Alternating sign matrices and totally symmetric plane partitions

Florian Aigner

joint work with: I. Fischer, M. Konvalinka, P. Nadeau, V. Tewari

Applied Algebra Seminar - York University

- Alternating sign matrices
- Plane partitions
- Refined enumerations of alternating sign matrices
- The interplay of ASMs, TSPPs and Schur polynomials

Definition

An alternating sign matrix (or short ASM) of size n is an $n \times n$ matrix with entries 1, 0, -1, such that

- all row- and column-sums are equal to 1,
- in each row and column, the non-zero entries alternate.

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• ASMs appear in different areas of Mathematics: λ -determinant, MacNeille completion of the Bruhat order on S_n , connections to representation theory, symmetric functions.

- ASMs appear in different areas of Mathematics: λ -determinant, MacNeille completion of the Bruhat order on S_n , connections to representation theory, symmetric functions.
- They are connected to statistical physics: six-vertex model (square ice), Razumov-Stroganov-Cantini-Sportiello Theorem, $O(\tau)$ loop model.

- ASMs appear in different areas of Mathematics: λ -determinant, MacNeille completion of the Bruhat order on S_n , connections to representation theory, symmetric functions.
- They are connected to statistical physics: six-vertex model (square ice), Razumov-Stroganov-Cantini-Sportiello Theorem, O(τ) loop model.
- ASMs are mysteriously connected to certain families of plane partitions.

Enumeration of ASMs

The enumeration formula for ASMs was conjectured by Robbins and Rumsey in the early 1980s.

Theorem (Zeilberger, 1996)

The number of ASMs of size n is given by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

Enumeration of ASMs

The enumeration formula for ASMs was conjectured by Robbins and Rumsey in the early 1980s.

```
Theorem (Zeilberger, 1996)
```

The number of ASMs of size n is given by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

Further proofs were found by

- Kuperberg in 1996 using the six-vertex model approach,
- Fischer in 2007 using her *operator formula* (a short version of this paper appeared in 2016),
- A. in 2018 which is also based on the operator formula.

Definition

A plane partition $\pi = (\pi_{i,j})$ is an (a, b, c)-box is an array of non-negative integers

$\pi_{1,1}$	$\pi_{1,2}$	•••	$\pi_{1,b}$
$\pi_{2,1}$	$\pi_{2,2}$	•••	$\pi_{2,b}$
÷	÷		÷
$\pi_{a,1}$	$\pi_{a,2}$	•••	$\pi_{a,b}$

such that $\pi_{i,i} \leq c$ and all rows and columns are weakly decreasing.

Plane partitions were first introduced by MacMahon in the end of the 19th century.

4 3 3 1 4 2 1 0 2 0 0 0

Symmetry operations on plane partitions

There are three important classes of symmetric plane partitions in our setting.

There are three important classes of symmetric plane partitions in our setting.

• Cyclically symmetric plane partitions (*CSPPs*), which are invariant under rotation. They generalise to *d*-descending plane partitions (*d*-*DPPs*).

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (*CSPPs*), which are invariant under rotation. They generalise to *d*-descending plane partitions (*d*-*DPPs*).
- Totally symmetric plane partitions (*TSPPs*), which are invariant under reflection and rotation. We will encounter them later.

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (*CSPPs*), which are invariant under rotation. They generalise to *d*-descending plane partitions (*d*-*DPPs*).
- Totally symmetric plane partitions (*TSPPs*), which are invariant under reflection and rotation. We will encounter them later.
- Totally symmetric self-complementary plane partitions (*TSSCPPs*), which are invariant under reflection, rotation and completion.

There are three important classes of symmetric plane partitions in our setting.

- Cyclically symmetric plane partitions (*CSPPs*), which are invariant under rotation. They generalise to *d*-descending plane partitions (*d*-*DPPs*).
- Totally symmetric plane partitions (*TSPPs*), which are invariant under reflection and rotation. We will encounter them later.
- Totally symmetric self-complementary plane partitions (*TSSCPPs*), which are invariant under reflection, rotation and completion.

Theorem (Andrews 1979, 1994, Zeilberger 1996)

ASMs of size n, 0-DPPs where the entries are at most n and TSSCPPs inside an (2n, 2n, 2n)-box are equinumerous.

Refined enumerations of ASMs

Let A be an ASM of size n.

$$egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & -1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}$$

We denote by $\rho(A)$ the column of the unique 1 in the top row of A and define the inversion number inv(A) and complementary inversion number inv'(A) by

$$\operatorname{inv}(A) := \sum_{\substack{1 \le i' < i \le n \\ 1 \le j' \le j \le n}} a_{i',j} a_{i,j'} \qquad \operatorname{inv}'(A) := \sum_{\substack{1 \le i' < i \le n \\ 1 \le j \le j' \le n}} a_{i',j} a_{i,j'},$$

In the above example we have $(\rho(A), inv(A), inv'(A)) = (2, 3, 2)$.

Alternating sign matrices and totally symmetric plane partitions

An antisymmetrizer formula

For a positive integer n, define

$$\mathcal{A}_n(u, v; \mathbf{x}) := \frac{\mathbf{ASym}_{x_1, \dots, x_n} \left[\prod_{i=1}^n x_i^{i-1} \prod_{1 \le i < j \le n} (v + (1 - u - v)x_i + ux_i x_j) \right]}{\prod_{1 \le i < j \le n} (x_j - x_i)},$$

where $\operatorname{ASym}_{x_1,\ldots,x_n} f(x_1,\ldots,x_n) = \sum_{\sigma \mathfrak{S}_n} \operatorname{sgn}(\sigma) f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$

An antisymmetrizer formula

For a positive integer n, define

$$\mathcal{A}_n(u,v;\mathbf{x}) := \frac{\mathsf{ASym}_{x_1,\dots,x_n}\left[\prod_{i=1}^n x_i^{i-1} \prod_{1 \le i < j \le n} (v+(1-u-v)x_i+ux_ix_j)\right]}{\prod_{1 \le i < j \le n} (x_j-x_i)},$$

where $ASym_{x_1,...,x_n} f(x_1,...,x_n) = \sum_{\sigma \mathfrak{S}_n} sgn(\sigma) f(x_{\sigma(1)},...,x_{\sigma(n)}).$ Theorem (AFKNT, 2020)

The number of ASMs A of size n with $(\rho(A), inv(A), inv'(A)) = (a, b, c)$ is the coefficient of $z^{a-1}u^bv^c$ in $\mathcal{A}_n(u, v; z, 1, ..., 1)$.

This is a generalisation of a result by Fischer-Riegler 2015.

Florian Aigner

٠

$$\begin{aligned} \mathcal{A}_1(u, v; \mathbf{x}) &= 1, \\ \mathcal{A}_2(u, v; \mathbf{x}) &= v + ux_1x_2 \\ \mathcal{A}_3(u, v; \mathbf{x}) &= v^3 + uv^2(x_1x_2 + x_1x_3 + x_2x_3) + uv(1 - u - v)x_1x_2x_3 \\ &+ u^2v(x_2x_3x_1^2 + x_2x_3^2x_1 + x_2^2x_3x_1) + u^3x_1^2x_2^2x_3^2, \end{aligned}$$

$$\begin{split} \mathcal{A}_1(u,v;\mathbf{x}) &= 1, \\ \mathcal{A}_2(u,v;\mathbf{x}) &= v + u s_{(1,1)}(\mathbf{x}) \\ \mathcal{A}_3(u,v;\mathbf{x}) &= v^3 + u v^2 s_{(1,1)}(\mathbf{x}) + u v (1-u-v) s_{(1,1,1)}(\mathbf{x}) \\ &+ u^2 v s_{(2,1,1)}(\mathbf{x}) + u^3 s_{(2,2,2)}(\mathbf{x}), \end{split}$$

Alternating sign matrices and totally symmetric plane partitions

Some examples

$$\begin{aligned} \mathcal{A}_{4}(u,v;\mathbf{x}) &= v^{6} + uv^{5}s_{(1,1)}(\mathbf{x}) + (1-u-v)uv^{4}s_{(1,1,1)}(\mathbf{x}) \\ &+ (1-u-v)^{2}uv^{3}s_{(1,1,1,1)}(\mathbf{x}) + u^{2}v^{4}s_{(2,1,1)}(\mathbf{x}) \\ &+ 2(1-u-v)u^{2}v^{3}s_{(2,2,1,1)}(\mathbf{x}) + u^{3}v^{3}s_{(2,2,2)}(\mathbf{x}) \\ &+ 2(1-u-v)u^{3}v^{2}s_{(2,2,2,1)}(\mathbf{x}) + u^{3}v^{3}s_{(3,1,1,1)}(\mathbf{x}) \\ &+ (1-u-v)^{2}u^{3}vs_{(2,2,2,2)}(\mathbf{x}) + u^{4}v^{2}s_{(3,2,2,1)}(\mathbf{x}) \\ &+ (1-u-v)u^{4}vs_{(3,2,2,2)}(\mathbf{x}) + u^{5}vs_{(3,3,2,2)}(\mathbf{x}) \\ &+ u^{6}s_{(3,3,3)}(\mathbf{x}). \end{aligned}$$

Some examples

$$\begin{aligned} \mathcal{A}_{4}(u,v;\mathbf{x}) &= v^{6} + uv^{5}s_{(1,1)}(\mathbf{x}) + (1-u-v)uv^{4}s_{(1,1,1)}(\mathbf{x}) \\ &+ (1-u-v)^{2}uv^{3}s_{(1,1,1,1)}(\mathbf{x}) + u^{2}v^{4}s_{(2,1,1)}(\mathbf{x}) \\ &+ 2(1-u-v)u^{2}v^{3}s_{(2,1,1,1)}(\mathbf{x}) + u^{3}v^{3}s_{(2,2,2)}(\mathbf{x}) \\ &+ 2(1-u-v)u^{3}v^{2}s_{(2,2,2,1)}(\mathbf{x}) + u^{3}v^{3}s_{(3,1,1,1)}(\mathbf{x}) \\ &+ (1-u-v)^{2}u^{3}vs_{(2,2,2,2)}(\mathbf{x}) + u^{4}v^{2}s_{(3,2,2,1)}(\mathbf{x}) \\ &+ (1-u-v)u^{4}vs_{(3,2,2,2)}(\mathbf{x}) + u^{5}vs_{(3,3,2,2)}(\mathbf{x}) \\ &+ u^{6}s_{(3,3,3)}(\mathbf{x}). \end{aligned}$$

- Is A_n 'Schur-positive'?
- Can we describe the coefficients?
- Which Schur polynomials appear in A_n ?

Which Schur polynomials appear?

п	#(different Schur polynomials)
1	1
2	2
3	5
4	14
5	42

Which Schur polynomials appear?

п	#(different Schur polynomials)
1	1
2	2
3	5
4	14
5	42

Definition

A partition $\lambda = (\lambda_1, \ldots, \lambda_n)$ is called *modified balanced* of size *n* if $\lambda_1 \leq n-1$ and $\lambda_i < \lambda'_i$ whenever $\lambda_i \geq i$, where $\lambda' = (\lambda'_1, \ldots, \lambda'_n)$ denotes the conjugate partition.

Which Schur polynomials appear?

п	#(different Schur polynomials)
1	1
2	2
3	5
4	14
5	42

Definition

A partition $\lambda = (\lambda_1, ..., \lambda_n)$ is called *modified balanced* of size *n* if $\lambda_1 \leq n-1$ and $\lambda_i < \lambda'_i$ whenever $\lambda_i \geq i$, where $\lambda' = (\lambda'_1, ..., \lambda'_n)$ denotes the conjugate partition.

Denote by *I* the length of the Durfee square of λ . The Frobenius notation of λ is $(\lambda_1 - 1, \dots, \lambda_l - l | \lambda'_1 - 1, \dots, \lambda'_l - l)$. A partition $\lambda = (a_1, \dots, a_l | b_1, \dots, b_l)$ is modified balanced iff $a_i < b_i$ for $1 \le i \le l$.

Florian Aigner

 $\lambda = (6, 5, 5, 4, 4, 4, 3, 2, 1)$

Alternating sign matrices and totally symmetric plane partitions

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

Given a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ of size *n* we can construct a Dyck path of length 2*n* bijectively via

$$\lambda \mapsto N^{b_l} E^{a_l+1} N^{b_{l-1}-b_l} E^{a_{l-1}-a_l} \cdots N^{b_2-b_1} E^{a_2-a_1} N^{n-b_1} E^{n-a_1-1}.$$

For $\lambda = (5, 3, 2, 0 | 8, 6, 4, 2)$ as before and n = 9, we obtain

What are the coefficients in A_n

$$\begin{aligned} \mathcal{A}_{4}(u, v; \mathbf{x}) &= v^{6} + uv^{5}s_{(1,1)}(\mathbf{x}) + (1 - u - v)uv^{4}s_{(1,1,1)}(\mathbf{x}) \\ &+ (1 - u - v)^{2}uv^{3}s_{(1,1,1,1)}(\mathbf{x}) + u^{2}v^{4}s_{(2,1,1)}(\mathbf{x}) \\ &+ 2(1 - u - v)u^{2}v^{3}s_{(2,1,1,1)}(\mathbf{x}) + u^{3}v^{3}s_{(2,2,2)}(\mathbf{x}) \\ &+ 2(1 - u - v)u^{3}v^{2}s_{(2,2,2,1)}(\mathbf{x}) + (1 - u - v)^{2}u^{3}vs_{(2,2,2,2)}(\mathbf{x}) \\ &+ u^{3}v^{3}s_{(3,1,1,1)} + u^{4}v^{2}s_{(3,2,2,1)} + (1 - u - v)u^{4}vs_{(3,2,2,2)}(\mathbf{x}) \\ &+ u^{5}vs_{(3,3,2,2)} + u^{6}s_{(3,3,3,3)} \end{aligned}$$

What are the coefficients in A_n

$$\begin{aligned} \mathcal{A}_{4}(u,v;\mathbf{x}) &= \mathbf{1}v^{6} + \mathbf{1}uv^{5}s_{(1,1)}(\mathbf{x}) + \mathbf{1}(1-u-v)uv^{4}s_{(1,1,1)}(\mathbf{x}) \\ &+ \mathbf{1}(1-u-v)^{2}uv^{3}s_{(1,1,1,1)}(\mathbf{x}) + \mathbf{1}u^{2}v^{4}s_{(2,1,1)}(\mathbf{x}) \\ &+ \mathbf{2}(1-u-v)u^{2}v^{3}s_{(2,1,1,1)}(\mathbf{x}) + \mathbf{1}u^{3}v^{3}s_{(2,2,2)}(\mathbf{x}) \\ &+ \mathbf{2}(1-u-v)u^{3}v^{2}s_{(2,2,2,1)}(\mathbf{x}) + \mathbf{1}(1-u-v)^{2}u^{3}vs_{(2,2,2,2)}(\mathbf{x}) \\ &+ \mathbf{1}u^{3}v^{3}s_{(3,1,1,1)} + \mathbf{1}u^{4}v^{2}s_{(3,2,2,1)} + \mathbf{1}(1-u-v)u^{4}vs_{(3,2,2,2)}(\mathbf{x}) \\ &+ \mathbf{1}u^{5}vs_{(3,3,2,2)} + \mathbf{1}u^{6}s_{(3,3,3,3)} \end{aligned}$$

What are the coefficients in A_n

$$\begin{aligned} \mathcal{A}_{4}(u,v;\mathbf{x}) &= \mathbf{1}v^{6} + \mathbf{1}uv^{5}s_{(1,1)}(\mathbf{x}) + \mathbf{1}(1-u-v)uv^{4}s_{(1,1,1)}(\mathbf{x}) \\ &+ \mathbf{1}(1-u-v)^{2}uv^{3}s_{(1,1,1,1)}(\mathbf{x}) + \mathbf{1}u^{2}v^{4}s_{(2,1,1)}(\mathbf{x}) \\ &+ \mathbf{2}(1-u-v)u^{2}v^{3}s_{(2,1,1,1)}(\mathbf{x}) + \mathbf{1}u^{3}v^{3}s_{(2,2,2)}(\mathbf{x}) \\ &+ \mathbf{2}(1-u-v)u^{3}v^{2}s_{(2,2,2,1)}(\mathbf{x}) + \mathbf{1}(1-u-v)^{2}u^{3}vs_{(2,2,2,2)}(\mathbf{x}) \\ &+ \mathbf{1}u^{3}v^{3}s_{(3,1,1,1)} + \mathbf{1}u^{4}v^{2}s_{(3,2,2,1)} + \mathbf{1}(1-u-v)u^{4}vs_{(3,2,2,2)}(\mathbf{x}) \\ &+ \mathbf{1}u^{5}vs_{(3,3,2,2)} + \mathbf{1}u^{6}s_{(3,3,3,3)} \end{aligned}$$

п	sum of coefficients
1	1
2	2
3	5
4	16
5	66
6	352

Alternating sign matrices and totally symmetric plane partitions

TSPPs with given diagonal I

Denote by TSPP_n the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \text{TSPP}_n$ define

diag(T) :=
$$(T_{i,i})' = (a_1, \dots, a_l | b_1, \dots, b_l)$$

 $\pi(T) := (a_1, \dots, a_l | b_1 + 1, \dots, b_l + 1).$

TSPPs with given diagonal II

Proposition (AFKNT, 2020)

- The map T → π(T) is a surjection from totally symmetric plane partitions inside an (n, n, n)-box to modified balanced partitions of size n + 1.
- 2 Let $\lambda = (a_1, \dots, a_l | b_1, \dots, b_l)$ be a modified balanced partition. The number of TSPPs T with $\pi(T) = \lambda$ is equal to

$$\det_{1\leq i,j\leq l}\left(\binom{b_j-1}{a_i}\right).$$

TSPPs with given diagonal II

Proposition (AFKNT, 2020)

- The map T → π(T) is a surjection from totally symmetric plane partitions inside an (n, n, n)-box to modified balanced partitions of size n + 1.
- 2 Let $\lambda = (a_1, \dots, a_l | b_1, \dots, b_l)$ be a modified balanced partition. The number of TSPPs T with $\pi(T) = \lambda$ is equal to

$$\det_{1\leq i,j\leq l}\left(\binom{b_j-1}{a_i}\right).$$

For a modified balanced partition $\lambda = (a_1, \ldots, a_l | b_1, \ldots, b_l)$ define

$$\omega_{\lambda}(u,v) := u^{\sum_{i}(a_{i}+1)}(1-u-v)^{\sum_{i}(b_{i}-a_{i})}v^{\binom{n}{2}-\sum_{i}b_{i}}$$

Theorem (AFKNT, 2020)

Let n be a positive integer. Then

$$\mathcal{A}_n(u, v; \mathbf{x}) = \sum_{T \in \mathsf{TSPP}_{n-1}} \omega_{\pi(T)}(u, v) s_{\pi(T)}(\mathbf{x}).$$

An explicit example for n = 3

Alternating sign matrices and totally symmetric plane partitions

