Polynomiality phenomena for FPLs and AS-trapezoids

Florian Aigner

SFB meeting, JKU Linz

12.5.2017

Outline

Fully packed loops

Definitions

A polynomiality theorem

Alternating sign triangles
Definitions
A thought about the structure
Again a polynomiality theorem

A slightly related guessing problem

Fully packed loops

Fully packed loops

Definition

A fully packed loop (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- All vertices of the grid have degree 2 in F.
- F contains every other external edge, beginning with the topmost at the left side.

Fully packed loops

Definition

A fully packed loop (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- All vertices of the grid have degree 2 in F.
- F contains every other external edge, beginning with the topmost at the left side.

Fully packed loops

Definition

A fully packed loop (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- All vertices of the grid have degree 2 in F.
- F contains every other external edge, beginning with the topmost at the left side.

Fully packed loops

Definition

A fully packed loop (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- All vertices of the grid have degree 2 in F.
- F contains every other external edge, beginning with the topmost at the left side.

Noncrossing matchings

Definition

A noncrossing matching of size $2 n$ is a matching of the numbers $1, \ldots, 2 n$ by arches such that there exists no pair of crossing arches.

Noncrossing matchings

Definition

A noncrossing matching of size $2 n$ is a matching of the numbers $1, \ldots, 2 n$ by arches such that there exists no pair of crossing arches.

- We write ()$_{m}$ for the noncrossing matching consisting of m nested arches. The above noncrossing matching is ()()()$_{3}$.
- The set of noncrossing matchings of size $2 n$ is denoted by $N C_{2 n}$.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

Link pattern

Definition

We number the external edges of an FPL F of size n counter clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching such that i and j are matched in $\pi(F)$ iff i and j are connected by a path in F.

We denote by A_{π} the number of FPLs with link pattern π.

From noncrossing matchings to Young diagrams

- Noncrossing matchings of size $2 n$ and Young diagrams with at most $n-i$ boxes in the i-th row from top are in bijection.

From noncrossing matchings to Young diagrams

- Noncrossing matchings of size $2 n$ and Young diagrams with at most $n-i$ boxes in the i-th row from top are in bijection.
- Let $\pi \in \mathrm{NC}_{2 n}$. Denote by $\lambda(\pi)$ the Young diagram obtained by the following algorithm:

From noncrossing matchings to Young diagrams

- Noncrossing matchings of size $2 n$ and Young diagrams with at most $n-i$ boxes in the i-th row from top are in bijection.
- Let $\pi \in \mathrm{NC}_{2 n}$. Denote by $\lambda(\pi)$ the Young diagram obtained by the following algorithm:
- Draw a north-step if an arc is open.

From noncrossing matchings to Young diagrams

- Noncrossing matchings of size $2 n$ and Young diagrams with at most $n-i$ boxes in the i-th row from top are in bijection.
- Let $\pi \in \mathrm{NC}_{2 n}$. Denote by $\lambda(\pi)$ the Young diagram obtained by the following algorithm:
- Draw a north-step if an arc is open.
- Draw a east-step if an arc is closed.

From noncrossing matchings to Young diagrams

- Noncrossing matchings of size $2 n$ and Young diagrams with at most $n-i$ boxes in the i-th row from top are in bijection.
- Let $\pi \in \mathrm{NC}_{2 n}$. Denote by $\lambda(\pi)$ the Young diagram obtained by the following algorithm:
- Draw a north-step if an arc is open.
- Draw a east-step if an arc is closed.
- The Young diagram $\lambda(\pi)$ is the area between the above path and the path consisting of n consecutive north-steps followed by n consecutive east-steps.

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

Polynomiality phenomena for FPLs and AS-trapezoids
L Fully packed loops
$\left\llcorner_{\text {Definitions }}\right.$

Example

A polynomiality phenomenon

Theorem (Caselli et al. 2004, A. 2016)
Let π_{1}, π_{2} be two noncrossing matchings, then $A_{\left(\pi_{1}\right)_{m} \pi_{2}}$ is a polynomial in m of degree $\left|\lambda\left(\pi_{1}\right)\right|+\left|\lambda\left(\pi_{2}\right)\right|$ and leading coefficient

$$
\frac{\#\left(\text { SYT of shape } \lambda\left(\pi_{1}\right)\right)}{\left|\lambda\left(\pi_{1}\right)\right|!} \frac{\#\left(\text { SYT of shape } \lambda\left(\pi_{2}\right)\right)}{\left|\lambda\left(\pi_{2}\right)\right|!} .
$$

Alternating sign triangles

Definition

An alternating sign triangle (AST) of order n is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ with entries $-1,0,1$ such that

$$
\begin{array}{cccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & \cdots & \cdots & a_{1,2 n-2} & a_{1,2 n-1} \\
& a_{2,2} & a_{2,3} & \ldots & \ldots & \cdots & a_{2,2 n-2} & \\
& & \vdots & \vdots & \vdots & & \\
& & & a_{n-1, n-1} & a_{n-1, n} & a_{n-1, n+1} & & \\
& & & a_{n, n} & &
\end{array}
$$

Definition

An alternating sign triangle (AST) of order n is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,

$$
\begin{array}{ccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & \cdots & \cdots & a_{1,2 n-2} \\
& a_{2,2} & a_{2,3} & \cdots & \cdots & a_{1,2 n-1} \\
& & \vdots & \vdots & \vdots & a_{2,2 n-2} & \\
& & & a_{n-1, n-1} & a_{n-1, n} & a_{n-1, n+1} & \\
& & & & a_{n, n} & &
\end{array}
$$

Definition

An alternating sign triangle (AST) of order n is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,
- all row-sums are 1,

$$
\begin{array}{ccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & \cdots & \cdots & a_{1,2 n-2} \\
& a_{2,2} & a_{2,3} & \cdots & \cdots & a_{1,2 n-1} \\
& & & \vdots & \vdots & \vdots & a_{2,2 n-2}
\end{array}
$$

Definition

An alternating sign triangle (AST) of order n is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,
- all row-sums are 1 ,
- the topmost non-zero entry is 1 for all columns.

$$
\begin{array}{ccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & \cdots & \cdots & a_{1,2 n-2} \\
& a_{2,2} & a_{2,3} & \cdots & \cdots & a_{1,2 n-1} \\
& & & \vdots & \vdots & \vdots & a_{2,2 n-2}
\end{array}
$$

Definition

An alternating sign triangle (AST) of order n is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,
- all row-sums are 1 ,
- the topmost non-zero entry is 1 for all columns.

The following is an example of an AST of order 4.

0	0	0	0	1	0	0
	0	1	0	-1	1	
		0	0	1		
			1			

Definition

An alternating sign triangle (AST) of order n is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,
- all row-sums are 1 ,
- the topmost non-zero entry is 1 for all columns.

The following is an example of an AST of order 4.

0	0	0	0	1	0	0
	0	1	0	-1	1	
		0	0	1		
			1			

Theorem (Ayyer - Behrend - Fischer, 2016)
ASTs of order n and FPLs of size n are equinumerous.

Centred Catalan sets

Definition

A centred Catalan set S of size n is an n-subset of $\{-(n-1),-(n-2), \ldots, n-1\}$ such that $|S \cap\{-i, \ldots, i\}| \geq i+1$ for all $0 \leq i \leq n-1$.

Centred Catalan sets

Definition

A centred Catalan set S of size n is an n-subset of
$\{-(n-1),-(n-2), \ldots, n-1\}$ such that
$|S \cap\{-i, \ldots, i\}| \geq i+1$ for all $0 \leq i \leq n-1$.
Theorem (A.,2016)
Let A be an AST of order n. We label the columns of A form left to right with $-(n-1), \ldots, n-1$ and define $S(A)$ to be the set of labels of columns with positive column-sum. Then $S(A)$ is a centred Catalan set of size n.

An example

$$
A=\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
& & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
& & & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & & & \\
& & & & 0 & 0 & 0 & 1 & 0 & -1 & 1 & & & & \\
& & & & & 1 & 0 & 0 & 0 & 0 & & & & & \\
& & & & & & 1 & -1 & 1 & & & & & & \\
& & & & & & & 1 & & & & & & &
\end{array}
$$

An example

$$
\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
& & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
& & & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & & & \\
& & & & 0 & 0 & 0 & 1 & 0 & -1 & 1 & & & & \\
& & & & & 1 & 0 & 0 & 0 & 0 & & & & & \\
& & & & & & 1 & -1 & 1 & & & & & & \\
& & & & & & & 1 & & & & & & & \\
\overline{7} & \overline{6} & \overline{5} & \overline{4} & \overline{3} & \overline{2} & \overline{1} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

An example

$$
\begin{aligned}
& \begin{array}{ccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
& & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & &
\end{array} \\
& A= \\
& \begin{array}{lllllllll}
1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} \\
& \begin{array}{lllllllllllllll}
\overline{7} & \overline{6} & \overline{5} & \overline{4} & \overline{3} & \overline{2} & \overline{1} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& S(A)=\{-6,-4,-2,-1,0,1,3,6\}
\end{aligned}
$$

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

$$
\begin{aligned}
& \Leftrightarrow \quad S(\pi)=\{0
\end{aligned}
$$

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

$$
\begin{aligned}
& \Leftrightarrow \quad S(\pi)=\{0,-1
\end{aligned}
$$

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

$$
\begin{aligned}
& \Leftrightarrow \quad S(\pi)=\{0,-1
\end{aligned}
$$

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

$$
\begin{aligned}
& \Leftrightarrow \quad S(\pi)=\{0,-1,-2
\end{aligned}
$$

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

A bijection between nc matchings and CCSs

We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$ in the following way.

- We look at the sequence $0,-1,1,-2,2, \ldots,-n+1, n-1$.
- $S(\pi)$ contains the i-th element of this sequence iff i is a left-endpoint of an arc in π.
π

Concatenating centred Catalan sets

Let $I \in \mathbb{N}$. The dilation operator $\mathfrak{s}_{\boldsymbol{l}}: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$
\mathfrak{s}_{l}(x)= \begin{cases}x+1 & x>0 \\ 0 & x=0 \\ x-1 & x<0\end{cases}
$$

Concatenating centred Catalan sets

Let $I \in \mathbb{N}$. The dilation operator $\mathfrak{s}_{\boldsymbol{l}}: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$
\mathfrak{s}_{l}(x)= \begin{cases}x+1 & x>0 \\ 0 & x=0 \\ x-1 & x<0\end{cases}
$$

For two centred Catalan sets S_{1}, S_{2} of size n_{1} or n_{2} respectively, we define the concatenation $\left(S_{1}, S_{2}\right)$ as

$$
\left(S_{1}, S_{2}\right):=S_{1} \cup \mathfrak{s}_{n_{1}-1}\left(S_{2}\right)
$$

Concatenating centred Catalan sets

Let $I \in \mathbb{N}$. The dilation operator $\mathfrak{s}_{\boldsymbol{l}}: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$
\mathfrak{s}_{l}(x)= \begin{cases}x+1 & x>0 \\ 0 & x=0 \\ x-1 & x<0\end{cases}
$$

For two centred Catalan sets S_{1}, S_{2} of size n_{1} or n_{2} respectively, we define the concatenation $\left(S_{1}, S_{2}\right)$ as

$$
\left(S_{1}, S_{2}\right):=S_{1} \cup \mathfrak{s}_{n_{1}-1}\left(S_{2}\right)
$$

Example
$(\{-4,-2,-1,0,1,3\},\{-1,0,1\})=$
$\{-4,-2,-1,0,1,3\} \cup \mathfrak{s}_{5}(\{-1,0,1\})=\{-6,-4,-2,-1,0,1,3,6\}$

An example

$$
\begin{aligned}
& \begin{array}{ccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 &
\end{array} \\
& \begin{array}{lllllllll}
1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} \\
& A= \\
& \begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & -1 & 1
\end{array} \\
& S(A)=\{-6,-4,-2,-1,0,1,3,6\}
\end{aligned}
$$

An example

$$
\left.\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
& & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
& & & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & & & \\
& & & & 0 & 0 & 0 & 1 & 0 & -1 & 1 & & & \\
& & & & & 1 & 0 & 0 & 0 & 0 & & & & \\
& & & & & 1 & -1 & 1 & & & & & \\
& & & & & & 1 & & & & & & \\
& & \\
& &
\end{array}\right]=(\{-4,-2,-1,0,1,3\},\{-1,0,1\}) .
$$

An example

$$
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
& & & & & & & & & & & & & \\
& & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
& & & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & & \\
& & & & 0 & 0 & 0 & 1 & 0 & -1 & 1 & & & \\
& & & & & 1 & 0 & 0 & 0 & 0 & & & & \\
& S(A)=(\{-4,-2,-1,0,1,3\},\{-1,0,1\})
\end{array}
$$

AS-trapezoids

Definition

An ($n, /$)-AS-trapezoid is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2(n+l)-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,
- all row-sums are 1 ,
- the topmost non-zero entry is 1 for all columns,
- the central $(2 I-1)$ columns have column-sum 0 .

AS-trapezoids

Definition

An ($n, /$)-AS-trapezoid is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2(n+l)-i}$ with entries $-1,0,1$ such that

- In all rows and columns the non-zero entries alternate,
- all row-sums are 1,
- the topmost non-zero entry is 1 for all columns,
- the central $(2 I-1)$ columns have column-sum 0 .

We associate to an (n, l)-AS-trapezoid A a centred Catalan set $S(A)$ of size $n+1$ such that $\mathfrak{s}_{/-1}(S(A)) \backslash\{0\}$ is the set of column labels of A with positive column-sum.

- A thought about the structure

A splitting Theorem

Let S be a centred Catalan set of size n.

A splitting Theorem

Let S be a centred Catalan set of size n.

- The weight function $w(S)$ is the number of ASTs A of order n with $S(A)=S$.

A splitting Theorem

Let S be a centred Catalan set of size n.

- The weight function $w(S)$ is the number of ASTs A of order n with $S(A)=S$.
- The weight function $w_{l}(S)$ is the number of ($n-1, I$)-AS-trapezoids A with $S(A)=S$.

A splitting Theorem

Let S be a centred Catalan set of size n.

- The weight function $w(S)$ is the number of ASTs A of order n with $S(A)=S$.
- The weight function $w_{l}(S)$ is the number of ($n-1, I$)-AS-trapezoids A with $S(A)=S$.

Theorem (A., 2016)
Let S_{1} and S_{2} be centred Catalan sets of size n_{1} or n_{2} respectively. Then holds

$$
w\left(\left(S_{1}, S_{2}\right)\right)=w\left(S_{1} \cup \mathfrak{s}_{n_{1}-1}\left(S_{2}\right)\right)=w\left(S_{1}\right) w_{n_{1}}\left(S_{2}\right)
$$

From CCSs to skew-shaped Young diagrams

We associate to a centred Catalan set S of size n a skew-shaped
Young diagram $\sigma(S) / \mu(S)$ in the following way:

From CCSs to skew-shaped Young diagrams

We associate to a centred Catalan set S of size n a skew-shaped Young diagram $\sigma(S) / \mu(S)$ in the following way:

- We construct two paths $\sigma=\left(\sigma_{i}\right)_{1 \leq i \leq n-1}, \mu=\left(\mu_{i}\right)_{1 \leq i \leq n-1}$ by

	σ_{i}	μ_{i}
$\{-i, i\} \subseteq S$	E	N
$-i \in S, i \notin S$	N	N
$i \in S,-i \notin S$	E	E
$-i, i \notin S$	N	E

From CCSs to skew-shaped Young diagrams

We associate to a centred Catalan set S of size n a skew-shaped
Young diagram $\sigma(S) / \mu(S)$ in the following way:

- We construct two paths $\sigma=\left(\sigma_{i}\right)_{1 \leq i \leq n-1}, \mu=\left(\mu_{i}\right)_{1 \leq i \leq n-1}$ by

	σ_{i}	μ_{i}
$\{-i, i\} \subseteq S$	E	N
$-i \in S, i \notin S$	N	N
$i \in S,-i \notin S$	E	E
$-i, i \notin S$	N	E

- The skew shaped Young diagram $\sigma(S) / \mu(S)$ is the area between the paths σ and μ.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
-Again a polynomiality theorem

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
LAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Polynomiality phenomena for FPLs and AS-trapezoids
ᄂAlternating sign triangles
$\left\llcorner_{\text {Again a polynomiality theorem }}\right.$

Example

Set $S=\{-6,-4,-2,-1,0,1,3,6\}$.

Another polynomiality phenomenon

Theorem (A., 2016)
Let S be a centred Catalan set. The weight function $w_{l}(S)$ is a polynomial in I of degree $|\sigma(S) / \mu(S)|$ with leading coefficient

$$
\frac{2^{|\sigma(S) / \mu(S)|} \#(S Y T \text { of shape } \sigma(S) / \mu(S))}{|\sigma(S) / \mu(S)|!} .
$$

About the roots

Conjecture

Let S be an irreducible centred Catalan set and define $(x)_{j}:=x(x+1)(x+2) \ldots(x+j-1)$. Then holds the following

$$
\left.\{-k, \ldots, k\} \subseteq S \Leftrightarrow \prod_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}(2 l+1+3 i)_{(k-2 i)} \right\rvert\, w_{l}(S)
$$

About the roots

Conjecture

Let S be an irreducible centred Catalan set and define $(x)_{j}:=x(x+1)(x+2) \ldots(x+j-1)$. Then holds the following

$$
\left.\{-k, \ldots, k\} \subseteq S \Leftrightarrow \prod_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}(2 l+1+3 i)_{(k-2 i)} \right\rvert\, w_{l}(S)
$$

Conjecture

Let S be an irreducible centred Catalan set of size $n \geq 10$. Then the rational roots of $w_{l}(S)$ are in the set $\left\{-\frac{1}{2},-1, \ldots, \frac{-2 n+5}{2},-n+2,-\frac{n^{2}-5 n+7}{2(n-3)}\right\}$.

Centred Catalan sets of a certain form

Let S_{1}, S_{2} be centred Catalan sets and define

$$
\begin{aligned}
& S(m):=\left(\{0,1, \ldots, m\}, S_{1},\{0,1, \ldots, m\}, S_{2}\right) \\
& \pi(m):=\left(\pi\left(S_{1}\right)\right)_{m} \pi\left(S_{2}\right)
\end{aligned}
$$

A comparison between two theorems

The number $A_{\pi(m)}$ of FPL with link pattern $\pi(m)$ is a polynomial in m of degree

$$
\sum_{i=1}^{2}\left|\lambda\left(\pi\left(S_{i}\right)\right)\right|
$$

and leading coefficient
$\prod_{i=1}^{2} \frac{\#\left(S Y T \text { of shape } \lambda\left(\pi\left(S_{i}\right)\right)\right)}{\left|\lambda\left(\pi\left(S_{i}\right)\right)\right|!}$

The number $w(S(m))$ of AS--trapezoids with centred Catalan set $S(m)$ is a polynomial in m of degree

$$
\sum_{i=1}^{2}\left|\sigma\left(S_{i}\right) / \mu\left(S_{i}\right)\right|
$$

and leading coefficient

$$
\prod_{i=1}^{2} \frac{2^{\left|\sigma\left(S_{i}\right) / \mu\left(S_{i}\right)\right|} \#\left(S Y T \text { of } \sigma\left(S_{i}\right) / \mu\left(S_{i}\right)\right)}{\left|\sigma\left(S_{i}\right) / \mu\left(S_{i}\right)\right|!}
$$

