(-1)-Enumerations of arrowed Gelfand-Tsetlin patterns

Florian Schreier-Aigner
joint work with I. Fischer

Overview

- Arrowed Gelfand-Tsetlin patterns
- A (-1)-enumeration of arrowed GT patterns
- Proof Sketch

Classical GT pattern

A Gelfand-Tsetlin pattern (GT) is a triangular array of integers of the form

$$
T_{n, 1} \cdots \cdots \cdots \cdots \cdots \cdots \cdots T_{n, n}
$$

The weight of a GT pattern T is $\mathbf{x}^{T}:=\prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i}\left(T_{i, j}\right)-\sum_{j=1}^{i-1}\left(T_{i-1, j}\right)}$.

Classical GT pattern

A Gelfand-Tsetlin pattern (GT) is a triangular array of integers of the form

The weight of a GT pattern T is $\mathbf{x}^{T}:=\prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i}\left(T_{i, j}\right)-\sum_{j=1}^{i-1}\left(T_{i-1, j}\right)}$.
For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the Schur polynomial s_{λ} is

$$
s_{\lambda}(\mathbf{x})=\sum_{T} \mathbf{x}^{T}
$$

where the sum is over all GTs T with bottom row $\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}$.

An Example

For $\lambda=(2,2,1)$ we have

Arrowed Gelfand Tsetlin pattern

An arrowed Gelfand-Tsetlin pattern is a GT pattern ($T_{i, j}$) together with a decoration of the entries by the symbols $\emptyset, \nwarrow, \nearrow, \Varangle$ such that

$$
\begin{gathered}
T_{i+1, j}=T_{i, j} \text { and } T_{i+1, j} \text { is decorated by } \nearrow \text { or } \nwarrow \text {, } \\
T_{i+1, j+1}=T_{i, j} \text { and } T_{i+1, j+1} \text { is decorated by } \nwarrow \text { or } \nwarrow \text {. }
\end{gathered}
$$

Arrowed Gelfand Tsetlin pattern

An arrowed Gelfand-Tsetlin pattern is a GT pattern ($T_{i, j}$) together with a decoration of the entries by the symbols $\emptyset, \nwarrow, \nearrow, \Varangle$ such that

$$
\begin{gathered}
T_{i+1, j}=T_{i, j} \text { and } T_{i+1, j} \text { is decorated by } \nearrow \text { or } \nwarrow \text {, } \\
T_{i+1, j+1}=T_{i, j} \text { and } T_{i+1, j+1} \text { is decorated by } \nwarrow \text { or } \nwarrow \text {. }
\end{gathered}
$$

The weight of an AGT

We call the following local configurations special little triangles

The sign of an AGT T is

$$
\operatorname{sgn}(T)=(-1)^{\# \text { of special little triangles in } T}
$$

We define the weight $W(A)$ of A as

$$
\operatorname{sgn}(T) \cdot t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \cdot \mathbf{x}^{T} \prod_{i=1}^{n} x_{i}^{\# \nearrow} \text { in row } \mathrm{i}-\# \nwarrow \text { in row } \mathrm{i}
$$

An example

$$
\operatorname{sgn}(T) \cdot t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \cdot \mathbf{x}^{T} \prod_{i=1}^{n} x_{i}^{\# \nearrow} \text { in row } \mathrm{i}-\# \nwarrow \text { in row } \mathrm{i}
$$

The arrowed Gelfand-Tsetlin pattern

has weight $-t^{7} u^{3} v^{2} w^{3} x_{1}^{4} x_{2}^{3} x_{3}^{5} x_{4}^{6} x_{5}^{5}$.

A multivariate generating function for AGTs

Denote by E_{x} the shift operator $E_{x} f(x)=f(x+1)$.
Theorem (Fischer - S.A., 2023)
The weighted enumeration $\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x})$ of all $A G T s$ with bottom row $\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$ is given by

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}^{n}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x})
\end{aligned}
$$

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nearrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(1,0,0,-t ; \mathbf{x})$ yields up to a multiplicative constant the Hall-Littlewood polynomials,

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nearrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(1,0,0,-t ; \mathbf{x})$ yields up to a multiplicative constant the Hall-Littlewood polynomials,
- $\mathcal{A}_{(n, n-1, \ldots, 1)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of alternating sign matrices,
- $\mathcal{A}_{(2 n, 2 n-2, \ldots, 2)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of vertically symmetric alternating sign matrices.

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nearrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(1,0,0,-t ; \mathbf{x})$ yields up to a multiplicative constant the Hall-Littlewood polynomials,
- $\mathcal{A}_{(n, n-1, \ldots, 1)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of alternating sign matrices,
- $\mathcal{A}_{(2 n, 2 n-2, \ldots, 2)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of vertically symmetric alternating sign matrices.

For this talk we are interested in

- $\left.\mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{x})\right|_{x_{i}=1}$ and $\left.\mathcal{A}_{\lambda}(1,1,1,0 ; \mathbf{x})\right|_{x_{i}=1}$.

The main result

Theorem (Fischer - S.A.)

For positive integers n, m we have

$$
\begin{array}{r}
\sum_{0 \leq \lambda_{n}<\cdots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{1}) \\
=2^{n} \prod_{i=1}^{n} \frac{(m-n+3 i+1)_{i-1}(m-n+i+1)_{i}}{\left(\frac{m-n+i+2}{2}\right)_{i-1}(i)_{i}}, \\
\sum_{0 \leq \lambda_{n}<\cdots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1,0 ; \mathbf{1})=3^{\binom{n+1}{2}} \prod_{i=1}^{n} \frac{(2 n+m+2-3 i)_{i}}{(i)_{i}},
\end{array}
$$

where $(a)_{i}=(a)(a+1) \cdots(a+i-1)$ is the Pochhammer symbol.

The case $m=n-1$

Setting $m=n-1$ implies $\lambda=(n-1, n-2, \ldots, 1,0)$ and hence

$$
\begin{aligned}
2^{-n} \mathcal{A}_{(n-1, n-2, \ldots, 1,0)}(1,1,1,-1 ; \mathbf{1}) & =2^{n(n-1) / 2} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 j+1)!} \\
& =1,4,60,3328,678912, \ldots
\end{aligned}
$$

The case $m=n-1$

Setting $m=n-1$ implies $\lambda=(n-1, n-2, \ldots, 1,0)$ and hence

$$
\begin{aligned}
2^{-n} \mathcal{A}_{(n-1, n-2, \ldots, 1,0)}(1,1,1,-1 ; \mathbf{1}) & =2^{n(n-1) / 2} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 j+1)!} \\
& =1,4,60,3328,678912, \ldots
\end{aligned}
$$

These numbers were conjectured by Di Francesco to enumerate

- configurations of the 20 vertex model in a certain domain, and
- domino tilings of Aztec-like triangles respectively.

The case $m=n-1$

Setting $m=n-1$ implies $\lambda=(n-1, n-2, \ldots, 1,0)$ and hence

$$
\begin{aligned}
2^{-n} \mathcal{A}_{(n-1, n-2, \ldots, 1,0)}(1,1,1,-1 ; \mathbf{1}) & =2^{n(n-1) / 2} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 j+1)!} \\
& =1,4,60,3328,678912, \ldots
\end{aligned}
$$

These numbers were conjectured by Di Francesco to enumerate

- configurations of the 20 vertex model in a certain domain, and
- domino tilings of Aztec-like triangles respectively.

This was proved by Koutschan and extended in a recent preprint by Corteel, Huang and Krattenthaler.

Overview of the proof of the main results

(1) Obtain a determinant
(2) Guess a (partial) LU decomposition.
(3) Proof the LU decomposition

Overview of the proof of the main results

(1) Obtain a determinant

- This is done by using a generalised bounded Littlewood identity.
(2) Guess a (partial) LU decomposition.
(3) Proof the LU decomposition

Overview of the proof of the main results

(1) Obtain a determinant

- This is done by using a generalised bounded Littlewood identity.
(2) Guess a (partial) LU decomposition.
- Actually we need to do a case distinction: m even/odd.
- Avoid this by showing that it is a polynomial in m.
(3) Proof the LU decomposition

Overview of the proof of the main results

(1) Obtain a determinant

- This is done by using a generalised bounded Littlewood identity.
(2) Guess a (partial) LU decomposition.
- Actually we need to do a case distinction: m even/odd.
- Avoid this by showing that it is a polynomial in m.
(3) Proof the LU decomposition
- It "suffices" to prove a hypergeometric triple sum.
- For this we use Mathematica implementations of Sister Celine's algorithm and creative telescoping.

Ad 1) Littlewood identities

We have the operator formula for evaluating \mathcal{A}_{λ}

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x}) .
\end{aligned}
$$

Ad 1) Littlewood identities

We have the operator formula for evaluating \mathcal{A}_{λ}

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x}) .
\end{aligned}
$$

The classical
Littlewood identity is

$$
\sum_{\lambda} s_{\lambda}(\mathbf{x})=\prod_{i=1}^{n} \frac{1}{1-x_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-x_{i} x_{j}}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

Ad 1) Littlewood identities

We have the operator formula for evaluating \mathcal{A}_{λ}

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x}) .
\end{aligned}
$$

The classical bounded Littlewood identity is

$\times \operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{j-1}-x_{i}^{m+2 n-j}\right)$,
where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

Ad 1) Littlewood identities

We have the operator formula for evaluating \mathcal{A}_{λ}

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x}) .
\end{aligned}
$$

In the generalised setting we have

$$
\begin{aligned}
& \quad \sum_{0 \leq \lambda_{n}<\cdots<\lambda_{1} \leq m} A_{\lambda}(1,1,1, w ; \mathbf{x})=\prod_{i=1}^{n} \frac{1}{1-x_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-x_{i} x_{j}} \cdot \frac{1}{x_{j}-x_{i}} \\
& \times \operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{j-1} f_{j}\left(x_{i}\right)-x_{i}^{m+2 n-j} f_{j}\left(x_{i}^{-1}\right)\right) \prod_{i=1}^{n}\left(x_{i}^{-1}+1+w+x_{i}\right), \\
& \text { where } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \text { and } f_{j}(x)=(1+x)^{j-1}(1+w x)^{n-j} .
\end{aligned}
$$

Ad 1) A simple determinant

By setting $m=2 l+1$ and $x_{1}=\cdots=x_{n}=1$, we obtain

$$
\begin{aligned}
(3+w)^{n} 2^{n} \operatorname{det}_{1 \leq i, j \leq n} & \left(\sum_{p, q} w^{n-j-q}(-1)^{j}\right. \\
& \left.\times\binom{ j-1}{p}\binom{n-j}{q}\binom{p-q-\ell+i-2}{2 i-1}\right)
\end{aligned}
$$

Ad 1) A simple determinant

By setting $m=2 l+1$ and $x_{1}=\cdots=x_{n}=1$, we obtain

$$
\begin{aligned}
(3+w)^{n} 2^{n} \operatorname{det}_{1 \leq i, j \leq n} & \left(\sum_{p, q} w^{n-j-q}(-1)^{j}\right. \\
& \left.\times\binom{ j-1}{p}\binom{n-j}{q}\binom{p-q-\ell+i-2}{2 i-1}\right)
\end{aligned}
$$

For $w=-1$ this can be simplified by using the Chu-Vandermonde identity

$$
2^{2 n} \operatorname{det}_{1 \leq i, j \leq n}\left(\sum_{p}\binom{n-j}{p}\binom{\ell-p+i}{2 i-j}\right) .
$$

Ad 2) Guessing the LU decomposition

Define $a_{i, j}=\sum_{p}\binom{n-j}{p}\binom{\ell-p+i}{2 i-j}$ and

$$
x_{i, j}=\left\{\begin{array}{l}
(-1)^{i+1} \frac{(j)_{j}}{(2 \ell-n+3 j+2)_{j-1}(2 \ell-n+i+2)_{j}} \\
\times \sum_{t}\left(2^{2 i-4 t-n}(\ell-n / 2+j / 2+t+3 / 2)_{i-2 t-1} \quad i \leq j,\right. \\
\left.\times \frac{(i-j-2 t+1)_{2 t}(i-2 j+1)_{j-1-t}}{(1)_{t}(1)_{i-2 t-1}}\right)
\end{array}\right.
$$

otherwise.

Lemma

We have

$$
\sum_{k=1}^{n} a_{i, k} x_{k, j}= \begin{cases}1 & i=j \\ 0 & i<j\end{cases}
$$

Ad 3) Next steps

- The expression in the sum can be simplified by using transformations for hypergeometric series (the package HYP by Krattenthaler was very useful for this!).
- However, the triple sum can not be evaluated by summation rules for hypergeometric series (as far as we are aware of).

Ad 3) Next steps

- The expression in the sum can be simplified by using transformations for hypergeometric series (the package HYP by Krattenthaler was very useful for this!).
- However, the triple sum can not be evaluated by summation rules for hypergeometric series (as far as we are aware of).
- We use two algorithms (Sister Celine's method, creative telescoping) which provide recursions for the triple sum and allow us to prove the Lemma.

Idea of Sister Celine's method

- Given a function $F(n)=\sum_{k} f(n, k)$ which we want to evaluate,
- in our case: we want to show $F(n)=0$ or $F(n)=1$,
- $f(n, k)$ consists of Pochhammer symbols.

Idea of Sister Celine's method

- Given a function $F(n)=\sum_{k} f(n, k)$ which we want to evaluate,
- in our case: we want to show $F(n)=0$ or $F(n)=1$,
- $f(n, k)$ consists of Pochhammer symbols.
- Assume we can find a recursion for f of the form

$$
\sum_{r, s} a_{r, s}(n) f(n-r, k-s)=0
$$

then we obtain

$$
0=\sum_{k}\left(\sum_{r, s} a_{r, s}(n) f(n-r, k-s)\right)=\sum_{r, s} a_{r, s} F(n-r) .
$$

Basic idea of creative telescoping

- Given a function $F(n)=\sum_{k=i}^{j} f(n, k)$ which we want to evaluate.
- Assume we can find a recursion

$$
a(n) f(n, k)+b(n) f(n+1, k)=g(n, k+1)-g(n, k),
$$

- then we obtain for $F(n)$

$$
a(n) F(n)+b(n) F(n+1)=g(n, j+1)-g(n, i)
$$

Careful checking is necessary!

Let $f(n)=(n+1)_{n}$ and remember

$$
(x)_{n}= \begin{cases}(x)(x+1) \cdots(x+n-1) & n>0 \\ 1 & n=0 \\ \frac{1}{(x-1)(x-2) \cdots(x+n)} & n<0\end{cases}
$$

The above algorithms will yield the recursion

$$
f(n)=2(2 n-1) f(n-1),
$$

which is however only true if $n \neq 0$.

