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Fully packed loop configurations

Definition

A fully packed loop configuration (FPL) F of size n is a subgraph
of the n × n grid with n external edges on every side s.t.:
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Why are FPLs interesting?

1 FPLs are in bijection to ASMs

2 Connection to statistical physics
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Noncrossing matchings

Definition

A noncrossing (nc) matching π of size 2n is a matching of the
numbers 1, . . . , 2n by arches such that no two arches cross. We
denote by NC2n the set of nc matchings of size 2n.

1 2 3 4 5 6 7 8 9 10

We write ()m for the nc matching consisting out of m nested
arches. The above nc matching is ()()()3.
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Link pattern

Definition

We number the external edges of a FPL F counter-clockwise with
1 up to 2n. The link pattern π(F ) is the noncrossing matching
such that i and j are matched in π(F ) iff i and j are connected by
a path in F .
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From noncrossing matchings to Young diagrams

Let π ∈ NC2n. Denote by λ(π) the Young diagram obtained by the
following algorithm:

Draw a north-step if an arc is open.

Draw a east-step if an arc is closed.

The Young diagram λ(π) is the area between the above path
and the path which consists out of n consecutive north-steps
followed by n consecutive east-steps.

This yields an bijection between NC2n and the Young diagrams
with at most n − i boxes in the i-th row from top.
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The goal

Denote by Aπ the number of FPLs with link pattern π.
Calculating Aπ for general π is too difficult, hence we
concentrate on certain families of π.

Zuber conjectured that A(π1)mπ2 is a polynomial in m of
degree |λ(π1)|+ |λ(π2)|.

π1π1 π2

m

Our goal is to prove this conjecture.
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Temperley-Lieb operators

We define the i-th Temperley-Lieb operator ei as

1 2 i− 1 i i+ 1 i+ 2 2n− 1 2n

ei : .

The Temperley-Lieb operators map nc matchings on nc matchings.

e4

(
1 2 3 4 5 6 7 8

)
= 1 2 3 4 5 6 7 8 = 1 2 3 4 5 6 7 8
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The RS-CS-Theorem

Theorem (Razumov-Stroganov-Cantini-Sportiello)

The vector (Aπ)π∈NC2n is up to normalization the unique solution of

2n∑
i=1

(ei − Id)(Aπ)π∈NC2n = 0,

where ei ((Aπ)π∈NC2n) = (
∑

π′:ei (π′)=π
Aπ′)π∈NC2n .
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Wheel polynomials I

Definition

Let n be an integer. A polynomial p ∈ Q(q)[z1, . . . , z2n] is called
wheel polynomial of order n if p is homogeneous of degree
n(n − 1) and satisfies the wheel condition:

p(z1, . . . , z2n)|q4zi=q2zj=zk = 0,

for all 1 ≤ i < j < k ≤ 2n.

Example ∏
1≤i<j≤n

(qzi − q−1zj)
∏

n+1≤i<j≤2n
(qzi − q−1zj)

is a wheel polynomial of order n.
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A family of operator

Definition

For 1 ≤ k ≤ 2n define the linear maps
Sk ,Dk : Q(q)[z1, . . . , z2n] −→ Q(q)[z1, . . . , z2n] via

Sk(f )(z1, . . . , z2n) := f (z1, . . . , zk−1, zk+1, zk , zk+2, . . . , z2n),

Dk(f )(z1, . . . , z2n) :=
qzk − q−1zk+1

zk+1 − zk
(Sk(f )− f ).
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Wheel Polynomials II

Denote by Wn[z ] the Q(q)-vector space of wheel polynomials.

Theorem (Zinn-Justin, Di Francesco)

There exists a Q(q)-basis {Ψπ |π ∈ NC2n} of Wn[z ] s.t.:

Ψ()n =
∏

1≤i<j≤n
qzi−q−1zj
q−q−1

qzn+i−q−1zn+j

q−q−1 .

Ψπ(z) = Dj(Ψσ)−
∑

τ∈e−1
j (σ)\{σ,π}Ψτ , if σ ↗j π.

Set q = e
2πi
3 , then Ψπ(1, . . . , 1) = Aπ holds for all π ∈ NC2n.
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A polynomiality theorem

Theorem (A.)

Set

P =
∏

1≤i 6=j≤2n

(
qzi − q−1zj
q − q−1

)αi,j 2n∏
i=1

(
q − q−1zi
q − q−1

)βi (qzi − q−1

q − q−1

)γi
.

Let 1 ≤, i1, . . . , ik ≤ 2n. Then

Di1 ◦ · · · ◦ Dik (P)|z1=...=z2n=1

is a polynomial in αi ,j , βi , γi of degree at most k .
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FPLs with nested arches

Theorem (Caselli-Krattenthaler-Lass-Nadeau, A.)

Let π1, π2 be two noncrossing matchings. The number A(π1)mπ2 of
FPLs with link pattern (π1)mπ2 is a polynomial of degree

|λ(π1)|+ |λ(π2)| with leading coefficient dim(λ(π1)) dim(λ(π2))
|λ(π1)!|λ(π2)! .
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