Alternating sign matrices and totally symmetric plane partitions

Florian Aigner
joint work with:
I. Fischer, M. Konvalinka, P. Nadeau, V. Tewari

Applied Algebra Seminar - York University

Outline

- Alternating sign matrices
- Plane partitions
- Refined enumerations of alternating sign matrices
- The interplay of ASMs, TSPPs and Schur polynomials

Alternating sign matrices

Definition

An alternating sign matrix (or short ASM) of size n is an $n \times n$ matrix with entries $1,0,-1$, such that

- all row- and column-sums are equal to 1 ,
- in each row and column, the non-zero entries alternate.

$$
\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Motivation

- ASMs appear in different areas of Mathematics: λ-determinant, MacNeille completion of the Bruhat order on S_{n}, connections to representation theory, symmetric functions.

Motivation

- ASMs appear in different areas of Mathematics: λ-determinant, MacNeille completion of the Bruhat order on S_{n}, connections to representation theory, symmetric functions.
- They are connected to statistical physics:
six-vertex model (square ice),
Razumov-Stroganov-Cantini-Sportiello Theorem, $O(\tau)$ loop model.

Motivation

- ASMs appear in different areas of Mathematics: λ-determinant, MacNeille completion of the Bruhat order on S_{n}, connections to representation theory, symmetric functions.
- They are connected to statistical physics:
six-vertex model (square ice),
Razumov-Stroganov-Cantini-Sportiello Theorem, $O(\tau)$ loop model.
- ASMs are mysteriously connected to certain families of plane partitions.

Enumeration of ASMs

The enumeration formula for ASMs was conjectured by Robbins and Rumsey in the early 1980s.

Theorem (Zeilberger, 1996)
The number of ASMs of size n is given by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

Enumeration of ASMs

The enumeration formula for ASMs was conjectured by Robbins and Rumsey in the early 1980s.

Theorem (Zeilberger, 1996)

The number of ASMs of size n is given by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

Further proofs were found by

- Kuperberg in 1996 using the six-vertex model approach,
- Fischer in 2007 using her operator formula (a short version of this paper appeared in 2016),
- A. in 2018 which is also based on the operator formula.

Plane partitions

Definition

A plane partition $\pi=\left(\pi_{i, j}\right)$ is an (a, b, c)-box is an array of non-negative integers

$\pi_{1,1}$	$\pi_{1,2}$	\cdots	$\pi_{1, b}$
$\pi_{2,1}$	$\pi_{2,2}$	\cdots	$\pi_{2, b}$
\vdots	\vdots		\vdots
$\pi_{a, 1}$	$\pi_{a, 2}$	\cdots	$\pi_{a, b}$

such that $\pi_{i, j} \leq c$ and all rows and columns are weakly decreasing.
Plane partitions were first introduced by MacMahon in the end of the 19th century.

Five times plane partitions

$\begin{array}{llll}4 & 3 & 3 & 1 \\ 4 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0\end{array}$

Five times plane partitions

4	3	3	1
4	2	1	0
2	0	0	0

Five times plane partitions

4	3	3	1
4	2	1	0
2	0	0	0

Five times plane partitions

4	3	3	1
4	2	1	0
2	0	0	0

Five times plane partitions

Symmetry operations on plane partitions

π

rotation

completion π^{c}

$$
\pi_{i, j}^{c}:=c-\pi_{a+1-i, b+1-j}
$$

Three important symmetry classes
There are three important classes of symmetric plane partitions in our setting.

Three important symmetry classes

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (CSPPs), which are invariant under rotation. They generalise to d-descending plane partitions (d-DPPs).

Three important symmetry classes

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (CSPPs), which are invariant under rotation. They generalise to d-descending plane partitions (d-DPPs).
- Totally symmetric plane partitions (TSPPs), which are invariant under reflection and rotation. We will encounter them later.

Three important symmetry classes

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (CSPPs), which are invariant under rotation. They generalise to d-descending plane partitions (d-DPPs).
- Totally symmetric plane partitions (TSPPs), which are invariant under reflection and rotation. We will encounter them later.
- Totally symmetric self-complementary plane partitions (TSSCPPs), which are invariant under reflection, rotation and completion.

Three important symmetry classes

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (CSPPs), which are invariant under rotation. They generalise to d-descending plane partitions (d-DPPs).
- Totally symmetric plane partitions (TSPPs), which are invariant under reflection and rotation. We will encounter them later.
- Totally symmetric self-complementary plane partitions (TSSCPPs), which are invariant under reflection, rotation and completion.

Theorem (Andrews 1979, 1994, Zeilberger 1996)

ASMs of size $n, 0-D P P s$ where the entries are at most n and
TSSCPPs inside an ($2 n, 2 n, 2 n$)-box are equinumerous.

Refined enumerations of ASMs

Let A be an ASM of size n.

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

We denote by $\rho(A)$ the column of the unique 1 in the top row A and define the inversion number $\operatorname{inv}(A)$ and complementary inversion number $\operatorname{inv}^{\prime}(A)$ by

$$
\operatorname{inv}(A):=\sum_{\substack{1 \leq i^{\prime}<i \leq n \\ 1 \leq j^{\prime} \leq j \leq n}} a_{i^{\prime}, j} a_{i, j^{\prime}} \quad \operatorname{inv}^{\prime}(A):=\sum_{\substack{1 \leq i^{\prime}<i \leq n \\ 1 \leq j \leq j^{\prime} \leq n}} a_{i^{\prime}, j} a_{i, j^{\prime}},
$$

In the above example we have $\left(\rho(A), \operatorname{inv}(A), \operatorname{inv}^{\prime}(A)\right)=(2,3,2)$.

An antisymmetrizer formula

For a positive integer n, define

$$
\mathcal{A}_{n}(u, v ; \mathbf{x}):=
$$

$$
\frac{\mathbf{A S y m}_{x_{1}, \ldots, x_{n}}\left[\prod_{i=1}^{n} x_{i}^{i-1} \prod_{1 \leq i<j \leq n}\left(v+(1-u-v) x_{i}+u x_{i} x_{j}\right)\right]}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)}
$$

where $\mathbf{A S y m}_{x_{1}, \ldots, x_{n}} f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$.

An antisymmetrizer formula

For a positive integer n, define

$$
\mathcal{A}_{n}(u, v ; \mathbf{x}):=
$$

$$
\frac{\mathbf{A S y m}_{x_{1}, \ldots, x_{n}}\left[\prod_{i=1}^{n} x_{i}^{i-1} \prod_{1 \leq i<j \leq n}\left(v+(1-u-v) x_{i}+u x_{i} x_{j}\right)\right]}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)}
$$

where $\mathbf{A S y m}_{x_{1}, \ldots, x_{n}} f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$.

Theorem (AFKNT, 2020)

The number of ASMs A of size n with $\left(\rho(A), \operatorname{inv}(A), \operatorname{inv}^{\prime}(A)\right)=$ (a, b, c) is the coefficient of $z^{a-1} u^{b} v^{c}$ in $\mathcal{A}_{n}(u, v ; z, 1, \ldots, 1)$.

This is a generalisation of a result by Fischer-Riegler 2015.

Some examples

$$
\begin{aligned}
\mathcal{A}_{1}(u, v ; \mathbf{x}) & =1 \\
\mathcal{A}_{2}(u, v ; \mathbf{x}) & =v+u x_{1} x_{2} \\
\mathcal{A}_{3}(u, v ; \mathbf{x}) & =v^{3}+u v^{2}\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)+u v(1-u-v) x_{1} x_{2} x_{3} \\
& +u^{2} v\left(x_{2} x_{3} x_{1}^{2}+x_{2} x_{3}^{2} x_{1}+x_{2}^{2} x_{3} x_{1}\right)+u^{3} x_{1}^{2} x_{2}^{2} x_{3}^{2},
\end{aligned}
$$

Some examples

$$
\begin{aligned}
\mathcal{A}_{1}(u, v ; \mathbf{x}) & =1 \\
\mathcal{A}_{2}(u, v ; \mathbf{x}) & =v+u s_{(1,1)}(\mathbf{x}) \\
\mathcal{A}_{3}(u, v ; \mathbf{x}) & =v^{3}+u v^{2} s_{(1,1)}(\mathbf{x})+u v(1-u-v) s_{(1,1,1)}(\mathbf{x}) \\
& +u^{2} v s_{(2,1,1)}(\mathbf{x})+u^{3} s_{(2,2,2)}(\mathbf{x})
\end{aligned}
$$

Some examples

$$
\begin{aligned}
\mathcal{A}_{4}(u, v ; \mathbf{x}) & =v^{6}+u v^{5} s_{(1,1)}(\mathbf{x})+(1-u-v) u v^{4} s_{(1,1,1)}(\mathbf{x}) \\
& +(1-u-v)^{2} u v^{3} s_{(1,1,1,1)}(\mathbf{x})+u^{2} v^{4} s_{(2,1,1)}(\mathbf{x}) \\
& +2(1-u-v) u^{2} v^{3} s_{(2,1,1,1)}(\mathbf{x})+u^{3} v^{3} s_{(2,2,2)}(\mathbf{x}) \\
& +2(1-u-v) u^{3} v^{2} s_{(2,2,2,1)}(\mathbf{x})+u^{3} v^{3} s_{(3,1,1,1)}(\mathbf{x}) \\
& +(1-u-v)^{2} u^{3} v s_{(2,2,2,2)}(\mathbf{x})+u^{4} v^{2} s_{(3,2,2,1)}(\mathbf{x}) \\
& +(1-u-v) u^{4} v s_{(3,2,2,2)}(\mathbf{x})+u^{5} v s_{(3,3,2,2)}(\mathbf{x}) \\
& +u^{6} s_{(3,3,3,3)}(\mathbf{x}) .
\end{aligned}
$$

Some examples

$$
\begin{aligned}
\mathcal{A}_{4}(u, v ; \mathbf{x}) & =v^{6}+u v^{5} s_{(1,1)}(\mathbf{x})+(1-u-v) u v^{4} s_{(1,1,1)}(\mathbf{x}) \\
& +(1-u-v)^{2} u v^{3} s_{(1,1,1,1)}(\mathbf{x})+u^{2} v^{4} s_{(2,1,1)}(\mathbf{x}) \\
& +2(1-u-v) u^{2} v^{3} s_{(2,1,1,1)}(\mathbf{x})+u^{3} v^{3} s_{(2,2,2)}(\mathbf{x}) \\
& +2(1-u-v) u^{3} v^{2} s_{(2,2,2,1)}(\mathbf{x})+u^{3} v^{3} s_{(3,1,1,1)}(\mathbf{x}) \\
& +(1-u-v)^{2} u^{3} v s_{(2,2,2,2)}(\mathbf{x})+u^{4} v^{2} s_{(3,2,2,1)}(\mathbf{x}) \\
& +(1-u-v) u^{4} v s_{(3,2,2,2)}(\mathbf{x})+u^{5} v s_{(3,3,2,2)}(\mathbf{x}) \\
& +u^{6} s_{(3,3,3,3)}(\mathbf{x}) .
\end{aligned}
$$

- Is \mathcal{A}_{n} 'Schur-positive'?
- Can we describe the coefficients?
- Which Schur polynomials appear in \mathcal{A}_{n} ?

Which Schur polynomials appear?

n	$\#$ (different Schur polynomials)
1	1
2	2
3	5
4	14
5	42

Which Schur polynomials appear?

n	$\#$ (different Schur polynomials)
1	1
2	2
3	5
4	14
5	42

Definition

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is called modified balanced of size n if $\lambda_{1} \leq n-1$ and $\lambda_{i}<\lambda_{i}^{\prime}$ whenever $\lambda_{i} \geq i$, where $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)$ denotes the conjugate partition.

Which Schur polynomials appear?

n	$\#$ (different Schur polynomials)
1	1
2	2
3	5
4	14
5	42

Definition

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is called modified balanced of size n if $\lambda_{1} \leq n-1$ and $\lambda_{i}<\lambda_{i}^{\prime}$ whenever $\lambda_{i} \geq i$, where $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)$ denotes the conjugate partition.

Denote by $/$ the length of the Durfee square of λ. The Frobenius notation of λ is $\left(\lambda_{1}-1, \ldots, \lambda_{I}-I \mid \lambda_{1}^{\prime}-1, \ldots, \lambda_{I}^{\prime}-I\right)$. A partition $\lambda=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right)$ is modified balanced iff $a_{i}<b_{i}$ for $1 \leq i \leq 1$.

An example

$$
\lambda=(6,5,5,4,4,4,3,2,1)
$$

An example

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l-1}-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\mid} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\mid} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{\|} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

A bijection to Dyck paths

Given a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right)$ of size n we can construct a Dyck path of length $2 n$ bijectively via

$$
\lambda \mapsto N^{b_{l}} E^{a_{l}+1} N^{b_{l-1}-b_{l}} E^{a_{l}-1-a_{l}} \cdots N^{b_{2}-b_{1}} E^{a_{2}-a_{1}} N^{n-b_{1}} E^{n-a_{1}-1}
$$

For $\lambda=(5,3,2,0 \mid 8,6,4,2)$ as before and $n=9$, we obtain

What are the coefficients in \mathcal{A}_{n}

$$
\begin{aligned}
& \mathcal{A}_{4}(u, v ; \mathbf{x})=v^{6}+u v^{5} s_{(1,1)}(\mathbf{x})+(1-u-v) u v^{4} s_{(1,1,1)}(\mathbf{x}) \\
&+(1-u-v)^{2} u v^{3} s_{(1,1,1,1)}(\mathbf{x})+u^{2} v^{4} s_{(2,1,1)}(\mathbf{x}) \\
&+2(1-u-v) u^{2} v^{3} s_{(2,1,1,1)}(\mathbf{x})+u^{3} v^{3} s_{(2,2,2)}(\mathbf{x}) \\
&+2(1-u-v) u^{3} v^{2} s_{(2,2,2,1)}(\mathbf{x})+(1-u-v)^{2} u^{3} v s_{(2,2,2,2)}(\mathbf{x}) \\
&+u^{3} v^{3} s_{(3,1,1,1)}+u^{4} v^{2} s_{(3,2,2,1)}+(1-u-v) u^{4} v s_{(3,2,2,2)}(\mathbf{x}) \\
&+u^{5} v s_{(3,3,2,2)}+u^{6} s_{(3,3,3,3)}
\end{aligned}
$$

What are the coefficients in \mathcal{A}_{n}

$$
\begin{array}{r}
\mathcal{A}_{4}(u, v ; \mathbf{x})=1 v^{6}+1 u v^{5} s_{(1,1)}(\mathbf{x})+1(1-u-v) u v^{4} s_{(1,1,1)}(\mathbf{x}) \\
+1(1-u-v)^{2} u v^{3} s_{(1,1,1,1)}(\mathbf{x})+1 u^{2} v^{4} s_{(2,1,1)}(\mathbf{x}) \\
+2(1-u-v) u^{2} v^{3} s_{(2,1,1,1)}(\mathbf{x})+1 u^{3} v^{3} s_{(2,2,2)}(\mathbf{x}) \\
+2(1-u-v) u^{3} v^{2} s_{(2,2,2,1)}(\mathbf{x})+1(1-u-v)^{2} u^{3} v s_{(2,2,2,2)}(\mathbf{x}) \\
+1 u^{3} v^{3} s_{(3,1,1,1)}+1 u^{4} v^{2} s_{(3,2,2,1)}+1(1-u-v) u^{4} v s_{(3,2,2,2)}(\mathbf{x}) \\
+1 u^{5} v s_{(3,3,2,2)}+1 u^{6} s_{(3,3,3,3)}
\end{array}
$$

What are the coefficients in \mathcal{A}_{n}

$$
\begin{array}{r}
\mathcal{A}_{4}(u, v ; \mathbf{x})=1 v^{6}+1 u v^{5} s_{(1,1)}(\mathbf{x})+1(1-u-v) u v^{4} s_{(1,1,1)}(\mathbf{x}) \\
+1(1-u-v)^{2} u v^{3} s_{(1,1,1,1)}(\mathbf{x})+1 u^{2} v^{4} s_{(2,1,1)}(\mathbf{x}) \\
+2(1-u-v) u^{2} v^{3} s_{(2,1,1,1)}(\mathbf{x})+1 u^{3} v^{3} s_{(2,2,2)}(\mathbf{x}) \\
+2(1-u-v) u^{3} v^{2} s_{(2,2,2,1)}(\mathbf{x})+1(1-u-v)^{2} u^{3} v s_{(2,2,2,2)}(\mathbf{x}) \\
+1 u^{3} v^{3} s_{(3,1,1,1)}+1 u^{4} v^{2} s_{(3,2,2,1)}+1(1-u-v) u^{4} v s_{(3,2,2,2)}(\mathbf{x}) \\
+1 u^{5} v s_{(3,3,2,2)}+1 u^{6} s_{(3,3,3,3)}
\end{array}
$$

n	sum of coefficients
1	1
2	2
3	5
4	16
5	66
6	352

TSPPs with given diagonal I

Denote by TSPP $_{n}$ the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \mathrm{TSPP}_{n}$ define

$$
\begin{aligned}
\operatorname{diag}(T) & :=\left(T_{i, i}\right)^{\prime}=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right) \\
\pi(T) & :=\left(a_{1}, \ldots, a_{l} \mid b_{1}+1, \ldots, b_{l}+1\right) .
\end{aligned}
$$

T

$\operatorname{diag}(T)$

$\pi(T)$

TSPPs with given diagonal II

Proposition (AFKNT, 2020)

(1) The map $T \mapsto \pi(T)$ is a surjection from totally symmetric plane partitions inside an (n, n, n)-box to modified balanced partitions of size $n+1$.
(2) Let $\lambda=\left(a_{1}, \ldots, a_{\mid} \mid b_{1}, \ldots, b_{l}\right)$ be a modified balanced partition. The number of TSPPs T with $\pi(T)=\lambda$ is equal to

$$
\operatorname{det}_{1 \leq i, j \leq I}\left(\binom{b_{j}-1}{a_{i}}\right)
$$

TSPPs with given diagonal II

Proposition (AFKNT, 2020)

(1) The map $T \mapsto \pi(T)$ is a surjection from totally symmetric plane partitions inside an (n, n, n)-box to modified balanced partitions of size $n+1$.
(2) Let $\lambda=\left(a_{1}, \ldots, a_{\mid} \mid b_{1}, \ldots, b_{l}\right)$ be a modified balanced partition. The number of TSPPs T with $\pi(T)=\lambda$ is equal to

$$
\operatorname{det}_{1 \leq i, j \leq 1}\left(\binom{b_{j}-1}{a_{i}}\right)
$$

The main Theorem

For a modified balanced partition $\lambda=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right)$ define

$$
\omega_{\lambda}(u, v):=u^{\sum_{i}\left(a_{i}+1\right)}(1-u-v)^{\sum_{i}\left(b_{i}-a_{i}\right)} v\binom{n}{2}-\sum_{i} b_{i} .
$$

Theorem (AFKNT, 2020)
Let n be a positive integer. Then

$$
\mathcal{A}_{n}(u, v ; \mathbf{x})=\sum_{T \in \operatorname{TSPP}_{n-1}} \omega_{\pi(T)}(u, v) s_{\pi(T)}(\mathbf{x})
$$

An explicit example for $n=3$

$T:$	\emptyset			
$\operatorname{diag}(T):$	\emptyset	\square	\square	\square

