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Classical GT pattern

A Gelfand-Tsetlin pattern (GT) is a triangular array of integers of
the form

T1,1

T2,1 T2,2

Tn,1 Tn,n

Ti ,i

Ti+1,j Ti+1,j+1≤
≤ ≤

The weight of a GT pattern T is xT :=
n∏

i=1
x

i∑
j=1

(Ti,j )−
i−1∑
j=1

(Ti−1,j )

i .

For a partition λ = (λ1, . . . , λn), the Schur polynomial sλ is

sλ(x) =
∑
T

xT ,

where the sum is over all GTs T with bottom row λn, λn−1, . . . , λ1.
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An Example

For λ = (2, 2, 1) we have

1

1 2

1 2 2

x1x
2
2x

2
3

2

1 2

1 2 2

x21x2x
2
3

2

2 2

1 2 2

x21x
2
2x3

s(2,2,1)(x1, x2, x3) = x1x
2
2x

2
3 + x21x2x

2
3 + x21x

2
2x3.
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Arrowed Gelfand Tsetlin pattern

An arrowed Gelfand-Tsetlin pattern is a GT pattern (Ti ,j) together
with a decoration of the entries by the symbols ∅,↖,↗,↖↗ such
that

Ti+1,j = Ti ,j and Ti+1,j is decorated by ↗ or ↖↗,

⇔
Ti+1,j+1 = Ti ,j and Ti+1,j+1 is decorated by ↖ or ↖↗ .

1 3 4 6 8

2 3 5 7

2 5

3 5

4

↗ ↖ ↖ ↗

↗

↗ ↖
5
↗

↖

↖ ↗
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The weight of an AGT

We call the following local configurations special little triangles

x x

x
↗ ↖

x x

x
↖ ↗ ↖

x x

x
↗ ↖ ↗

x x

x
↖ ↗ ↖ ↗

The sign of an AGT T is

sgn(T ) = (−1)# of special little triangles in T .

We define the weight W (A) of A as

sgn(T ) · t#∅u#↗v#↖w#↖↗ · xT
n∏

i=1

x#↗ in row i−#↖ in row i
i .
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An example

sgn(T ) · t#∅u#↗v#↖w#↖↗ · xT
n∏

i=1

x#↗ in row i−#↖ in row i
i .

The arrowed Gelfand–Tsetlin pattern

1 3 4 6 8

2 3 5 7

2 5 5

3 5

4

↗ ↖ ↖ ↗

↗

↗ ↖ ↗

↖

↖ ↗

has weight −t7u3v2w3x41x
3
2x

5
3x

6
4x

5
5 .
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A multivariate generating function for AGTs

Denote by Ex the shift operator Ex f (x) = f (x + 1).

Theorem (Fischer – S.A., 2023)

The weighted enumeration Aλ(t, u, v ,w ; x) of all AGTs with
bottom row (λn, λn−1, . . . , λ1) is given by

Aλ(t, u, v ,w ; x) =
n∏

i=1

(
uxi + vx−1

i + w + t
)

×
∏

1≤i<j≤n

(
t id+uEλj

+ vE−1
λi

+ wEλj
E−1
λi

)
sλ(x).
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Known specialisations

t#∅u#↗v#↖w#↖↗

Aλ(1, 0, 0, 0; x) = sλ(x),

Aλ(0, 0, 1, 0; x) = s(λ1−n,λ2−n+1,...,λn−1)(x),

Aλ(1, 0, 0,−t; x) yields up to a multiplicative constant the
Hall–Littlewood polynomials,

A(n,n−1,...,1)(0, u, v ,w ; x) yields a weighted enumeration of
alternating sign matrices,

A(2n,2n−2,...,2)(0, u, v ,w ; x) yields a weighted enumeration of
vertically symmetric alternating sign matrices.

For this talk we are interested in

Aλ(1, 1, 1,−1; x)|xi=1 and Aλ(1, 1, 1, 0; x)|xi=1.
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The main result

Theorem (Fischer – S.A.)

For positive integers n,m we have∑
0≤λn<···<λ1≤m

Aλ(1, 1, 1,−1; 1)

= 2n
n∏

i=1

(m − n + 3i + 1)i−1(m − n + i + 1)i(
m−n+i+2

2

)
i−1

(i)i
,

∑
0≤λn<···<λ1≤m

Aλ(1, 1, 1, 0; 1) = 3(
n+1
2 )

n∏
i=1

(2n +m + 2− 3i)i
(i)i

,

where (a)i = (a)(a+ 1) · · · (a+ i − 1) is the Pochhammer symbol.
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The case m = n − 1

Setting m = n − 1 implies λ = (n − 1, n − 2, . . . , 1, 0) and hence

2−nA(n−1,n−2,...,1,0)(1, 1, 1,−1; 1) = 2n(n−1)/2
n−1∏
i=0

(4i + 2)!

(n + 2j + 1)!

= 1, 4, 60, 3328, 678912, . . . .

These numbers were conjectured by Di Francesco to enumerate

configurations of the 20 vertex model in a certain domain, and

domino tilings of Aztec-like triangles respectively.

This was proved by Koutschan and extended in a recent preprint
by Corteel, Huang and Krattenthaler.
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Overview of the proof of the main results

1 Obtain a determinant

This is done by using a generalised bounded Littlewood
identity.

2 Guess a (partial) LU decomposition.

Actually we need to do a case distinction: m even/odd.
Avoid this by showing that it is a polynomial in m.

3 Proof the LU decomposition

It “suffices” to prove a hypergeometric triple sum.
For this we use Mathematica implementations of Sister
Celine’s algorithm and creative telescoping.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Overview of the proof of the main results

1 Obtain a determinant

This is done by using a generalised bounded Littlewood
identity.

2 Guess a (partial) LU decomposition.

Actually we need to do a case distinction: m even/odd.
Avoid this by showing that it is a polynomial in m.

3 Proof the LU decomposition

It “suffices” to prove a hypergeometric triple sum.
For this we use Mathematica implementations of Sister
Celine’s algorithm and creative telescoping.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Overview of the proof of the main results

1 Obtain a determinant

This is done by using a generalised bounded Littlewood
identity.

2 Guess a (partial) LU decomposition.

Actually we need to do a case distinction: m even/odd.
Avoid this by showing that it is a polynomial in m.

3 Proof the LU decomposition

It “suffices” to prove a hypergeometric triple sum.
For this we use Mathematica implementations of Sister
Celine’s algorithm and creative telescoping.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Overview of the proof of the main results

1 Obtain a determinant

This is done by using a generalised bounded Littlewood
identity.

2 Guess a (partial) LU decomposition.

Actually we need to do a case distinction: m even/odd.
Avoid this by showing that it is a polynomial in m.

3 Proof the LU decomposition

It “suffices” to prove a hypergeometric triple sum.
For this we use Mathematica implementations of Sister
Celine’s algorithm and creative telescoping.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Ad 1) Littlewood identities

We have the operator formula for evaluating Aλ

Aλ(t, u, v ,w ; x) =
n∏

i=1

(
uxi + vx−1

i + w + t
)

×
∏

1≤i<j≤n

(
t id+uEλj

+ vE−1
λi

+ wEλj
E−1
λi

)
sλ(x).

∑
=

n∏
i=1

1

1− xi

∏
1≤i<j≤n

1

1− xixj

· 1

xj − xi
,

× det
1≤i ,j≤n

(
x j−1
i

fj(xi )

− xm+2n−j
i

fj(x
−1
i )

)

n∏
i=1

(x−1
i + 1 + w + xi )

where x = (x1, . . . , xn).
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Ad 1) Littlewood identities

We have the operator formula for evaluating Aλ

Aλ(t, u, v ,w ; x) =
n∏

i=1

(
uxi + vx−1

i + w + t
)

×
∏

1≤i<j≤n

(
t id+uEλj

+ vE−1
λi

+ wEλj
E−1
λi

)
sλ(x).

In the generalised setting we have∑
0≤λn<···<λ1≤m

Aλ(1, 1, 1,w ; x) =
n∏

i=1

1

1− xi

∏
1≤i<j≤n

1

1− xixj
· 1

xj − xi

,

× det
1≤i ,j≤n

(
x j−1
i fj(xi )− xm+2n−j

i fj(x
−1
i )
) n∏

i=1

(x−1
i + 1 + w + xi ),

where x = (x1, . . . , xn) and fj(x) = (1 + x)j−1(1 + wx)n−j .
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Ad 1) A simple determinant

By setting m = 2l + 1 and x1 = · · · = xn = 1, we obtain

(3 + w)n2n det
1≤i ,j≤n

(∑
p,q

wn−j−q(−1)j

×
(
j − 1

p

)(
n − j

q

)(
p − q − ℓ+ i − 2

2i − 1

))
.

For w = −1 this can be simplified by using the Chu-Vandermonde
identity

22n det
1≤i ,j≤n

(∑
p

(
n − j

p

)(
ℓ− p + i

2i − j

))
.
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Ad 2) Guessing the LU decomposition

Define ai ,j =
∑

p

(n−j
p

)(
ℓ−p+i
2i−j

)
and

xi ,j =



(−1)i+1 (j)j
(2ℓ− n + 3j + 2)j−1(2ℓ− n + i + 2)j

×
∑
t

(
22i−4t−n(ℓ− n/2 + j/2 + t + 3/2)i−2t−1

×
(i − j − 2t + 1)2t(i − 2j + 1)j−1−t

(1)t(1)i−2t−1

) i ≤ j ,

0 otherwise.

Lemma

We have
n∑

k=1

ai ,kxk,j =

{
1 i = j ,

0 i < j .
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Ad 3) Next steps

The expression in the sum can be simplified by using
transformations for hypergeometric series (the package HYP
by Krattenthaler was very useful for this!).

However, the triple sum can not be evaluated by summation
rules for hypergeometric series (as far as we are aware of).

We use two algorithms (Sister Celine’s method, creative
telescoping) which provide recursions for the triple sum and
allow us to prove the Lemma.
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Idea of Sister Celine’s method

Given a function F (n) =
∑

k f (n, k) which we want to
evaluate,

in our case: we want to show F (n) = 0 or F (n) = 1,
f (n, k) consists of Pochhammer symbols.

Assume we can find a recursion for f of the form∑
r ,s

ar ,s(n)f (n − r , k − s) = 0,

then we obtain

0 =
∑
k

(∑
r ,s

ar ,s(n)f (n − r , k − s)

)
=
∑
r ,s

ar ,sF (n − r).
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Basic idea of creative telescoping

Given a function F (n) =
∑j

k=i f (n, k) which we want to
evaluate.

Assume we can find a recursion

a(n)f (n, k) + b(n)f (n + 1, k) = g(n, k + 1)− g(n, k),

then we obtain for F (n)

a(n)F (n) + b(n)F (n + 1) = g(n, j + 1)− g(n, i).
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Careful checking is necessary!

Let f (n) = (n + 1)n and remember

(x)n =


(x)(x + 1) · · · (x + n − 1) n > 0,

1 n = 0,
1

(x−1)(x−2)···(x+n) n < 0.

The above algorithms will yield the recursion

f (n) = 2(2n − 1)f (n − 1),

which is however only true if n ̸= 0.
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