, \\
& Q_{\lambda}(\mathbf{x} ; q, t)=\sum_{T \in \operatorname{SSYT}(\lambda)} \varphi_{T}(q, t) \mathbf{x}^{T},
\end{aligned}
$$

where ψ, φ are certain rational functions in q, t.

Macdonald Polynomials I

The Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are a basis for the symmetric functions over $\mathbb{Q}(q, t)$. We define them and their dual basis $Q_{\lambda}(\mathbf{x} ; q, t)$ as

$$
\begin{aligned}
& P_{\lambda}(\mathbf{x} ; q, t)=\sum_{T \in \operatorname{SSYT}(\lambda)} \psi_{T}(q, t) \mathbf{x}^{T}, \\
& Q_{\lambda}(\mathbf{x} ; q, t)=\sum_{T \in \operatorname{SSYT}(\lambda)} \varphi_{T}(q, t) \mathbf{x}^{T}
\end{aligned}
$$

where ψ, φ are certain rational functions in q, t.
The Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ specialise to

- Schur polynomials for $q=t$,
- Hall-Littlewood polynomials for $q=0$,
- q-Whittaker polynomials for $t=0$.

Macdonald Polynomials II

Theorem (Macdonald)
Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2} \ldots\right)$ be two sets of variables. Then

$$
\prod_{i, j \geq 1} \prod_{k=0}^{\infty} \frac{1-t x_{i} y_{j} q^{k}}{1-x_{i} y_{j} q^{k}}=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) Q_{\lambda}(\mathbf{y} ; q, t)
$$

Macdonald Polynomials II

Theorem (Macdonald)

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2} \ldots\right)$ be two sets of variables. Then

$$
\sum_{A=\left(a_{i, j}\right)} \prod_{i, j \geq 1}\left(x_{i} y_{j}\right)^{a_{i, j}} \prod_{k=0}^{a_{i, j}-1} \frac{1-t q^{k}}{1-q^{k+1}}=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) Q_{\lambda}(\mathbf{y} ; q, t)
$$

Macdonald Polynomials II

Theorem (Macdonald)

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2} \ldots\right)$ be two sets of variables. Then

$$
\sum_{A=\left(a_{i, j}\right)} \prod_{i, j \geq 1}\left(x_{i} y_{j}\right)^{a_{i, j}} \prod_{k=0}^{a_{i, j}-1} \frac{1-t q^{k}}{1-q^{k+1}}=\sum_{\lambda} P_{\lambda}(\mathbf{x} ; q, t) Q_{\lambda}(\mathbf{y} ; q, t) .
$$

Again we are interested in the squarefree part, i.e., the coefficient of $x_{1} \cdots x_{n} y_{1} \cdots y_{n}$. In this case the above becomes

$$
\sum_{\sigma \in S_{n}} \frac{(1-t)^{n}}{(1-q)^{n}}=\sum_{\lambda \vdash n} \sum_{(P, Q) \in \operatorname{SYT}(\lambda)^{2}} \psi_{P}(q, t) \varphi_{Q}(q, t)
$$

The case $n=2$
weight of $A \quad A$

$$
\begin{array}{ll}
\frac{(1-t)^{2}}{(1-q)^{2}} & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left.\frac{1}{1} \right\rvert\, 2, & 1 \\
\frac{(1-t)^{2}}{(1-q)^{2}} & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{array}
$$

The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined "recursively":

$$
\psi_{T}(q, t)=\prod_{i} \psi_{T^{(i)} / T^{(i-1)}}(q, t), \quad \varphi_{T}(q, t)=\prod_{i} \varphi_{T^{(i)} / T^{(i-1)}}(q, t),
$$

where $T^{(i)}$ is the shape of the subtableau of an SSYT T of entries at most i. The ψ, φ are again rational functions in q, t.

We define the (q, t)-up and down operator as

$$
U_{q, t} \lambda=\sum_{\nu \gtrdot \lambda} \psi_{\nu / \lambda}(q, t) \nu, \quad D_{q, t} \lambda=\sum_{\mu \lessdot \lambda} \varphi_{\lambda / \mu}(q, t) \mu .
$$

The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined "recursively":

$$
\psi_{T}(q, t)=\prod_{i} \psi_{T^{(i)} / T^{(i-1)}}(q, t), \quad \varphi_{T}(q, t)=\prod_{i} \varphi_{T^{(i)} / T^{(i-1)}}(q, t),
$$

where $T^{(i)}$ is the shape of the subtableau of an SSYT T of entries at most i. The ψ, φ are again rational functions in q, t.

We define the (q, t)-up and down operator as

$$
U_{q, t} \lambda=\sum_{\nu \gtrdot \lambda} \psi_{\nu / \lambda}(q, t) \nu, \quad D_{q, t} \lambda=\sum_{\mu \lessdot \lambda} \varphi_{\lambda / \mu}(q, t) \mu .
$$

Theorem

The (q, t)-up and down operator satisfy the commutation relation

$$
D_{q, t} U_{q, t}-U_{q, t} D_{q, t}=\frac{1-q}{1-t} I .
$$

An equivalent formulation

The commutation relation

$$
D_{q, t} U_{q, t}=U_{q, t} D_{q, t}+\frac{1-q}{1-t} I,
$$

is equivalent to the two equations

$$
\begin{aligned}
& \sum_{\nu \gtrdot \lambda, \rho} \psi_{\nu / \lambda}(q, t) \varphi_{\nu / \rho}(q, t)=\sum_{\mu \lessdot \lambda, \rho} \varphi_{\lambda / \mu}(q, t) \psi_{\rho / \mu}(q, t) \\
& \sum_{\nu \gtrdot \lambda} \psi_{\nu / \lambda}(q, t) \varphi_{\nu / \lambda}(q, t)=\frac{1-q}{1-t}+\sum_{\mu \lessdot \lambda} \varphi_{\lambda / \mu}(q, t) \psi_{\lambda / \mu}(q, t)
\end{aligned}
$$

for all $\lambda \neq \rho$.

Probabilistic bijections

Let k be a field and X, Y be two sets equipped with weight functions $\omega: X \rightarrow k, \bar{\omega}: Y \rightarrow k$. A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of k-valued "probabilities" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y
\end{array}
$$

Probabilistic bijections

Let k be a field and X, Y be two sets equipped with weight functions $\omega: X \rightarrow k, \bar{\omega}: Y \rightarrow k$. A probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$ is a pair of k-valued "probabilities" $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega(x) \mathcal{P}(x \rightarrow y)=\bar{\omega}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y
\end{array}
$$

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \bar{\omega})$, then

$$
\sum_{x \in X} \omega(x)=\sum_{y \in Y} \bar{\omega}(y)
$$

The weighted sets

We regard the sets $\{\mu \lessdot \lambda\} \cup\{\lambda\}$ and $\{\nu \gtrdot \lambda\}$ with weights

$$
\begin{aligned}
& \omega(\mu)= \begin{cases}1 & \mu=\lambda, \\
\frac{1-q}{1-t} \varphi_{\lambda / \mu}(q, t) \psi_{\lambda / \mu}(q, t) & \text { otherwise, }\end{cases} \\
& \bar{\omega}(\nu)=\frac{1-q}{1-t} \psi_{\nu / \lambda}(q, t) \varphi_{\nu / \lambda}(q, t) .
\end{aligned}
$$

Hence, we need to show

$$
\sum_{\mu \lessdot \lambda \text { or } \mu=\lambda} \omega(\mu)=\sum_{\nu \gtrdot \lambda} \bar{\omega}(\nu) .
$$

We prove this by finding a probabilistic bijection $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ from $(\{\mu \lessdot \lambda\} \cup\{\lambda\}, \omega)$ to $(\{\nu \gtrdot \lambda\}, \bar{\omega})$.

A few more notations

Denote by

- $\left(h_{1}, \ldots, h_{d}\right)$ the horizontal segment lengths on the boundary of λ,
- $\left(v_{1}, \ldots, v_{d}\right)$ the vertical segment lengths on the boundary of λ.

Let

$$
\begin{aligned}
x_{i} & :=h_{1}+\ldots+h_{i} \\
y_{i} & :=v_{1}+\ldots+v_{i}
\end{aligned}
$$

Define for $0 \leq r, s \leq d$

- $\lambda^{(+s)}$ by adding a box to λ in row $y_{s}+1$,
- $\lambda^{(-r)}$ by deleting a box of λ in row $y_{r} ; \lambda^{(-0)}=\lambda$.

The probabilities

Write $p_{r, s}:=\mathcal{P}_{\lambda}\left(\lambda^{(-r)} \rightarrow \lambda^{(+s)}\right)$ and $\bar{p}_{r, s}:=\overline{\mathcal{P}}_{\lambda}\left(\lambda^{(-r)} \leftarrow \lambda^{(+s)}\right)$. Then

$$
p_{0, s}=\frac{\prod_{i=1}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i-1}} t^{y_{i}}\right)}{\prod_{\substack{i=0 \\ i \neq s}}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i}} t^{y_{i}}\right)}, \quad \bar{p}_{0, s}=\frac{\prod_{\substack{i=1}}^{d}\left(q^{x_{s}-1} t^{y_{s}+1}-q^{x_{i-1}} t^{y_{i}}\right)}{\prod_{\substack{i=0 \\ i \neq s}}^{d}\left(q^{x_{s}-1} t^{y_{s}+1}-q^{x_{i}} t^{y_{i}}\right)},
$$

The probabilities

Write $p_{r, s}:=\mathcal{P}_{\lambda}\left(\lambda^{(-r)} \rightarrow \lambda^{(+s)}\right)$ and $\bar{p}_{r, s}:=\overline{\mathcal{P}}_{\lambda}\left(\lambda^{(-r)} \leftarrow \lambda^{(+s)}\right)$. Then

$$
p_{0, s}=\frac{\prod_{i=1}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i-1}} t^{y_{i}}\right)}{\prod_{\substack{i=0 \\ i \neq s}}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i}} t^{y_{i}}\right)}, \quad \bar{p}_{0, s}=\frac{\prod_{i=1}^{d}\left(q^{x_{s}-1} t^{y_{s}+1}-q^{x_{i-1}} t^{y_{i}}\right)}{\prod_{\substack{i=0 \\ i \neq s}}^{d}\left(q^{x_{s}-1} t^{y_{s}+1}-q^{x_{i}} t^{y_{i}}\right)}
$$

and for $r>0$,

$$
\begin{aligned}
& p_{r, s}=\prod_{\substack{i=0 \\
i \neq s}}^{d} \frac{q^{x_{r-1}+1} t^{y_{r}-1}-q^{x_{i}} t^{y_{i}}}{q^{x_{s}} t^{y_{s}}-q^{x_{i}} t^{y_{i}}} \prod_{\substack{i=1 \\
i \neq r}}^{d} \frac{q^{x_{s}} t^{y_{s}}-q^{x_{i-1}} t^{y_{i}}}{q^{x_{r-1}+1} t^{y_{r}-1}-q^{x_{i}-1} t^{y_{i}}} \\
& \bar{p}_{r, s}=\prod_{\substack{i=0 \\
i \neq s}}^{d} \frac{q^{x_{r-1}} t^{y_{r}}-q^{x_{i}} t^{y_{i}}}{q^{x_{s}-1} t^{y_{s}+1}-q^{x_{i}} t^{y_{i}}} \prod_{\substack{i=1 \\
i \neq r}}^{d} \frac{q^{x_{s}-1} t^{y_{s}+1}-q^{x_{i-1}} t^{y_{i}}}{q^{x_{r-1}} t^{y_{r}}-q^{x_{i-1}} t^{y_{i}}}
\end{aligned}
$$

Our main Theorem

Theorem (A.-Frieden)
The pair $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ are a probabilistic bijection from $(\{\mu \lessdot \lambda\} \cup\{\lambda\}, \omega)$ to $(\{\nu \gtrdot \lambda\}, \bar{\omega})$.

Our main Theorem

Theorem (A.-Frieden)

The pair $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ are a probabilistic bijection from $(\{\mu \lessdot \lambda\} \cup\{\lambda\}, \omega)$ to $(\{\nu \gtrdot \lambda\}, \bar{\omega})$.

The probabilities $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ are defined such that

$$
\omega\left(\lambda^{(-r)}\right) \mathcal{P}_{\lambda}\left(\lambda^{(-r)} \rightarrow \lambda^{(+s)}\right)=\bar{\omega}\left(\lambda^{(+s)}\right) \overline{\mathcal{P}}_{\lambda}\left(\lambda^{(-r)} \leftarrow \lambda^{(+s)}\right)
$$

holds for all $0 \leq r, s \leq d$. Therefore, it suffices to prove

$$
\begin{aligned}
& \sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda^{(-r)} \rightarrow \lambda^{(+s)}\right)=1 \quad \forall 0 \leq r \leq d \\
& \sum_{r=0}^{d} \overline{\mathcal{P}}_{\lambda}\left(\lambda^{(-r)} \leftarrow \lambda^{(+s)}\right)=1 \quad \forall 0 \leq s \leq d
\end{aligned}
$$

About the proof

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=1$. By definition we have

$$
\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=\sum_{s=0}^{d} \frac{\prod_{\substack{i=1}}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i-1}} t^{y_{i}}\right)}{\prod_{\substack{i=0 \\ i \neq s}}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i}} t^{y_{i}}\right)}
$$

About the proof

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=1$. By definition we have

$$
\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=\sum_{s=0}^{d} \frac{\prod_{\substack{i=1}}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i-1}} t^{y_{i}}\right)}{\prod_{\substack{i=0 \\ i \neq s}}^{d}\left(q^{x_{s}} t^{y_{s}}-q^{x_{i}} t^{y_{i}}\right)}
$$

Let us write $a_{i}=q^{x_{i}} t^{y_{i}}$ and $b_{i}=q^{x_{i-1}} t^{y_{i}}$ in the above expression.

About the proof

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=1$. By definition we have

$$
\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=\sum_{s=0}^{d} \frac{\prod_{\substack{i=1 \\ i=0 \\ i \neq s}}^{d}\left(a_{s}-b_{i}\right)}{\left.\prod_{s}-a_{i}\right)}
$$

Let us write $a_{i}=q^{x_{i}} t^{y_{i}}$ and $b_{i}=q^{x_{i-1}} t^{y_{i}}$ in the above expression.

About the proof

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=1$. By definition we have

$$
\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=\sum_{s=0}^{d} \frac{\prod_{\substack { i=1 \\
\begin{subarray}{c}{i=0 \\
i \neq s{ i = 1 \\
\begin{subarray} { c } { i = 0 \\
i \neq s } }\end{subarray}}^{d}\left(a_{s}-b_{i}\right)}{\left.\prod_{s}-a_{i}\right)}
$$

Let us write $a_{i}=q^{x_{i}} t^{y_{i}}$ and $b_{i}=q^{x_{i-1}} t^{y_{i}}$ in the above expression.
The right hand side is actually the leading coefficient of the polynomial (in x)

$$
\sum_{s=0}^{d} \prod_{i=1}^{d}\left(a_{s}-b_{i}\right) \prod_{\substack{i=0 \\ i \neq s}}^{d} \frac{x-a_{i}}{a_{s}-a_{i}}
$$

About the proof

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=1$. By definition we have

$$
\sum_{s=0}^{d} \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+s)}\right)=\sum_{s=0}^{d} \frac{\prod_{\substack{i=1 \\ i=0 \\ i \neq s}}^{d}\left(a_{s}-b_{i}\right)}{\left.\prod_{s}-a_{i}\right)}
$$

Let us write $a_{i}=q^{x_{i}} t^{y_{i}}$ and $b_{i}=q^{x_{i-1}} t^{y_{i}}$ in the above expression.
The right hand side is actually the leading coefficient of the polynomial (in x)

$$
\sum_{s=0}^{d} \prod_{i=1}^{d}\left(a_{s}-b_{i}\right) \prod_{\substack{i=0 \\ i \neq s}}^{d} \frac{x-a_{i}}{a_{s}-a_{i}}=\prod_{i=1}^{d}\left(x-b_{i}\right)
$$

and hence equal to 1 .

The probabilistic local growth rules

Let $\lambda \neq \rho$ be partitions and $\nu \gtrdot \lambda \gtrdot \mu$. We assign a partition to the bottom right corner of a square according to one of the four cases and their corresponding probabilities.

1

1

$\mathcal{P}_{\lambda}(\lambda \rightarrow \nu)$

$\mathcal{P}_{\lambda}(\mu \rightarrow \nu)$

For the qRSt algorithm we use the probabilistic local growth rules instead of the deterministic ones.

Theorem (A.-Frieden)

The qRSt algorithm allows a probabilistic bijection proof of the square-free part of the Cauchy identity. For $q=t=0$ we obtain the $R S$ row insertion.

Inverting q and t

The Macdonald polynomials are invariant under inverting q and t,

$$
P_{\lambda}\left(\mathbf{x} ; q^{-1}, t^{-1}\right)=P_{\lambda}(\mathbf{x} ; q, t), \quad Q_{\lambda}\left(\mathbf{x} ; q^{-1}, t^{-1}\right)=Q_{\lambda}(\mathbf{x} ; q, t) .
$$

The weights $\omega, \bar{\omega}$ are also invariant, the probabilities $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ however not!
Define new probabilities

$$
\begin{aligned}
& \mathcal{P}_{\lambda}^{c o l}=\left.\mathcal{P}_{\lambda}\right|_{(q, t) \mapsto\left(q^{-1}, t^{-1}\right)}, \\
& \overline{\mathcal{P}}_{\lambda}^{c o l}=\left.\overline{\mathcal{P}}_{\lambda}\right|_{(q, t) \mapsto\left(q^{-1}, t^{-1}\right)} .
\end{aligned}
$$

Theorem (A.-Frieden)
The maps $\mathcal{P}_{\lambda}^{\text {col }}, \overline{\mathcal{P}}_{\lambda}^{\text {col }}$ are probabilistic bijections. The induced $R S$ algorithm specialises for $q, t \rightarrow 0$ to the column insertion version of Robinson-Schensted.

Specialisations of q RSt

$q \mathrm{RS} t$

Macdonald polynomials

Specialisations of $q \mathrm{RS} t$

Macdonald polynomials
Hall-Littlewood polynomials

Specialisations of q RSt

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

Specialisations of q RSt

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

Specialisations of q RSt

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

Specialisations of q RSt

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials

Specialisations of $q \mathrm{RS} t$

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials

Specialisations of $q \mathrm{RS} t$

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials

Specialisations of $q \mathrm{RS} t$

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials

exterior (q, t)-Hook walks I

(1) Start with a cell $c=(x, y)$ "far away", i.e., $x>\lambda_{1}, y>\lambda_{1}^{\prime}$.
(2) Choose $c^{\prime} \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$
P\left(c \rightarrow c^{\prime}\right)= \begin{cases}q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x-i, y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x, y-j) \in \operatorname{leg}_{\lambda}(c) .\end{cases}
$$

(0) Repeat until we reach an exterior corner of λ.

exterior (q, t)-Hook walks I

(1) Start with a cell $c=(x, y)$ "far away", i.e., $x>\lambda_{1}, y>\lambda_{1}^{\prime}$.
(2) Choose $c^{\prime} \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$
P\left(c \rightarrow c^{\prime}\right)= \begin{cases}q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x-i, y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x, y-j) \in \operatorname{leg}_{\lambda}(c) .\end{cases}
$$

(0) Repeat until we reach an exterior corner of λ.

exterior (q, t)-Hook walks I

(1) Start with a cell $c=(x, y)$ "far away", i.e., $x>\lambda_{1}, y>\lambda_{1}^{\prime}$.
(2) Choose $c^{\prime} \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$
P\left(c \rightarrow c^{\prime}\right)= \begin{cases}q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x-i, y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x, y-j) \in \operatorname{leg}_{\lambda}(c) .\end{cases}
$$

(0) Repeat until we reach an exterior corner of λ.

exterior (q, t)-Hook walks I

(1) Start with a cell $c=(x, y)$ "far away", i.e., $x>\lambda_{1}, y>\lambda_{1}^{\prime}$.
(2) Choose $c^{\prime} \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$
P\left(c \rightarrow c^{\prime}\right)= \begin{cases}q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x-i, y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x, y-j) \in \operatorname{leg}_{\lambda}(c) .\end{cases}
$$

(0) Repeat until we reach an exterior corner of λ.

exterior (q, t)-Hook walks I

(1) Start with a cell $c=(x, y)$ "far away", i.e., $x>\lambda_{1}, y>\lambda_{1}^{\prime}$.
(2) Choose $c^{\prime} \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$
P\left(c \rightarrow c^{\prime}\right)= \begin{cases}q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x-i, y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x, y-j) \in \operatorname{leg}_{\lambda}(c) .\end{cases}
$$

(0) Repeat until we reach an exterior corner of λ.

$$
\begin{equation*}
c_{1} \tag{c}
\end{equation*}
$$

exterior (q, t)-Hook walks I

(1) Start with a cell $c=(x, y)$ "far away", i.e., $x>\lambda_{1}, y>\lambda_{1}^{\prime}$.
(2) Choose $c^{\prime} \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$
P\left(c \rightarrow c^{\prime}\right)= \begin{cases}q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x-i, y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)} t^{\ell(c)}} & \text { if } c^{\prime}=(x, y-j) \in \operatorname{leg}_{\lambda}(c) .\end{cases}
$$

(0) Repeat until we reach an exterior corner of λ.

$$
\begin{equation*}
c_{1} \tag{c}
\end{equation*}
$$

exterior (q, t)-Hook walks II

These walks are similar to the (q, t)-walks of Garsia and Haiman which generalise Greene-Nijenhuis-Wilf hook walks.

Let $P(\nu \mid c)$ be the probability that the exterior (q, t)-Hook walk ends at the exterior corner corresponding to $\nu \gtrdot \lambda$.

Theorem (A.-Frieden)
Let $c=(x, y)$ with $x>\lambda_{1}, y>\lambda_{1}^{\prime}$, then

$$
P(\nu \mid c)=\mathcal{P}_{\lambda}(\lambda \rightarrow \nu) .
$$

