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Semistandard Young tableaux

Definition

Let λ be a partition. A semistandard Young tableau (SSYT) T of shape
λ is a filling of the cells of λ with positive integers such that

the rows are weakly increasing from left to right,

the columns are strictly increasing from bottom to top (French
notation).

Denote by SSYT(λ) the set of SSYTs of shape λ.

Example.
1 1 2 3 3
2 3 4 4
4 5

(2, 2, 3, 3, 1)

The content of an SSYT T is (µ1, µ2, . . .) where µi is the number of
entries i in T ; denote by xT =

∏
i x
µi

i .
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Schur polynomials

Definition

Let λ be a partition. The Schur polynomial sλ(x) is defined as the sum∑
T∈SSYT(λ)

xT .

Theorem (Cauchy identity)

For two sequences of indeterminates x = (x1, x2 . . .) and y = (y1, y2, . . .),
we have

∑
A=(ai,j )

∏
i,j

(xiyj)
ai,j =

∏
i,j

1

1− xiyj
=
∑
λ

sλ(x)sλ(y).

In this talk we are interested in the squarefree part, i.e., the coefficient of
x1 · · · xny1 · · · yn.
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Young’s lattice

For two partitions λ, µ we write

µ ⊆ λ if the Young diagram of µ is contained in that of λ,

µl λ, if λ covers µ, i.e., µ ⊆ λ and |λ| = |µ|+ 1.

We define the up operator U and down operator D on the Q-vector
space generated by all partitions as

Uλ =
∑
νmλ

ν, Dλ =
∑
µlλ

µ.

Example. U
( )

= + , D
( )

= .

Theorem
The two operator satisfy the commutation relation

DU − UD = I .
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Bijective proof of the commutation relation

The commutation relation DU = UD + I is equivalent to

|{ν m λ}| = |{µl λ} ∪ {λ}|, ∀λ,
|{ν m λ, ρ}| = |{µl λ, ρ}|, ∀λ 6= ρ.

F row
λ F col

λ

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



Local growth rules

Let Fλ : {µl λ} ∪ {λ} → {ν m λ} is a bijection; in our case Fλ = F row
λ .

The local growth rules are an assignment of a partition to the bottom
right corner of a square according to one of the four cases

λ λ

λ λ

I

I

I I

for λ 6= ρ

ρ ∩ λ ρ

λ ρ ∪ λ

U

U

D D

λ λ

λ Fλ(λ)

X

I

U

I D

for µl λ

µ λ

λ Fλ(µ)

U

U

D D
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Fomin growth diagram

We consider a permutation matrix as an n × n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅
P

Q

X

X

X

The ith partition along the right
(bottom) boundary give the shape
of the subtableau of P (Q) with
entries at most i .

In our example we obtain

(P,Q) =

(
1 2
3

,
1 3
2

)
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Macdonald Polynomials

We define Macdonald polynomials by

Pλ(x; q, t) =
∑

T∈SSYT(λ)

ψT (q, t)xT ,

Qλ(x; q, t) =
∑

T∈SSYT(λ)

ϕT (q, t)xT ,

where ψ,ϕ are certain rational functions in q, t.

Theorem (Macdonald)

Let x = (x1, x2, . . .) and y = (y1, y2 . . .) be two sets of variables. Then

∏
i,j≥1

∞∏
k=0

1− txiyjq
k

1− xiyjqk
=
∑
λ

Pλ(x; q, t)Qλ(y; q, t).

Again we are interested in the squarefree part, i.e., the coefficient of
x1 · · · xny1 · · · yn.
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The coefficient of x1x2y1y2 of the Cauchy identity

(1− t)3(1− q2)

(1− q)3(1− qt)

(1− t)(1− t2)

(1− q)(1− qt)

(1− t)2

(1− q)2

(1− t)2

(1− q)2

(
1 0
0 1

)

(
0 1
1 0

)
1 2 , 1 2

1
2
,

1
2

weight of A A (P,Q) ψP(q, t)ϕQ(q, t)
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The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined “recursively”:

ψT (q, t) =
∏
i

ψT (i)/T (i−1)(q, t), ϕT (q, t) =
∏
i

ϕT (i)/T (i−1)(q, t),

where T (i) is the shape of the subtableau of an SSYT T of entries at
most i . The ψ,ϕ are again rational functions in q, t.

We define the (q, t)-up and down operator as

Uq,tλ =
∑
νmλ

ψν/λ(q, t)ν, Dq,tλ =
∑
µlλ

ϕλ/µ(q, t)µ.

Theorem

The (q, t)-up and down operator satisfy the commutation relation

Dq,tUq,t − Uq,tDq,t =
1− q

1− t
I .
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An equivalent formulation

The commutation relation

Dq,tUq,t = Uq,tDq,t +
1− q

1− t
I ,

is equivalent to the two equations∑
νmλ,ρ

ψν/λ(q, t)ϕν/ρ(q, t) =
∑
µlλ,ρ

ϕλ/µ(q, t)ψρ/µ(q, t),

∑
νmλ

ψν/λ(q, t)ϕν/λ(q, t) =
1− q

1− t
+
∑
µlλ

ϕλ/µ(q, t)ψλ/µ(q, t),

for all λ 6= ρ.
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Probabilistic bijections

Let X ,Y be two sets equipped with weight functions ω : X → k,
ω : Y → k , where k is a field. A probabilistic bijection from (X , ω) to
(Y , ω) is a pair of maps P,P : X × Y → k such that∑

y∈Y

P(x , y) = 1 ∀x ∈ X ,

∑
x∈X

P(x , y) = 1 ∀y ∈ Y ,

ω(x)P(x , y) = ω(y)P(x , y) ∀x ∈ X , y ∈ Y .

We usually write P(x → y) := P(x , y) and P(x ← y) := P(x , y).

Lemma

If P,P is a probabilistic bijection from (X , ω) to (Y , ω), then∑
x∈X

ω(x) =
∑
y∈Y

ω(y).
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The weighted sets

We regard the sets {µl λ} ∪ {λ} and {ν m λ} with weights

ω(µ) =

{
1 µ = λ,
1−q
1−t ϕλ/µ(q, t)ψλ/µ(q, t) otherwise,

ω(ν) =
1− q

1− t
ψν/λ(q, t)ϕν/λ(q, t).

Hence, we need to show
∑

µlλ or µ=λ

ω(µ) =
∑
νmλ

ω(ν).

We prove this by finding a probabilistic bijection Pλ,Pλ from
({µl λ} ∪ {λ}, ω) to ({ν m λ}, ω).
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A few more notations

Denote by

(h1, . . . , hd) the horizontal segment lengths on the boundary of λ,

(v1, . . . , vd) the vertical segment lengths on the boundary of λ.

v1

v2

v3

v4

h1

h2

h3

h4
Let

xi := h1 + . . .+ hi ,

yi := v1 + . . .+ vi .

Define for 0 ≤ r , s ≤ d

λ(+s) by adding a box to λ in
row ys + 1,

λ(−r) by deleting a box of λ in
row yr .

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



The probabilities

Write pr ,s := Pλ
(
λ(−r) → λ(+s)

)
and pr ,s := Pλ

(
λ(−r) ← λ(+s)

)
. Then

p0,s =

d∏
i=1

(qxs tys − qxi−1tyi )

d∏
i=0
i 6=s

(qxs tys − qxi tyi )

, p0,s =

d∏
i=1

(qxs−1tys+1 − qxi−1tyi )

d∏
i=0
i 6=s

(qxs−1tys+1 − qxi tyi )

,

and for r > 0,

pr ,s =
d∏

i=0
i 6=s

qxr−1+1tyr−1 − qxi tyi

qxs tys − qxi tyi

d∏
i=1
i 6=r

qxs tys − qxi−1tyi

qxr−1+1tyr−1 − qxi−1tyi
,

pr ,s =
d∏

i=0
i 6=s

qxr−1tyr − qxi tyi

qxs−1tys+1 − qxi tyi

d∏
i=1
i 6=r

qxs−1tys+1 − qxi−1tyi

qxr−1tyr − qxi−1tyi
.
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Our main Theorem

Theorem (A.-Frieden)

The pair Pλ,Pλ are a probabilistic bijection from ({µl λ} ∪ {λ}, ω) to
({ν m λ}, ω).

The probabilities Pλ,Pλ are defined such that

ω
(
λ(−r)

)
Pλ
(
λ(−r) → λ(+s)

)
= ω

(
λ(+s)

)
Pλ
(
λ(−r) ← λ(+s)

)
,

holds for all 0 ≤ r , s ≤ d . Therefore, it suffices to prove

d∑
s=0

Pλ
(
λ(−r) → λ(+s)

)
= 1 ∀ 0 ≤ r ≤ d ,

d∑
r=0

Pλ
(
λ(−r) ← λ(+s)

)
= 1 ∀ 0 ≤ s ≤ d .
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About the proof

We present the proof for
∑d

s=0 Pλ(λ→ λ(+s)) = 1. By definition we have

d∑
s=0

Pλ(λ→ λ(+s)) =
d∑

s=0

d∏
i=1

(qxs tys − qxi−1tyi )

d∏
i=0
i 6=s

(qxs tys − qxi tyi )

.

Let us write ai = qxi tyi and bi = qxi−1tyi in the above expression.

The right hand side is actually the leading coefficient of the polynomial
(in x)

d∑
s=0

d∏
i=1

(as − bi )
d∏

i=0
i 6=s

x − ai
as − ai

=
d∏

i=1

(x − bi )

,

and hence equal to 1.
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(in x)

d∑
s=0

d∏
i=1

(as − bi )
d∏

i=0
i 6=s

x − ai
as − ai

=
d∏

i=1

(x − bi )

,

and hence equal to 1.
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The probabilistic local growth rules

Let λ 6= ρ be partitions and ν m λm µ. We assign a partition to the
bottom right corner of a square according to one of the four cases and
their corresponding probabilities.

λ λ

λ λ

1

ρ ∩ λ ρ

λ ρ ∪ λ

1

λ λ

λ ν

X

Pλ(λ→ ν)

µ λ

λ ν

Pλ(µ→ ν)

For the qRSt algorithm we use the probabilistic local growth rules instead
of the deterministic ones.

Theorem (A.-Frieden)

The qRSt algorithm allows a probabilistic bijection proof of the
square-free part of the Cauchy identity.
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Inverting q and t

The Macdonald polynomials are invariant under inverting q and t,

Pλ(x; q−1, t−1) = Pλ(x; q, t), Qλ(x; q−1, t−1) = Qλ(x; q, t).

The weights ω, ω are also invariant, the probabilities Pλ,Pλ however not!

Define new probabilities

Pcol
λ = Pλ|(q,t) 7→(q−1,t−1) ,

Pcol
λ = Pλ

∣∣
(q,t) 7→(q−1,t−1)

.

Theorem (A.-Frieden)

The maps Pcol
λ ,Pcol

λ are probabilistic bijections. The induced RS
algorithm specialises for q, t → 0 to the column insertion version of
Robinson-Schensted.
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Specialisations of qRSt

qRSt

Macdonald polynomials

t-RS
(row insertion)

q → 0

Hall-Littlewood polynomials

q-RS
(row insertion)

Borodin-Petrov’16
Matveev-Petrov ’17

t → 0

q Whittaker polynomials

q-RS
(column insertion)
O’Connell-Pei’13

Pei’14

t →∞, q → q−1

t-RS
(column insertion)
Bufetov-Petrov’15
Bufetov-Matveev’18

q →∞, t → t−1

RS (row insertion)

t → 0 q → 0

Schur polynomials

RS (column insertion)

q → 0 t → 0

q-Plancherel measure
(for σ = id)

q = t

Plancherel measure
(for all σ)

q → 1
q → 0 q →∞
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exterior (q, t)-Hook walks I

1 Start with a cell c = (x , y) “far away”, i.e., x > λ1, y > λ′1.

2 Choose c ′ ∈ armλ(c) ∪ legλ(c) with

P(c → c ′) =


qa(c)−i

t`(c)(1− q)

1− qa(c)t`(c)
if c ′ = (x − i , y) ∈ armλ(c)

t j−1
1− t

1− qa(c)t`(c)
if c ′ = (x , y − j) ∈ legλ(c).

3 Repeat until we reach an exterior corner of λ.

armλ(c)

legλ(c)

c

c1

c2

c3
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exterior (q, t)-Hook walks II

These walks are similar to the (q, t)-walks of Garsia and Haiman which
generalise Greene–Nijenhuis–Wilf hook walks.

Let P(ν|c) be the probability that the exterior (q, t)-Hook walk ends at
the exterior corner corresponding to ν m λ.

Theorem (A.-Frieden)

Let c = (x , y) with x > λ1, y > λ′1, then

P(ν|c) = Pλ(λ→ ν).
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