An interaction of Combinatorics and Statistical Physics: Square Ice, the 6-vertex model and ASMs

Florian Aigner

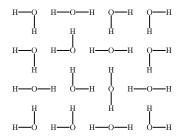
Student Retreat - Strobl, 25.4'17

Florian Aigner

Let's break the ice

A square ice (with domain wall boundary condition) of size n is an arrangement of n^2 water molecules, s.t.

- the oxygen atoms O are placed on an $n \times n$ square lattice,
- the hydrogen atoms H are placed in-between the oxygen atoms and to the left and right of the boundary oxygen atoms.



Florian Aigner

• It was introduced by Pauling in 1935.

- It was introduced by Pauling in 1935.
- There exist real crystals with hydrogen bonds satisfying this model, such as ice or KH₂PO₄.

- It was introduced by Pauling in 1935.
- There exist real crystals with hydrogen bonds satisfying this model, such as ice or KH₂PO₄.
- Lieb found the exact solution for square ice with periodic boundary in 1967, i.e.

$$S = k_B \log(Z(n)) = k_B n \log(W),$$

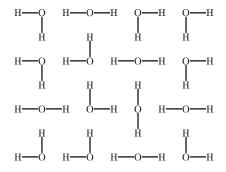
where S is the entropy, k_B the Boltzmann constant and $W = \left(\frac{4}{3}\right)^{\frac{3}{2}}.$

- It was introduced by Pauling in 1935.
- There exist real crystals with hydrogen bonds satisfying this model, such as ice or KH₂PO₄.
- Lieb found the exact solution for square ice with periodic boundary in 1967, i.e.

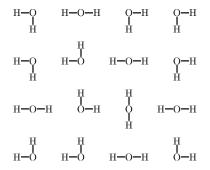
$$S = k_B \log(Z(n)) = k_B n \log(W),$$

where S is the entropy, k_B the Boltzmann constant and $W = \left(\frac{4}{3}\right)^{\frac{3}{2}}$.

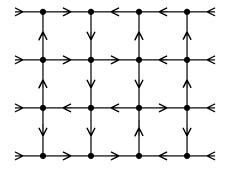
• The formula for the partition function for square ice with domain wall boundary condition was found by Korepin and Izergin .

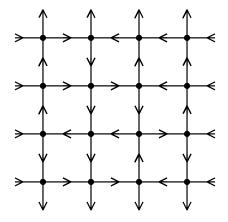


Florian Aigner



Florian Aigner

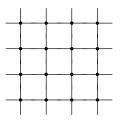




Florian Aigner

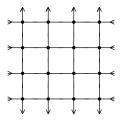
A 6-vertex configuration of size n is an $n \times n$ grid with n external edges on every side and an edge orientation satisfying the following conditions.

- The external edges point inward at the left and right and outward at the top and bottom.
- Every vertex has two edges pointing towards it and two pointing away.



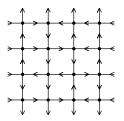
A 6-vertex configuration of size n is an $n \times n$ grid with n external edges on every side and an edge orientation satisfying the following conditions.

- The external edges point inward at the left and right and outward at the top and bottom.
- Every vertex has two edges pointing towards it and two pointing away.



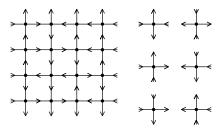
A 6-vertex configuration of size n is an $n \times n$ grid with n external edges on every side and an edge orientation satisfying the following conditions.

- The external edges point inward at the left and right and outward at the top and bottom.
- Every vertex has two edges pointing towards it and two pointing away.



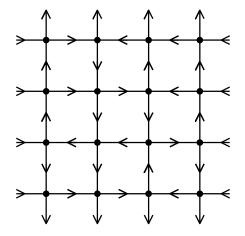
A 6-vertex configuration of size n is an $n \times n$ grid with n external edges on every side and an edge orientation satisfying the following conditions.

- The external edges point inward at the left and right and outward at the top and bottom.
- Every vertex has two edges pointing towards it and two pointing away.



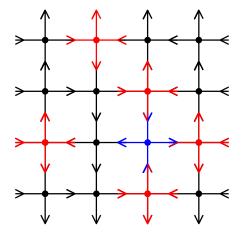
Florian Aigner

This isn't even its final form.



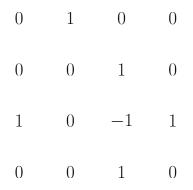
Florian Aigner

This isn't even its final form.



Florian Aigner

This isn't even its final form.



Florian Aigner

An alternating sign matrix (ASM) of size n is a $n \times n$ matrix with entries -1, 0, 1 such that

- the non-zero entries alternate in each row and column,
- all column and row sums are equal to 1.

An alternating sign matrix (ASM) of size n is a $n \times n$ matrix with entries -1, 0, 1 such that

- the non-zero entries alternate in each row and column,
- all column and row sums are equal to 1.

Theorem (Folklore)

For an integer n, the following sets are in bijection

- set of square ice of size n,
- set of 6-vertex configurations of size n,
- set of ASM of size n.

Some facts

• ASMs were introduced by Robbins and Rumsey in the 1980s and arose from generalizing the determinant.

Some facts

- ASMs were introduced by Robbins and Rumsey in the 1980s and arose from generalizing the determinant.
- Together with Mills they conjectured in 1983 the following Theorem.

Theorem (Zeilberger, 1996)

The number ASM(n) of ASMs of size n is

$$ASM(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

Florian Aigner

Some facts

- ASMs were introduced by Robbins and Rumsey in the 1980s and arose from generalizing the determinant.
- Together with Mills they conjectured in 1983 the following Theorem.

Theorem (Zeilberger, 1996)

The number ASM(n) of ASMs of size n is

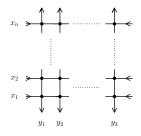
$$\mathsf{ASM}(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

• Kuperberg discovered the relation between ASMs and the 6-vertex model.

Florian Aigner

The partition function

The partition function $Z(n; \mathbf{x}, \mathbf{y})$ is defined as $Z(n; \mathbf{x}, \mathbf{y}) = \sum_{\substack{A \text{ is a } 6 \text{ -vertex} \\ \text{conf. of size } n}} \prod_{v \in A} w_v.$



The partition function

The partition function $Z(n; \mathbf{x}, \mathbf{y})$ is defined as $Z(n; \mathbf{x}, \mathbf{y}) = \sum_{\substack{A \text{ is a 6-vertex} \\ \text{conf. of size } n}} \prod_{v \in A} w_v.$ $\overline{x} := \frac{1}{x},$ $\sigma(x) := x - \overline{x},$ $q := e^{\frac{2\pi i}{3}}.$ $x \longrightarrow y$ $x \longrightarrow y$ $x \longrightarrow y$ $x_1 \longrightarrow y$ $x_2 \longrightarrow y_1$ y_2 y_3

Florian Aigner

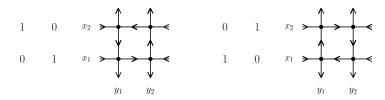
The partition function

The partition function $Z(n; \mathbf{x}, \mathbf{y})$ is defined as $Z(n; \mathbf{x}, \mathbf{y}) = \sum_{\substack{A \text{ is a 6-vertex} \\ \text{conf. of size } n}} \prod_{v \in A} w_v.$ $\overline{X} := \frac{1}{\overline{X}},$ $\sigma(x) := x - \overline{x}, \qquad x - \overline{y} = \frac{\overline{xy}}{x\overline{y}} = \frac{\overline{xy}}{x_1}$ $V \xrightarrow{\sigma(q\overline{x})} \frac{\sigma(q\overline{x})}{\sigma(q^2)} \xrightarrow{\sigma(qx)} \frac{\sigma(qx)}{\sigma(q^2)} 1$

Florian Aigner

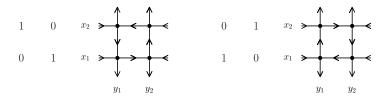
An example

Let n = 2.



An example

Let n = 2.



$$Z(2; \mathbf{x}, \mathbf{y}) = \frac{\sigma(qx_2\overline{y_2})}{\sigma(q^2)} \frac{\sigma(qx_1\overline{y_1})}{\sigma(q^2)} + \frac{\sigma(qy_1\overline{x_2})}{\sigma(q^2)} \frac{\sigma(qy_2\overline{x_1})}{\sigma(q^2)}$$
$$= -\frac{x_1^2 x_2^2 + y_1^2 y_2^2 + x_1^2 y_1^2 + x_2^2 y_2^2 + x_1^2 y_2^2 + x_2^2 y_1^2}{x_1 x_2 y_1 y_2}$$

Florian Aigner

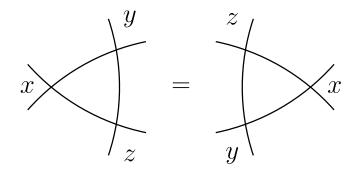
• $\prod_{i=1}^{n} x_i^{n-1} y_i^{n-1} Z(n; \mathbf{x}, \mathbf{y})$ is a polynomial in $x_1, \ldots, x_n, y_1, \ldots, y_n$ of total degree n(n-1).

• $\prod_{i=1}^{n} x_i^{n-1} y_i^{n-1} Z(n; \mathbf{x}, \mathbf{y})$ is a polynomial in $x_1, \ldots, x_n, y_1, \ldots, y_n$ of total degree n(n-1).

•
$$Z(n; \mathbf{x}, \mathbf{y})|_{x_1=qy_1} = \prod_{i=2}^n \frac{\sigma(qx_1\overline{y_i})}{\sigma(q^2)} \frac{\sigma(qy_1\overline{x_i})}{\sigma(q^2)} \times Z(n-1; \mathbf{x} \setminus x_1, \mathbf{y} \setminus y_1).$$

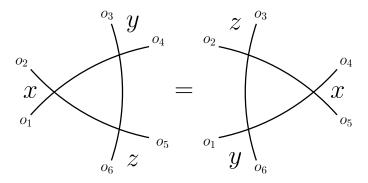
- $\prod_{i=1}^{n} x_i^{n-1} y_i^{n-1} Z(n; \mathbf{x}, \mathbf{y})$ is a polynomial in $x_1, \ldots, x_n, y_1, \ldots, y_n$ of total degree n(n-1).
- $Z(n; \mathbf{x}, \mathbf{y})|_{x_1=qy_1} = \prod_{i=2}^n \frac{\sigma(qx_1\overline{y_i})}{\sigma(q^2)} \frac{\sigma(qy_1\overline{x_i})}{\sigma(q^2)} \times Z(n-1; \mathbf{x} \setminus x_1, \mathbf{y} \setminus y_1).$
- The partition function $Z(n; \mathbf{x}, \mathbf{y})$ is symmetric in x_1, \ldots, x_n and y_1, \ldots, y_n .

For qxyz = 1 holds



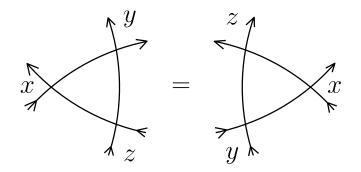
Florian Aigner

For qxyz = 1 holds



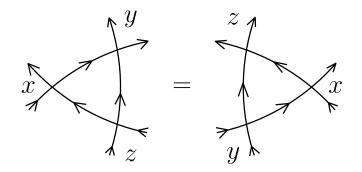
Florian Aigner

For qxyz = 1 holds



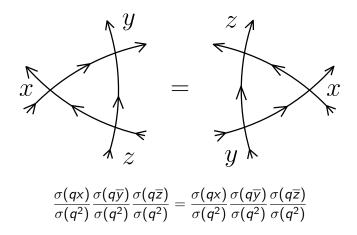
Florian Aigner

For qxyz = 1 holds

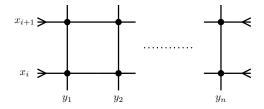


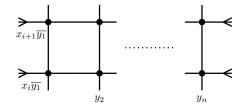
Florian Aigner

For qxyz = 1 holds

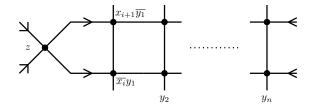


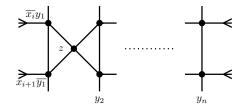
Florian Aigner

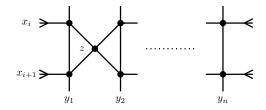


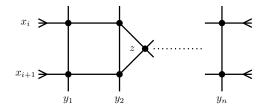


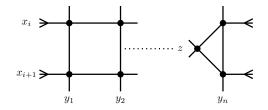


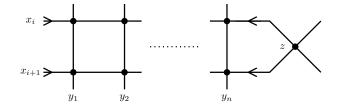


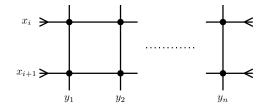












Theorem (Izergin, Korepin)

Define
$$M_{i,j} = \frac{1}{\sigma(qx_i\overline{y_j})\sigma(q\overline{x_i}y_j)}$$
, then

$$Z(n; \mathbf{x}, \mathbf{y}) = \frac{\prod_{1 \le i,j \le n} \sigma(qx_i\overline{y_j})\sigma(q\overline{x_i}y_j)}{\sigma(q^2)^{n^2 - n} \prod_{1 \le i < j \le n} \sigma(\overline{x_i}x_j)\sigma(y_i\overline{y_j})} \det(M).$$

Theorem (Izergin, Korepin)

Define
$$M_{i,j} = \frac{1}{\sigma(qx_i\overline{y_j})\sigma(q\overline{x_i}y_j)}$$
, then
 $Z(n; \mathbf{x}, \mathbf{y}) = \frac{\prod_{1 \le i,j \le n} \sigma(qx_i\overline{y_j})\sigma(q\overline{x_i}y_j)}{\sigma(q^2)^{n^2 - n} \prod_{1 \le i < j \le n} \sigma(\overline{x_i}x_j)\sigma(y_i\overline{y_j})} \det(M)$

We can use the above formula together with Z(n; (1, ..., 1), (1, ..., 1)) = ASM(n) to proof the ASM Theorem, which states $ASM(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$.

Florian Aigner

Square Ice, the 6-vertex model and ASMs