An introduction to alternating sign matrices A combinatorial story of missing bijections

Florian Aigner

PhD Colloquium 14.11.2018

VIENNA DOCTORAL SCHOOL MATHEMATICS

"Nice" bijections

A Combinatorial Story where this fails $_{\rm OOOOOO}$

Outlook 000000

Outline

3 A Combinatorial Story where this fails

Outlook

An introduction to alternating sign matrices

A naive perspection on enumerative Combinatorics

A combinatorial structure (Species) F is an association from finite sets to finite sets, associating to every set X the set of combinatorial objects on X

 $X \mapsto F(X) = \{ \text{combinatorial objects on } X \}.$

This association should be "independent of the nature" of the elements in X, i.e., for every bijection $\varphi : X \to Y$ there exists and bijection $F(\varphi)$

$$F(\varphi):F(X)\to F(Y).$$

"Nice" bijections

A Combinatorial Story where this fails 000000

Outlook 000000

Examples

Denote by $\mathcal S$ the combinatorial structure of Permutations, i.e.,

 $S(X) = \{\pi | \pi \text{ is a bijection from } X \text{ to } X\}.$

Example $\mathcal{S}(\{1,2\}) = \{ \begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 2 \end{pmatrix}, \begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \end{pmatrix} \}.$

"Nice" bijections

A Combinatorial Story where this fails 000000

Outlook 000000

Examples

Denote by \mathcal{S} the combinatorial structure of Permutations, i.e.,

 $S(X) = \{\pi | \pi \text{ is a bijection from } X \text{ to } X\}.$

"Nice" bijections

A Combinatorial Story where this fails $_{\rm OOOOOO}$

Outlook 000000

Examples

Denote by \mathcal{S} the combinatorial structure of Permutations, i.e.,

 $S(X) = \{\pi | \pi \text{ is a bijection from } X \text{ to } X\}.$

Denote by L the combinatorial structure of liner orders, i.e.,

 $L(X) = \{ \text{ linear orders on } X \}.$

Example

$$L(\{1,2\}) = \{12,21\}, \qquad L(\{\bigstar,\bullet\}) = \{\bigstar\bullet,\bullet\bigstar\}$$

An introduction to alternating sign matrices

"Nice" bijections

How many are there?

Given a combinatorial structure F, one of the most fundamental question is what is the size of F(X)?

"Nice" bijections

How many are there?

Given a combinatorial structure F, one of the most fundamental question is what is the size of F(X)?

Example (I)

The number of permutations on X is $|\mathcal{S}(X)| = |X|!$.

How many are there?

Given a combinatorial structure F, one of the most fundamental question is what is the size of F(X)?

Example (I)

The number of permutations on X is |S(X)| = |X|!.

Example (II)

The number of linear order on X is |L(X)| = |X|!.

"Nice" bijections

Combinatorial structures with the same number

Let F, G be two combinatorial structures such that

|F(X)| = |G(X)|.

for all finite sets X. Hence there exists for all finite sets X a bijection

 $\varphi_X: F(X) \to G(X).$

"Nice" bijections

Combinatorial structures with the same number

Let F, G be two combinatorial structures such that

|F(X)| = |G(X)|.

for all finite sets X. Hence there exists for all finite sets X a bijection

$$\varphi_X: F(X) \to G(X).$$

Combinatorialists are interested in "nice" bijections.

What are "nice" bijections?

An introduction to alternating sign matrices

Natural isomorphism

A natural Isomorphism between two combinatorial structures F, G is a family of bijections $\eta_X : F(X) \to G(X)$ for all finite sets X such that the following diagram commutes for all finite sets X, Y of same cardinality and all bijections $\varphi : X \to Y$,

i.e., $\eta_Y \circ F(\varphi) = G(\varphi) \circ \eta_X$.

"Nice" bijections

An example with natural isomorphism

Denote by S the species of subsets. For φ : X → Y the associated map S(φ) is given by

$$S(\varphi)(A) = \varphi(A) := \{\varphi(a) | a \in A\}.$$

"Nice" bijections ○●○ Outlook 000000

An example with natural isomorphism

Denote by S the species of subsets. For φ : X → Y the associated map S(φ) is given by

$$S(\varphi)(A) = \varphi(A) := \{\varphi(a) | a \in A\}.$$

 Denote by P the species of ordered set partitions into two blocks. For φ : X → Y the associated map P(φ) is given by

$$P(\varphi)((A,B)) = (\varphi(A), \varphi(B)).$$

"Nice" bijections ○●○ Outlook 000000

An example with natural isomorphism

Denote by S the species of subsets. For φ : X → Y the associated map S(φ) is given by

$$S(\varphi)(A) = \varphi(A) := \{\varphi(a) | a \in A\}.$$

 Denote by P the species of ordered set partitions into two blocks. For φ : X → Y the associated map P(φ) is given by

$$P(\varphi)((A,B)) = (\varphi(A), \varphi(B)).$$

Then the following is natural isomorphism between S and P

$$\eta_X : S(X) \to P(X)$$

 $A \mapsto (A, X \setminus A)$

An example without natural isomorphism

The species \mathcal{S} of permutations and L of linear order are not natural isomorphic.

• Let $X = \{1,2\}$ and $\varphi: X \to X$ with $\varphi(1) = 2$ and $\varphi(2) = 1$.

An example without natural isomorphism

The species S of permutations and L of linear order are not natural isomorphic.

• Let $X = \{1, 2\}$ and $\varphi : X \to X$ with $\varphi(1) = 2$ and $\varphi(2) = 1$.

۲

$$\mathcal{S}(\varphi)\left(\begin{pmatrix}1 \mapsto 1\\ 2 \mapsto 2\end{pmatrix}\right) = \begin{pmatrix}2 \mapsto 2\\ 1 \mapsto 1\end{pmatrix}, \quad \mathcal{S}(\varphi)\left(\begin{pmatrix}1 \mapsto 2\\ 2 \mapsto 1\end{pmatrix}\right) = \begin{pmatrix}2 \mapsto 1\\ 1 \mapsto 2\end{pmatrix}$$

An example without natural isomorphism

The species S of permutations and L of linear order are not natural isomorphic.

• Let $X = \{1, 2\}$ and $\varphi : X \to X$ with $\varphi(1) = 2$ and $\varphi(2) = 1$.

۲

$$\mathcal{S}(\varphi)\left(\begin{pmatrix}1\mapsto1\\2\mapsto2\end{pmatrix}\right) = \begin{pmatrix}2\mapsto2\\1\mapsto1\end{pmatrix}, \quad \mathcal{S}(\varphi)\left(\begin{pmatrix}1\mapsto2\\2\mapsto1\end{pmatrix}\right) = \begin{pmatrix}2\mapsto1\\1\mapsto2\end{pmatrix}$$

۲

$$L(\varphi)(12) = 21, \qquad L(\varphi)(21) = 12.$$

An introduction to alternating sign matrices

"Nice" bijections

A Combinatorial Story where this fails ${\scriptstyle \bullet \circ \circ \circ \circ \circ}$

Outlook 000000

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

ASMs '82 0 1 0 0 0 0 1 0 1-10 1 0 1 0 0

"Nice" bijections

A Combinatorial Story where this fails ${\scriptstyle \bullet \circ \circ \circ \circ \circ}$

Outlook 000000

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

ASMs '82

 $\begin{array}{c} 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 1 \ -1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \end{array}$

DPPs '79 4 4 3 3 1

A Combinatorial Story where this fails 00000

3 1

Outlook

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

"Nice" bijections

A Combinatorial Story where this fails ${\scriptstyle \bullet \circ \circ \circ \circ \circ}$

Outlook 000000

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

"Nice" bijections

Descending plane partitions

Definition (Andrews '79)

A descending plane partition (DPP) of size n is an array of successively indented rows filled with positive integers less than or equal n such that

- the entries are weakly decreasing along rows and strictly decreasing along columns,
- the first entry in each row is larger than the length of its row and does not exceed the number of entries in the preceding row.

The DPPs of size 3 are

$$\emptyset$$
 2 3 3 1 3 2 3 3 3 3 2

"Nice" bijections

Alternating sign matrices

Definition (Mills-Robbins-Rumsey '82)

An alternating sign matrix (ASM) of size n is an $n \times n$ matrix with entries 1, 0, -1, such that

- all row- and column-sums are equal 1,
- in each row and column the non-zero entries alternate.

The ASMs of size 3 are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

An introduction to alternating sign matrices

"Nice" bijections

TSSCPPs

Definition (Mills-Robbins-Rumsey '86)

A Totally symmetric self complementary plane partitions (TSSCPP) of size *n* is a filling of an $2n \times 2n \times 2n$ box with unit cubes which is invariant under change of axis and coincides with its "empty filling".

The TSSCPPs of size 3 are

"Nice" bijections

Alternating sign triangles

Definition (Ayyer-Behrend-Fischer '16)

An alternating sign triangle (AST) of size n is a configuration of n centred rows where the *i*-th row, counted from the bottom, has 2i - 1 elements, with entries -1, 0 or 1 such that

- all row-sums are equal 1,
- in each row and column the non-zero entries alternate,
- the first non-zero entry from top is positive.

The ASTs of size 3 are 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 $0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0$ 0 $0 \ 0 \ 1$ 0 1 0 0 1 1 $^{-1}$ 1

"Nice" bijections

A Combinatorial Story where this fails 00000 \bullet

Outlook 000000

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

"Nice" bijections

A Combinatorial Story where this fails $_{\rm OOOOOO}$

Outlook •00000

What now?

Is this a combinatorialists end of the world?

An introduction to alternating sign matrices

"Nice" bijections

A Combinatorial Story where this fails $_{\rm OOOOOO}$

Outlook •00000

What now?

Is this a combinatorialists *end of the world*? NO!

An introduction to alternating sign matrices

"Nice" bijections

A Combinatorial Story where this fails $_{\rm OOOOOO}$

Outlook •00000

Is this a combinatorialists *end of the world*? NO!

• Maybe there are no "nice" bijections.

An introduction to alternating sign matrices

"Nice" bijections

What now?

Is this a combinatorialists *end of the world*? NO!

- Maybe there are no "nice" bijections.
- Generalisations, refinements and symmetry classes can give more insight.

What now?

Is this a combinatorialists *end of the world*? NO!

- Maybe there are no "nice" bijections.
- Generalisations, refinements and symmetry classes can give more insight.
- A change of perspective could also help, e.g., we can interpret ASMs and TSSCPPs as order ideals in Posets.

- ASMs and TSSCPPs have been generalised to
 - Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.

- ASMs and TSSCPPs have been generalised to
 - Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
 - Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.

- ASMs and TSSCPPs have been generalised to
 - Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
 - Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.
 - Gog- and Magog-pentagons (three extra parameter): equinumerousity conjectured by Biane-Cheballah '16.

• ASMs and TSSCPPs have been generalised to

- Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
- Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.
- Gog- and Magog-pentagons (three extra parameter): equinumerousity conjectured by Biane-Cheballah '16.
- DPPs and ASTs have been generalised to
 - *d*-DPPs (one extra parameter) have been introduced by Andrews '79.

- ASMs and TSSCPPs have been generalised to
 - Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
 - Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.
 - Gog- and Magog-pentagons (three extra parameter): equinumerousity conjectured by Biane-Cheballah '16.
- DPPs and ASTs have been generalised to
 - *d*-DPPs (one extra parameter) have been introduced by Andrews '79.
 - AS-trapezoids (one extra parameter) have been announced by Ayyer-Behrend-Fischer '16 and introduced by Aigner '17; equinumerousity was proven by Fischer '18.

Outlook 000000

A refinement of ASMs

Let A be an ASM of size n. We denote by

- $\nu(A) = \sum_{\substack{1 \le i < i' \le n \\ 1 \le j' < j \le n}} A_{ij} A_{i'j'}$ the inversion number of A,
- $\mu(A)$ the number of -1's in A,
- ρ₁(A) the number of 0's to the left of the topmost 1,
- $\rho_2(A)$ the number of 0's to the right of the bottommost 1.

Outlook 000000

A refinement of DPPs

Let D be a DPP of size n. We denote by

- $\nu(D)$ the number of parts D_{ij} with $D_{ij} > j i$,
- $\mu(D)$ the number of parts D_{ij} with $D_{ij} \leq j i$,
- $\rho_1(D)$ the number of *n*'s in *D*,
- $\rho_2(D)$ the number of (n-1)'s in D plus the number of rows of D with length n-1.

A refinement of ASMs and DPPs

- Write ASM_n(a, b, c, d) for the number of ASMs A of size n with ν(A) = a, μ(A) = b, ρ₁(A) = c, ρ₂(A) = d.
- Write DPP_n(a, b, c, d) for the number of DPPs D of size n with ν(D) = a, μ(D) = b, ρ₁(D) = c, ρ₂(D) = d.

Theorem (Behrend-Di Francesco- Zinn-Justin, '13)

 $\mathsf{ASM}_n(a, b, c, d) = \mathsf{DPP}_n(a, b, c, d).$

"Nice" bijections

A Combinatorial Story where this fails $_{\rm OOOOOO}$

Outlook 000000

