qRSt: A probabilistic Robinson-Schensted correspondence for Macdonald polynomials

Florian Aigner

joint work with Gabriel Frieden

Dartmouth Combinatorics Seminar, 9.10.2020

Outline

- The classical Robinson-Schensted correspondence
- Macdonald polynomials
- A probabilistic Robinson-Schensted correspondence
- Properties of qRSt

Semistandard Young tableaux

Definition

Let λ be a partition. A semistandard Young tableau (SSYT) T of shape λ is a filling of the cells of λ with positive integers such that

- the rows are weakly increasing from left to right,
- the columns are strictly increasing from bottom to top (French notation).

Denote by SSYT(λ) the set of SSYTs of shape λ .

Example.

4	5			
2	3	4	4	
1	1	2	3	3

Semistandard Young tableaux

Definition

Let λ be a partition. A semistandard Young tableau (SSYT) T of shape λ is a filling of the cells of λ with positive integers such that

- the rows are weakly increasing from left to right,
- the columns are strictly increasing from bottom to top (French notation).

Denote by SSYT(λ) the set of SSYTs of shape λ .

Example.

The content of an SSYT T is $(\mu_1, \mu_2, ...)$ where μ_i is the number of entries i in T; denote by $\mathbf{x}^T = \prod_i x_i^{\mu_i}$.

Schur polynomials

Definition

Let λ be a partition. The Schur polynomial $s_{\lambda}(\mathbf{x})$ is defined as the sum

$$\sum_{T \in \mathsf{SSYT}(\lambda)} \mathbf{x}^T.$$

Theorem (Cauchy identity)

For two sequences of indeterminates $\mathbf{x} = (x_1, x_2...)$ and $\mathbf{y} = (y_1, y_2,...)$, we have

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}).$$

Schur polynomials

Definition

Let λ be a partition. The Schur polynomial $s_{\lambda}(\mathbf{x})$ is defined as the sum

$$\sum_{T \in \mathsf{SSYT}(\lambda)} \mathbf{x}^T.$$

Theorem (Cauchy identity)

For two sequences of indeterminates $\mathbf{x} = (x_1, x_2...)$ and $\mathbf{y} = (y_1, y_2,...)$, we have

$$\sum_{A=(a_{i,j})} \prod_{i,j} (x_i y_j)^{a_{i,j}} = \prod_{i,j} \frac{1}{1-x_i y_j} = \sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}).$$

In this talk we are interested in the squarefree part, i.e., the coefficient of $x_1 \cdots x_n y_1 \cdots y_n$.

Young's lattice

For two partitions λ, μ we write

- $\mu \subseteq \lambda$ if the Young diagram of μ is contained in that of λ ,
- $\mu \lessdot \lambda$, if λ covers μ , i.e., $\mu \subseteq \lambda$ and $|\lambda| = |\mu| + 1$.

We define the up operator U and down operator D on the \mathbb{Q} -vector space generated by all partitions as

$$U\lambda = \sum_{\nu > \lambda} \nu,$$
 $D\lambda = \sum_{\mu \lessdot \lambda} \mu.$

Example.
$$U\left(\bigoplus \right) = \bigoplus + \bigoplus$$
, $D\left(\bigoplus \right) = \bigoplus$.

Young's lattice

For two partitions λ, μ we write

- $\mu \subseteq \lambda$ if the Young diagram of μ is contained in that of λ ,
- $\mu \lessdot \lambda$, if λ covers μ , i.e., $\mu \subseteq \lambda$ and $|\lambda| = |\mu| + 1$.

We define the up operator U and down operator D on the \mathbb{Q} -vector space generated by all partitions as

$$U\lambda = \sum_{\nu > \lambda} \nu, \qquad \qquad D\lambda = \sum_{\mu \leqslant \lambda} \mu.$$

Example.
$$U\left(\bigoplus \right) = \bigoplus + \bigoplus$$
, $D\left(\bigoplus \right) = \bigoplus$.

Theorem

The two operator satisfy the commutation relation

$$DU - UD = I$$
.

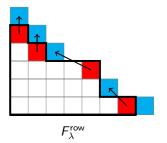
Bijective proof of the commutation relation

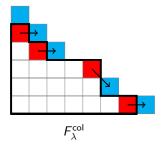
Denote by

$$\mathcal{U}(\lambda) = \{ \nu > \lambda \}, \quad \mathcal{D}(\lambda) = \{ \mu \lessdot \lambda \}, \quad \mathcal{D}^*(\lambda) = \mathcal{D}(\lambda) \cup \{ \lambda \}.$$

The commutation relation DU = UD + I is equivalent to

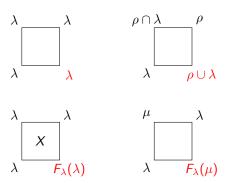
$$\begin{aligned} |\mathcal{U}(\lambda)| &= |\mathcal{D}(\lambda)| + 1 = |\mathcal{D}^*(\lambda)|, & \forall \lambda, \\ |\mathcal{U}(\lambda) \cap \mathcal{U}(\rho)| &= |\mathcal{D}(\lambda) \cap \mathcal{D}(\rho)|, & \forall \lambda \neq \rho. \end{aligned}$$





Local growth rules

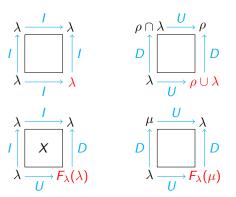
Let μ, λ, ρ be partitions with $\mu \in \mathcal{D}(\lambda)$ and $\lambda \neq \rho$. The local growth rules are an assignment of a partition to the bottom right corner of a square according to one of the four cases



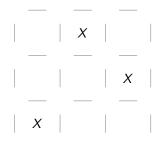
where $F_{\lambda}: \mathcal{D}^*(\lambda) \to \mathcal{U}(\lambda)$ is a bijection; in our case $F_{\lambda} = F_{\lambda}^{\text{row}}$.

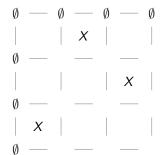
Local growth rules

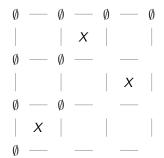
Let μ, λ, ρ be partitions with $\mu \in \mathcal{D}(\lambda)$ and $\lambda \neq \rho$. The local growth rules are an assignment of a partition to the bottom right corner of a square according to one of the four cases

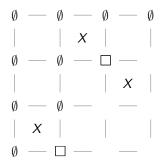


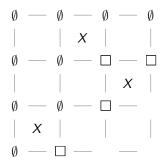
where $F_{\lambda}: \mathcal{D}^*(\lambda) \to \mathcal{U}(\lambda)$ is a bijection; in our case $F_{\lambda} = F_{\lambda}^{\text{row}}$.

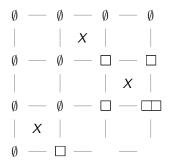


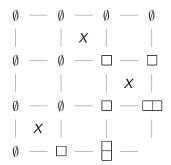


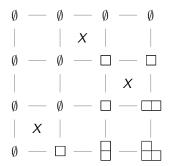




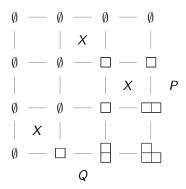








We consider a permutation matrix as an $n \times n$ grid of squares and associate permutations to the vertices recursively following the local growth rules.



The *i*th partition along the right (bottom) boundary give the shape of the subtableau of P(Q) with entries at most i.

In our example we obtain

$$(P,Q) = \left(\begin{array}{|c|c|c|c} \hline 3 \\ \hline 1 & 2 \end{array}, \begin{array}{|c|c|c} \hline 2 \\ \hline 1 & 3 \end{array}\right)$$

Macdonald Polynomials

We define Macdonald polynomials by

$$P_{\lambda}(\mathbf{x}; q, t) = \sum_{T \in SSYT(\lambda)} \psi_{T}(q, t) \mathbf{x}^{T},$$

$$Q_{\lambda}(\mathbf{x}; q, t) = \sum_{T \in SSYT(\lambda)} \varphi_{T}(q, t) \mathbf{x}^{T},$$

where ψ, φ are certain rational functions in q, t.

Theorem (Macdonald)

Let
$$\mathbf{x} = (x_1, x_2, ...)$$
 and $\mathbf{y} = (y_1, y_2, ...)$ be two sets of variables. Then

$$\prod_{i,j\geq 1}\prod_{k=0}^{\infty}\frac{1-tx_iy_jq^k}{1-x_iy_jq^k}=\sum_{\lambda}P_{\lambda}(\mathbf{x};q,t)Q_{\lambda}(\mathbf{y};q,t).$$

Again we are interested in the squarefree part, i.e., the coefficient of $x_1 \cdots x_n y_1 \cdots y_n$.

Macdonald Polynomials

We define Macdonald polynomials by

$$\begin{aligned} P_{\lambda}(\mathbf{x}; q, t) &= \sum_{T \in \mathsf{SSYT}(\lambda)} \psi_{T}(q, t) \mathbf{x}^{T}, \\ Q_{\lambda}(\mathbf{x}; q, t) &= \sum_{T \in \mathsf{SSYT}(\lambda)} \varphi_{T}(q, t) \mathbf{x}^{T}, \end{aligned}$$

where ψ, φ are certain rational functions in q, t.

Theorem (Macdonald)

Let
$$\mathbf{x} = (x_1, x_2, ...)$$
 and $\mathbf{y} = (y_1, y_2 ...)$ be two sets of variables. Then

$$\sum_{A=(a_{i,j})} \prod_{i,j\geq 1} (x_i y_j)^{a_{i,j}} \prod_{k=0}^{a_{i,j}-1} \frac{1-tq^k}{1-q^{k+1}} = \sum_{\lambda} P_{\lambda}(\mathbf{x}; q, t) Q_{\lambda}(\mathbf{y}; q, t).$$

Again we are interested in the squarefree part, i.e., the coefficient of $x_1 \cdots x_n y_1 \cdots y_n$.

The coefficient of $x_1x_2y_1y_2$ of the Cauchy identity

weight of
$$A$$

$$\frac{(1-t)^2}{(1-q)^2} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$(P,Q)$$
 $\psi_P(q,t)\varphi_Q(q,t)$

$$\boxed{1 \ | \ 2}, \boxed{1 \ | \ 2} \qquad \frac{(1-t)^3(1-q^2)}{(1-q)^3(1-qt)}$$

$$\frac{(1-t)^2}{(1-q)^2} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined "recursively":

$$\psi_{\mathcal{T}}(q,t) = \prod_{i} \psi_{\mathcal{T}^{(i)}/\mathcal{T}^{(i-1)}}(q,t), \qquad \varphi_{\mathcal{T}}(q,t) = \prod_{i} \varphi_{\mathcal{T}^{(i)}/\mathcal{T}^{(i-1)}}(q,t),$$

where $T^{(i)}$ is the shape of the subtableau of an SSYT T of entries at most i. The ψ, φ are again rational functions in q, t.

We define the (q, t)-up and down operator as

$$U_{q,t}\lambda = \sum_{\nu > \lambda} \psi_{\nu/\lambda}(q,t)\nu, \qquad D_{q,t}\lambda = \sum_{\mu < \lambda} \varphi_{\lambda/\mu}(q,t)\mu.$$

The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined "recursively":

$$\psi_{\mathcal{T}}(q,t) = \prod_{i} \psi_{\mathcal{T}^{(i)}/\mathcal{T}^{(i-1)}}(q,t), \qquad \varphi_{\mathcal{T}}(q,t) = \prod_{i} \varphi_{\mathcal{T}^{(i)}/\mathcal{T}^{(i-1)}}(q,t),$$

where $T^{(i)}$ is the shape of the subtableau of an SSYT T of entries at most i. The ψ, φ are again rational functions in q, t.

We define the (q, t)-up and down operator as

$$U_{q,t}\lambda = \sum_{
u \geqslant \lambda} \psi_{
u/\lambda}(q,t)
u, \qquad D_{q,t}\lambda = \sum_{\mu \leqslant \lambda} \varphi_{\lambda/\mu}(q,t)\mu.$$

Theorem

The (q, t)-up and down operator satisfy the commutation relation

$$D_{q,t}U_{q,t} - U_{q,t}D_{q,t} = \frac{1-q}{1-t}I.$$

An equivalent formulation

The commutation relation

$$D_{q,t}U_{q,t} = U_{q,t}D_{q,t} + \frac{1-q}{1-t}I,$$

is equivalent to the two equations

$$\begin{split} &\sum_{\nu \geqslant \lambda,\rho} \psi_{\nu/\lambda}(q,t) \varphi_{\nu/\rho}(q,t) = \sum_{\mu \lessdot \lambda,\rho} \varphi_{\lambda/\mu}(q,t) \psi_{\rho/\mu}(q,t), \\ &\sum_{\nu \geqslant \lambda} \psi_{\nu/\lambda}(q,t) \varphi_{\nu/\lambda}(q,t) = \frac{1-q}{1-t} + \sum_{\mu \lessdot \lambda} \varphi_{\lambda/\mu}(q,t) \psi_{\lambda/\mu}(q,t), \end{split}$$

for all $\lambda \neq \rho$.

Probabilistic bijections

Let X,Y be two sets equipped with weight functions $\omega:X\to k$, $\overline{\omega}:Y\to k$, where k is a field. A probabilistic bijection from (X,ω) to $(Y,\overline{\omega})$ is a pair of maps $\mathcal{P},\overline{\mathcal{P}}:X\times Y\to k$ such that

$$\sum_{y \in Y} \mathcal{P}(x, y) = 1 \qquad \forall x \in X,$$

$$\sum_{x \in X} \overline{\mathcal{P}}(x, y) = 1 \qquad \forall y \in Y,$$

$$\omega(x)\mathcal{P}(x, y) = \overline{\omega}(y)\overline{\mathcal{P}}(x, y) \qquad \forall x \in X, y \in Y.$$

We usually write $\mathcal{P}(x \to y) := \mathcal{P}(x, y)$ and $\overline{\mathcal{P}}(x \leftarrow y) := \overline{\mathcal{P}}(x, y)$.

Probabilistic bijections

Let X,Y be two sets equipped with weight functions $\omega:X\to k$, $\overline{\omega}:Y\to k$, where k is a field. A probabilistic bijection from (X,ω) to $(Y,\overline{\omega})$ is a pair of maps $\mathcal{P},\overline{\mathcal{P}}:X\times Y\to k$ such that

$$\sum_{y \in Y} \mathcal{P}(x \to y) = 1 \qquad \forall x \in X,$$

$$\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) = 1 \qquad \forall y \in Y,$$

$$\omega(x)\mathcal{P}(x \to y) = \overline{\omega}(y)\overline{\mathcal{P}}(x \leftarrow y) \qquad \forall x \in X, y \in Y.$$

We usually write $\mathcal{P}(x \to y) := \mathcal{P}(x, y)$ and $\overline{\mathcal{P}}(x \leftarrow y) := \overline{\mathcal{P}}(x, y)$.

Probabilistic bijections

Let X,Y be two sets equipped with weight functions $\omega:X\to k$, $\overline{\omega}:Y\to k$, where k is a field. A probabilistic bijection from (X,ω) to $(Y,\overline{\omega})$ is a pair of maps $\mathcal{P},\overline{\mathcal{P}}:X\times Y\to k$ such that

$$\sum_{y \in Y} \mathcal{P}(x \to y) = 1 \qquad \forall x \in X,$$

$$\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y) = 1 \qquad \forall y \in Y,$$

$$\omega(x)\mathcal{P}(x \to y) = \overline{\omega}(y)\overline{\mathcal{P}}(x \leftarrow y) \qquad \forall x \in X, y \in Y.$$

We usually write $\mathcal{P}(x \to y) := \mathcal{P}(x, y)$ and $\overline{\mathcal{P}}(x \leftarrow y) := \overline{\mathcal{P}}(x, y)$.

Lemma

If $\mathcal{P}, \overline{\mathcal{P}}$ is a probabilistic bijection from (X, ω) to $(Y, \overline{\omega})$, then

$$\sum_{x \in X} \omega(x) = \sum_{y \in Y} \overline{\omega}(y).$$

The weighted sets

We regard the sets $\mathcal{D}^*(\lambda) = \{\mu \lessdot \lambda\} \cup \{\lambda\}$ and $\mathcal{U}(\lambda) = \{\nu > \lambda\}$ with weights

$$\begin{split} \omega(\mu) &= \begin{cases} 1 & \mu = \lambda, \\ \frac{1-q}{1-t} \varphi_{\lambda/\mu}(q,t) \psi_{\lambda/\mu}(q,t) & \text{otherwise}, \end{cases} \\ \overline{\omega}(\nu) &= \frac{1-q}{1-t} \psi_{\nu/\lambda}(q,t) \varphi_{\nu/\lambda}(q,t). \end{split}$$

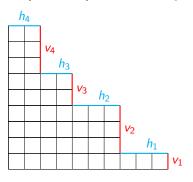
Hence, we need to show $\sum_{\mu\in\mathcal{D}^*(\lambda)}\omega(\mu)=\sum_{\nu\in\mathcal{U}(\lambda)}\overline{\omega}(\nu).$

We prove this by finding a probabilistic bijection $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ from $(\mathcal{D}^*(\lambda), \omega)$ to $(\mathcal{U}(\lambda), \overline{\omega})$.

A few more notations

Denote by

- (h_1, \ldots, h_d) the horizontal segment lengths on the boundary of λ ,
- (v_1, \ldots, v_d) the vertical segment lengths on the boundary of λ .



Let

$$x_i := h_1 + \ldots + h_i,$$

 $y_i := v_1 + \ldots + v_i.$

Define for $0 \le r, s \le d$

- $\lambda^{(+s)}$ by adding a box to λ in row $y_s + 1$,
- $\lambda^{(-r)}$ by deleting a box of λ in row y_r .

The probabilities

Write $p_{r,s} := \mathcal{P}_{\lambda} \left(\lambda^{(-r)} \to \lambda^{(+s)} \right)$ and $\overline{p}_{r,s} := \overline{\mathcal{P}}_{\lambda} \left(\lambda^{(-r)} \leftarrow \lambda^{(+s)} \right)$. Then

$$p_{0,s} = \frac{\prod\limits_{i=1}^{d} (q^{x_s}t^{y_s} - q^{x_{i-1}}t^{y_i})}{\prod\limits_{\substack{i=0\\i\neq s}}^{d} (q^{x_s}t^{y_s} - q^{x_i}t^{y_i})}, \qquad \overline{p}_{0,s} = \frac{\prod\limits_{i=1}^{d} (q^{x_s-1}t^{y_s+1} - q^{x_{i-1}}t^{y_i})}{\prod\limits_{\substack{i=0\\i\neq s}}^{d} (q^{x_s-1}t^{y_s+1} - q^{x_i}t^{y_i})},$$

The probabilities

Write $p_{r,s}:=\mathcal{P}_{\lambda}\left(\lambda^{(-r)}\to\lambda^{(+s)}\right)$ and $\overline{p}_{r,s}:=\overline{\mathcal{P}}_{\lambda}\left(\lambda^{(-r)}\leftarrow\lambda^{(+s)}\right)$. Then

$$p_{0,s} = \frac{\prod\limits_{i=1}^{d}(q^{x_s}t^{y_s} - q^{x_{i-1}}t^{y_i})}{\prod\limits_{\substack{i=0\\i\neq s}}^{d}(q^{x_s}t^{y_s} - q^{x_i}t^{y_i})}, \qquad \overline{p}_{0,s} = \frac{\prod\limits_{i=1}^{d}(q^{x_s-1}t^{y_s+1} - q^{x_{i-1}}t^{y_i})}{\prod\limits_{\substack{i=0\\i\neq s}}^{d}(q^{x_s-1}t^{y_s+1} - q^{x_i}t^{y_i})},$$

and for r > 0.

$$\begin{split} & p_{r,s} = \prod_{\substack{i=0\\i\neq s}}^d \frac{q^{x_{r-1}+1}t^{y_r-1} - q^{x_i}t^{y_i}}{q^{x_s}t^{y_s} - q^{x_i}t^{y_i}} \prod_{\substack{i=1\\i\neq r}}^d \frac{q^{x_s}t^{y_s} - q^{x_{i-1}}t^{y_i}}{q^{x_{r-1}+1}t^{y_r-1} - q^{x_{i-1}}t^{y_i}}, \\ & \overline{p}_{r,s} = \prod_{\substack{i=0\\i\neq s}}^d \frac{q^{x_{r-1}}t^{y_r} - q^{x_i}t^{y_i}}{q^{x_s-1}t^{y_s+1} - q^{x_i}t^{y_i}} \prod_{\substack{i=1\\i\neq r}}^d \frac{q^{x_s-1}t^{y_s+1} - q^{x_{i-1}}t^{y_i}}{q^{x_{r-1}}t^{y_r} - q^{x_{i-1}}t^{y_i}}. \end{split}$$

Our main Theorem

Theorem (A.-Frieden)

The pair \mathcal{P}_{λ} , $\overline{\mathcal{P}}_{\lambda}$ are a probabilistic bijection from $(\mathcal{D}^*(\lambda), \omega)$ to $(\mathcal{U}(\lambda), \overline{\omega})$.

Our main Theorem

Theorem (A.-Frieden)

The pair $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ are a probabilistic bijection from $(\mathcal{D}^*(\lambda), \omega)$ to $(\mathcal{U}(\lambda), \overline{\omega})$.

The probabilities $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ are defined such that

$$\omega\left(\lambda^{(-r)}\right)\mathcal{P}_{\lambda}\left(\lambda^{(-r)}\to\lambda^{(+s)}\right)=\overline{\omega}\left(\lambda^{(+s)}\right)\overline{\mathcal{P}}_{\lambda}\left(\lambda^{(-r)}\leftarrow\lambda^{(+s)}\right),$$

holds for all $0 \le r, s \le d$. Therefore, it suffices to prove

$$\sum_{s=0}^{d} \mathcal{P}_{\lambda} \left(\lambda^{(-r)} \to \lambda^{(+s)} \right) = 1 \quad \forall \, 0 \le r \le d,$$

$$\sum_{r=0}^{d} \overline{\mathcal{P}}_{\lambda} \left(\lambda^{(-r)} \leftarrow \lambda^{(+s)} \right) = 1 \quad \forall \, 0 \le s \le d.$$

About the proof

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = 1$. By definition we have

$$\sum_{s=0}^d \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = \sum_{s=0}^d \frac{\prod\limits_{i=1}^d \left(q^{\mathsf{x}_s}t^{\mathsf{y}_s} - q^{\mathsf{x}_{i-1}}t^{\mathsf{y}_i}\right)}{\prod\limits_{\substack{i=0\\i\neq s}}^d \left(q^{\mathsf{x}_s}t^{\mathsf{y}_s} - q^{\mathsf{x}_i}t^{\mathsf{y}_i}\right)}.$$

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = 1$. By definition we have

$$\sum_{s=0}^d \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = \sum_{s=0}^d \prod_{\substack{i=1 \\ i \neq s}}^d (q^{\mathsf{x}_s} t^{\mathsf{y}_s} - q^{\mathsf{x}_{i-1}} t^{\mathsf{y}_i}) \cdot \sum_{\substack{i=0 \\ i \neq s}}^d (q^{\mathsf{x}_s} t^{\mathsf{y}_s} - q^{\mathsf{x}_i} t^{\mathsf{y}_i}).$$

Let us write $a_i = q^{x_i} t^{y_i}$ and $b_i = q^{x_{i-1}} t^{y_i}$ in the above expression.

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = 1$. By definition we have

$$\sum_{s=0}^d \mathcal{P}_{\lambda}(\lambda o \lambda^{(+s)}) = \sum_{s=0}^d \prod_{\substack{i=1 \ i \neq s}}^d (a_s - b_i) \prod_{\substack{i = 0 \ i \neq s}}^d (a_s - a_i).$$

Let us write $a_i = q^{x_i} t^{y_i}$ and $b_i = q^{x_{i-1}} t^{y_i}$ in the above expression.

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = 1$. By definition we have

$$\sum_{s=0}^{d} \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = \sum_{s=0}^{d} \frac{\prod\limits_{i=1}^{d} (a_{s} - b_{i})}{\prod\limits_{\substack{i=0\\i\neq s}}^{d} (a_{s} - a_{i})}.$$

Let us write $a_i = q^{x_i} t^{y_i}$ and $b_i = q^{x_{i-1}} t^{y_i}$ in the above expression.

The right hand side is actually the leading coefficient of the polynomial (in x)

$$\sum_{s=0}^{d} \prod_{i=1}^{d} (a_s - b_i) \prod_{\substack{i=0 \ i \neq s}}^{d} \frac{x - a_i}{a_s - a_i}$$

We present the proof for $\sum_{s=0}^{d} \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = 1$. By definition we have

$$\sum_{s=0}^d \mathcal{P}_{\lambda}(\lambda \to \lambda^{(+s)}) = \sum_{s=0}^d \frac{\prod\limits_{i=1}^d (a_s - b_i)}{\prod\limits_{\substack{i=0\\i \neq s}}^d (a_s - a_i)}.$$

Let us write $a_i = q^{x_i} t^{y_i}$ and $b_i = q^{x_{i-1}} t^{y_i}$ in the above expression.

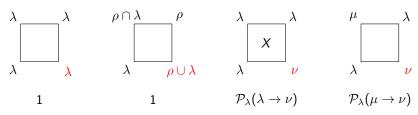
The right hand side is actually the leading coefficient of the polynomial (in x)

$$\sum_{s=0}^{d} \prod_{i=1}^{d} (a_s - b_i) \prod_{\substack{i=0 \ i \neq s}}^{d} \frac{x - a_i}{a_s - a_i} = \prod_{i=1}^{d} (x - b_i),$$

and hence equal to 1.

The probabilistic local growth rules

Let $\lambda \neq \rho$ be partitions and $\mu \in \mathcal{D}(\lambda)$, $\nu \in \mathcal{U}(\lambda)$. We assign a partition to the bottom right corner of a square according to one of the four cases and their corresponding probabilities.



For the qRSt algorithm we use the probabilistic local growth rules instead of the deterministic ones.

Theorem (A.-Frieden)

The qRSt algorithm allows a probabilistic bijection proof of the square-free part of the Cauchy identity.

Inverting q and t

The Macdonald polynomials are invariant under inverting q and t,

$$P_{\lambda}(\mathbf{x}; q^{-1}, t^{-1}) = P_{\lambda}(\mathbf{x}; q, t), \qquad Q_{\lambda}(\mathbf{x}; q^{-1}, t^{-1}) = Q_{\lambda}(\mathbf{x}; q, t).$$

The weights $\omega, \overline{\omega}$ are also invariant, the probabilities $\mathcal{P}_{\lambda}, \overline{\mathcal{P}}_{\lambda}$ however not!

Define new probabilities

$$\begin{split} \mathcal{P}_{\lambda}^{col} &= \left. \mathcal{P}_{\lambda} \right|_{(q,t) \mapsto (q^{-1},t^{-1})}, \\ \overline{\mathcal{P}}_{\lambda}^{col} &= \left. \overline{\mathcal{P}}_{\lambda} \right|_{(q,t) \mapsto (q^{-1},t^{-1})}. \end{split}$$

Theorem (A.-Frieden)

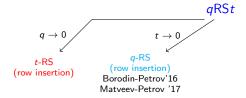
The maps $\mathcal{P}_{\lambda}^{col}$, $\overline{\mathcal{P}}_{\lambda}^{col}$ are probabilistic bijections. The induced RS algorithm specialises for $q, t \to 0$ to the column insertion version of Robinson-Schensted.

qRSt

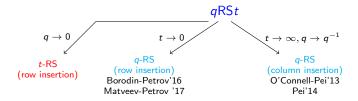
Macdonald polynomials



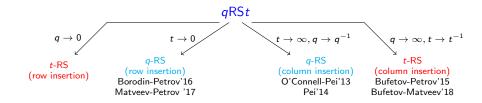
Macdonald polynomials Hall-Littlewood polynomials



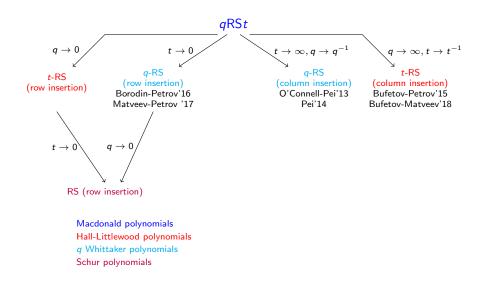
Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

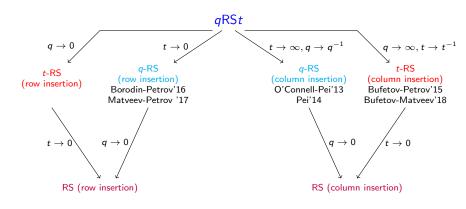


Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

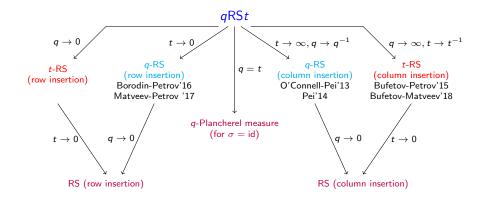


Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

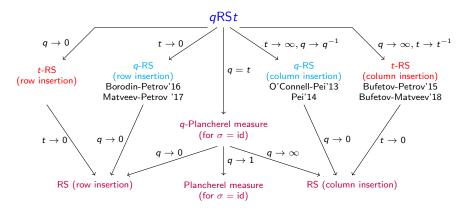




Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials



Macdonald polynomials Hall-Littlewood polynomials q Whittaker polynomials Schur polynomials



Macdonald polynomials

Hall-Littlewood polynomials

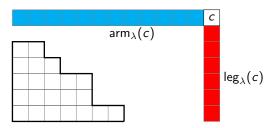
q Whittaker polynomials

Schur polynomials

- Start with a cell c=(x,y) "far away", i.e., $x>\lambda_1,y>\lambda_1'$.
- **②** Choose $c' \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$P(c \to c') = \begin{cases} q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x-i,y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x,y-j) \in \operatorname{leg}_{\lambda}(c). \end{cases}$$

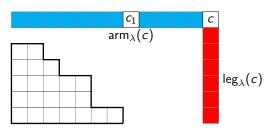
3 Repeat until we reach an exterior corner of λ .



- Start with a cell c=(x,y) "far away", i.e., $x>\lambda_1,y>\lambda_1'$.
- ② Choose $c' \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$P(c \to c') = \begin{cases} q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x-i,y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x,y-j) \in \operatorname{leg}_{\lambda}(c). \end{cases}$$

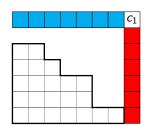
3 Repeat until we reach an exterior corner of λ .



- Start with a cell c=(x,y) "far away", i.e., $x>\lambda_1,y>\lambda_1'$.
- **②** Choose $c' \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$P(c \to c') = \begin{cases} q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x-i,y) \in \operatorname{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x,y-j) \in \operatorname{leg}_{\lambda}(c). \end{cases}$$

3 Repeat until we reach an exterior corner of λ .

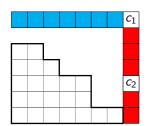


С

- Start with a cell c=(x,y) "far away", i.e., $x>\lambda_1,y>\lambda_1'$.
- **②** Choose $c' \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$P(c \to c') = \begin{cases} q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x-i,y) \in \text{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x,y-j) \in \log_{\lambda}(c). \end{cases}$$

3 Repeat until we reach an exterior corner of λ .

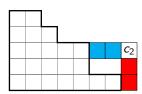


С

- Start with a cell c=(x,y) "far away", i.e., $x>\lambda_1,y>\lambda_1'$.
- **②** Choose $c' \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$P(c \to c') = \begin{cases} q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x-i,y) \in \text{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x,y-j) \in \log_{\lambda}(c). \end{cases}$$

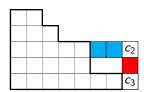
3 Repeat until we reach an exterior corner of λ .



- Start with a cell c=(x,y) "far away", i.e., $x>\lambda_1,y>\lambda_1'$.
- ② Choose $c' \in \operatorname{arm}_{\lambda}(c) \cup \operatorname{leg}_{\lambda}(c)$ with

$$P(c \to c') = \begin{cases} q^{a(c)-i} \frac{t^{\ell(c)}(1-q)}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x-i,y) \in \text{arm}_{\lambda}(c) \\ t^{j-1} \frac{1-t}{1-q^{a(c)}t^{\ell(c)}} & \text{if } c' = (x,y-j) \in \log_{\lambda}(c). \end{cases}$$

3 Repeat until we reach an exterior corner of λ .



These walks are similar to the (q, t)-walks of Garsia and Haiman which generalise Greene–Nijenhuis–Wilf hook walks.

Let $P(\nu|c)$ be the probability that the *exterior* (q,t)-Hook walk ends at the exterior corner corresponding to $\nu > \lambda$.

Theorem (A.-Frieden)

Let
$$c = (x, y)$$
 with $x > \lambda_1, y > \lambda_1'$, then

$$P(\nu|c) = \mathcal{P}_{\lambda}(\lambda \to \nu).$$

