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A naive perspection on enumerative Combinatorics

A combinatorial structure (Species) F is an association from finite
sets to finite sets, associating to every set X the set of
combinatorial objects on X

X 7→ F (X ) = {combinatorial objects on X}.

This association should be “independent of the nature” of the
elements in X , i.e., for every bijection ϕ : X → Y there exists and
bijection F (ϕ)

F (ϕ) : F (X )→ F (Y ).
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Examples
Denote by S the combinatorial structure of Permutations, i.e.,

S(X ) = {π|π is a bijection from X to X}.

Example

S({1, 2}) = {
(

1 7→ 1
2 7→ 2

)
,

(
1 7→ 2
2 7→ 1

)
}.

Denote by L the combinatorial structure of liner orders, i.e.,

L(X ) = { linear orders on X}.

Example

L({1, 2}) = {12, 21}, L({F, •}) = {F•, •F}.
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How many are there?

Given a combinatorial structure F , one of the most fundamental
question is what is the size of F (X )?

Example (I)

The number of permutations on X is |S(X )| = |X |!.

Example (II)

The number of linear order on X is |L(X )| = |X |!.
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Combinatorial structures with the same number

Let F ,G be two combinatorial structures such that

|F (X )| = |G (X )|.

for all finite sets X . Hence there exists for all finite sets X a
bijection

ϕX : F (X )→ G (X ).

Combinatorialists are interested in “nice” bijections.

What are “nice” bijections?
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Natural isomorphism

A natural Isomorphism between two combinatorial structures F ,G
is a family of bijections ηX : F (X )→ G (X ) for all finite sets X
such that the following diagram commutes for all finite sets X ,Y
of same cardinality and all bijections ϕ : X → Y ,

F (X ) G (X )

F (Y ) G (Y )

ηX

F (ϕ) G(ϕ)

ηY

i.e., ηY ◦ F (ϕ) = G (ϕ) ◦ ηX .
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An example with natural isomorphism

Denote by S the species of subsets. For ϕ : X → Y the
associated map S(ϕ) is given by

S(ϕ)(A) = ϕ(A) := {ϕ(a)|a ∈ A}.

Denote by P the species of ordered set partitions into two
blocks. For ϕ : X → Y the associated map P(ϕ) is given by

P(ϕ)((A,B)) = (ϕ(A), ϕ(B)).

Then the following is natural isomorphism between S and P

ηX : S(X )→ P(X )

A 7→ (A,X \ A).
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An example without natural isomorphism

The species S of permutations and L of linear order are not natural
isomorphic.

Let X = {1, 2} and ϕ : X → X with ϕ(1) = 2 and ϕ(2) = 1.

S(ϕ)

((
1 7→ 1
2 7→ 2

))
=

(
2 7→ 2
1 7→ 1

)
, S(ϕ)

((
1 7→ 2
2 7→ 1

))
=

(
2 7→ 1
1 7→ 2

)
.

L(ϕ)(12) = 21, L(ϕ)(21) = 12.
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Theorem (Andrews ’79,’94, Zeilberger ’96,
Ayyer-Behrend-Fischer ’16)

The following combinatorial objects are enumerated by

n−1∏
i=0

(3i + 1)!

(n + i)!
.

ASMs ’82

0
1
0
0

1
-1
0
1

0
0
1
0

0
1
0
0

DPPs ’79
4 4 3

3 1

TSSCPPs ’86
ASTs ’16

1
1 0 0

1 0 -1 1 0
0 0 0 1 0 0 0
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Descending plane partitions

Definition (Andrews ’79)

A descending plane partition (DPP) of size n is an array of
successively indented rows filled with positive integers less than or
equal n such that

the entries are weakly decreasing along rows and strictly
decreasing along columns,

the first entry in each row is larger than the length of its row
and does not exceed the number of entries in the preceding
row.

The DPPs of size 3 are

∅ 2 3 3 1 3 2 3 3 3 3
2
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Alternating sign matrices

Definition (Mills-Robbins-Rumsey ’82)

An alternating sign matrix (ASM) of size n is an n × n matrix with
entries 1, 0,−1, such that

all row- and column-sums are equal 1,

in each row and column the non-zero entries alternate.

The ASMs of size 3 are1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1


0 1 0

0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 −1 1
0 1 0


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TSSCPPs

Definition (Mills-Robbins-Rumsey ’86)

A Totally symmetric self complementary plane partitions
(TSSCPP) of size n is a filling of an 2n × 2n × 2n box with unit
cubes which is invariant under change of axis and coincides with its
“empty filling”.

The TSSCPPs of size 3 are
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Alternating sign triangles

Definition (Ayyer-Behrend-Fischer ’16)

An alternating sign triangle (AST) of size n is a configuration of n
centred rows where the i-th row, counted from the bottom, has
2i − 1 elements, with entries −1, 0 or 1 such that

all row-sums are equal 1,

in each row and column the non-zero entries alternate,

the first non-zero entry from top is positive.

The ASTs of size 3 are
1 0 0 0 0

1 0 0
1

0 0 0 1 0
1 0 0

1

0 0 0 0 1
1 0 0

1

1 0 0 0 0
0 0 1

1

0 1 0 0 0
0 0 1

1

0 0 0 0 1
0 0 1

1

0 0 1 0 0
1 −1 1

1
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What now?

Is this a combinatorialists end of the world?

NO!

Maybe there are no “nice” bijections.

Generalisations, refinements and symmetry classes can give
more insight.

A change of perspective could also help, e.g., we can interpret
ASMs and TSSCPPs as order ideals in Posets.
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Generalisations

ASMs and TSSCPPs have been generalised to

Gog- and Magog-trapezoids (one extra parameter):
equinumerousity proven by Zeilberger ’96.

Gog- and Magog-trapezoids (two extra parameters):
equinumerousity conjectured by Krattenthaler ’96.
Gog- and Magog-pentagons (three extra parameter):
equinumerousity conjectured by Biane-Cheballah ’16.

DPPs and ASTs have been generalised to

d-DPPs (one extra parameter) have been introduced by
Andrews ’79.
AS-trapezoids (one extra parameter) have been announced by
Ayyer-Behrend-Fischer ’16 and introduced by Aigner ’17;
equinumerousity was proven by Fischer ’18.
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A refinement of ASMs
Let A be an ASM of size n. We denote by

ν(A) =
∑

1≤i<i ′≤n
1≤j ′<j≤n

AijAi ′j ′ the inversion number of A,

µ(A) the number of −1’s in A,

ρ1(A) the number of 0’s to the left of the topmost 1,

ρ2(A) the number of 0’s to the right of the bottommost 1.

0 1 0 00 0

0

1

1

11

−1

−1

1

1

10

0

0 0 0 0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

µ = 2

ν = 9

ρ1 = 1

000
ρ2 = 3
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A refinement of DPPs

Let D be a DPP of size n. We denote by

ν(D) the number of parts Dij with Dij > j − i ,

µ(D) the number of parts Dij with Dij ≤ j − i ,

ρ1(D) the number of n’s in D,

ρ2(D) the number of (n − 1)’s in D plus the number of rows
of D with length n − 1.

6 5 1

5 4 2

3 1

ν = 7

µ = 3

ρ1 = 3

ρ2 = 3

6 6
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A refinement of ASMs and DPPs

Write ASMn(a, b, c , d) for the number of ASMs A of size n
with ν(A) = a, µ(A) = b, ρ1(A) = c , ρ2(A) = d .

Write DPPn(a, b, c, d) for the number of DPPs D of size n
with ν(D) = a, µ(D) = b, ρ1(D) = c , ρ2(D) = d .

Theorem (Behrend-Di Francesco- Zinn-Justin, ’13)

ASMn(a, b, c , d) = DPPn(a, b, c, d).
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