An introduction to alternating sign matrices A combinatorial story of missing bijections

Florian Aigner

PhD Colloquium
14.11.2018

VIENNA
DOCTORAL
SCHOOL

MATHEMATICS

Outline

(1) Introduction
(2) "Nice" bijections
(3) A Combinatorial Story where this fails
(4) Outlook

A naive perspection on enumerative Combinatorics

A combinatorial structure (Species) F is an association from finite sets to finite sets, associating to every set X the set of combinatorial objects on X

$$
X \mapsto F(X)=\{\text { combinatorial objects on } X\} .
$$

This association should be "independent of the nature" of the elements in X, i.e., for every bijection $\varphi: X \rightarrow Y$ there exists and bijection $F(\varphi)$

$$
F(\varphi): F(X) \rightarrow F(Y)
$$

Examples

Denote by \mathcal{S} the combinatorial structure of Permutations, i.e.,

$$
\mathcal{S}(X)=\{\pi \mid \pi \text { is a bijection from } X \text { to } X\}
$$

Example

$$
\mathcal{S}(\{1,2\})=\left\{\binom{1 \mapsto 1}{2 \mapsto 2},\binom{1 \mapsto 2}{2 \mapsto 1}\right\}
$$

Examples

Denote by \mathcal{S} the combinatorial structure of Permutations, i.e.,

$$
\mathcal{S}(X)=\{\pi \mid \pi \text { is a bijection from } X \text { to } X\}
$$

Example

$$
\mathcal{S}(\{\star, \bullet\})=\left\{\left(\begin{array}{c}
\star \\
\bullet \star \\
\bullet \mapsto
\end{array}\right),\left(\begin{array}{c}
\star \\
\bullet \bullet \\
\bullet
\end{array}\right)\right\} .
$$

Examples

Denote by \mathcal{S} the combinatorial structure of Permutations, i.e.,

$$
\mathcal{S}(X)=\{\pi \mid \pi \text { is a bijection from } X \text { to } X\}
$$

Example

$$
\mathcal{S}(\{\star, \bullet\})=\left\{\left(\begin{array}{c}
\star \\
\bullet \\
\bullet \bullet
\end{array}\right),\left(\begin{array}{c}
\star \\
\bullet \bullet \bullet \\
\bullet
\end{array}\right)\right\} .
$$

Denote by L the combinatorial structure of liner orders, i.e.,

$$
L(X)=\{\text { linear orders on } X\} .
$$

Example

$$
L(\{1,2\})=\{12,21\}, \quad L(\{\star, \bullet\})=\{\star \bullet, \bullet \star\} .
$$

How many are there?

Given a combinatorial structure F, one of the most fundamental question is what is the size of $F(X)$?

How many are there?

Given a combinatorial structure F, one of the most fundamental question is what is the size of $F(X)$?

Example (1)

The number of permutations on X is $|\mathcal{S}(X)|=|X|$!.

How many are there?

Given a combinatorial structure F, one of the most fundamental question is what is the size of $F(X)$?

Example (1)

The number of permutations on X is $|\mathcal{S}(X)|=|X|$!.

Example (II)
The number of linear order on X is $|L(X)|=|X|$!.

Combinatorial structures with the same number

Let F, G be two combinatorial structures such that

$$
|F(X)|=|G(X)| .
$$

for all finite sets X. Hence there exists for all finite sets X a bijection

$$
\varphi_{X}: F(X) \rightarrow G(X) .
$$

Combinatorial structures with the same number

Let F, G be two combinatorial structures such that

$$
|F(X)|=|G(X)| .
$$

for all finite sets X. Hence there exists for all finite sets X a bijection

$$
\varphi_{X}: F(X) \rightarrow G(X) .
$$

Combinatorialists are interested in "nice" bijections.

> What are "nice" bijections?

Natural isomorphism

A natural Isomorphism between two combinatorial structures F, G is a family of bijections $\eta_{X}: F(X) \rightarrow G(X)$ for all finite sets X such that the following diagram commutes for all finite sets X, Y of same cardinality and all bijections $\varphi: X \rightarrow Y$,

$$
\begin{array}{cc}
F(X) \xrightarrow{\eta_{X}} G(X) \\
F(\varphi) \downarrow & \\
F(Y) \xrightarrow{\eta_{\succ}} G(Y)
\end{array}
$$

i.e., $\eta_{Y} \circ F(\varphi)=G(\varphi) \circ \eta_{X}$.

An example with natural isomorphism

- Denote by S the species of subsets. For $\varphi: X \rightarrow Y$ the associated map $S(\varphi)$ is given by

$$
S(\varphi)(A)=\varphi(A):=\{\varphi(a) \mid a \in A\} .
$$

An example with natural isomorphism

- Denote by S the species of subsets. For $\varphi: X \rightarrow Y$ the associated map $S(\varphi)$ is given by

$$
S(\varphi)(A)=\varphi(A):=\{\varphi(a) \mid a \in A\} .
$$

- Denote by P the species of ordered set partitions into two blocks. For $\varphi: X \rightarrow Y$ the associated map $P(\varphi)$ is given by

$$
P(\varphi)((A, B))=(\varphi(A), \varphi(B))
$$

An example with natural isomorphism

- Denote by S the species of subsets. For $\varphi: X \rightarrow Y$ the associated map $S(\varphi)$ is given by

$$
S(\varphi)(A)=\varphi(A):=\{\varphi(a) \mid a \in A\} .
$$

- Denote by P the species of ordered set partitions into two blocks. For $\varphi: X \rightarrow Y$ the associated map $P(\varphi)$ is given by

$$
P(\varphi)((A, B))=(\varphi(A), \varphi(B))
$$

Then the following is natural isomorphism between S and P

$$
\begin{aligned}
\eta_{X}: S(X) & \rightarrow P(X) \\
A & \mapsto(A, X \backslash A) .
\end{aligned}
$$

An example without natural isomorphism

The species \mathcal{S} of permutations and L of linear order are not natural isomorphic.

- Let $X=\{1,2\}$ and $\varphi: X \rightarrow X$ with $\varphi(1)=2$ and $\varphi(2)=1$.

An example without natural isomorphism

The species \mathcal{S} of permutations and L of linear order are not natural isomorphic.

- Let $X=\{1,2\}$ and $\varphi: X \rightarrow X$ with $\varphi(1)=2$ and $\varphi(2)=1$.
-

$$
\mathcal{S}(\varphi)\left(\binom{1 \mapsto 1}{2 \mapsto 2}\right)=\binom{2 \mapsto 2}{1 \mapsto 1}, \quad \mathcal{S}(\varphi)\left(\binom{1 \mapsto 2}{2 \mapsto 1}\right)=\binom{2 \mapsto 1}{1 \mapsto 2} .
$$

An example without natural isomorphism

The species \mathcal{S} of permutations and L of linear order are not natural isomorphic.

- Let $X=\{1,2\}$ and $\varphi: X \rightarrow X$ with $\varphi(1)=2$ and $\varphi(2)=1$.
-

$$
\mathcal{S}(\varphi)\left(\binom{1 \mapsto 1}{2 \mapsto 2}\right)=\binom{2 \mapsto 2}{1 \mapsto 1}, \quad \mathcal{S}(\varphi)\left(\binom{1 \mapsto 2}{2 \mapsto 1}\right)=\binom{2 \mapsto 1}{1 \mapsto 2} .
$$

-

$$
L(\varphi)(12)=21, \quad L(\varphi)(21)=12
$$

Theorem (Andrews '79,'94, Zeilberger '96,
 Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

ASMs '82
0100
0010
1-10 1
0100

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} .
$$

ASMs '82
0100
0010
DPPs '79 1-10 1
0100

Theorem (Andrews '79,'94, Zeilberger '96,
 Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} .
$$

ASMs '82

0010
DPPs '79

1-10 1
0100

$$
443
$$

31

TSSCPPs '86

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} .
$$

ASMs '82

DPPs '79

$$
443
$$

TSSCPPs '86

ASTs '16
0001000
10-110
100
1

Descending plane partitions

Definition (Andrews '79)

A descending plane partition (DPP) of size n is an array of successively indented rows filled with positive integers less than or equal n such that

- the entries are weakly decreasing along rows and strictly decreasing along columns,
- the first entry in each row is larger than the length of its row and does not exceed the number of entries in the preceding row.

The DPPs of size 3 are
\emptyset
2
3
31
32
33
33
2

Alternating sign matrices

Definition (Mills-Robbins-Rumsey '82)

An alternating sign matrix (ASM) of size n is an $n \times n$ matrix with entries $1,0,-1$, such that

- all row- and column-sums are equal 1 ,
- in each row and column the non-zero entries alternate.

The ASMs of size 3 are

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

TSSCPPs

Definition (Mills-Robbins-Rumsey '86)

A Totally symmetric self complementary plane partitions
(TSSCPP) of size n is a filling of an $2 n \times 2 n \times 2 n$ box with unit cubes which is invariant under change of axis and coincides with its "empty filling".

The TSSCPPs of size 3 are

Alternating sign triangles

Definition (Ayyer-Behrend-Fischer '16)

An alternating sign triangle (AST) of size n is a configuration of n centred rows where the i-th row, counted from the bottom, has $2 i-1$ elements, with entries $-1,0$ or 1 such that

- all row-sums are equal 1 ,
- in each row and column the non-zero entries alternate,
- the first non-zero entry from top is positive.

The ASTs of size 3 are

Theorem (Andrews '79,'94, Zeilberger '96, Ayyer-Behrend-Fischer '16)

The following combinatorial objects are enumerated by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} .
$$

ASMs '82

DPPs '79

$$
443
$$

31

TSSCPPs '86

ASTs '16
0001000
10-110
100
1

What now?

Is this a combinatorialists end of the world?

What now?

Is this a combinatorialists end of the world? NO!

What now?

Is this a combinatorialists end of the world? NO!

- Maybe there are no "nice" bijections.

What now?

Is this a combinatorialists end of the world? NO!

- Maybe there are no "nice" bijections.
- Generalisations, refinements and symmetry classes can give more insight.

What now?

Is this a combinatorialists end of the world? NO!

- Maybe there are no "nice" bijections.
- Generalisations, refinements and symmetry classes can give more insight.
- A change of perspective could also help, e.g., we can interpret ASMs and TSSCPPs as order ideals in Posets.

Generalisations

- ASMs and TSSCPPs have been generalised to
- Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.

Generalisations

- ASMs and TSSCPPs have been generalised to
- Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
- Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.

Generalisations

- ASMs and TSSCPPs have been generalised to
- Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
- Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.
- Gog- and Magog-pentagons (three extra parameter): equinumerousity conjectured by Biane-Cheballah '16.

Generalisations

- ASMs and TSSCPPs have been generalised to
- Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
- Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.
- Gog- and Magog-pentagons (three extra parameter): equinumerousity conjectured by Biane-Cheballah '16.
- DPPs and ASTs have been generalised to
- d-DPPs (one extra parameter) have been introduced by Andrews '79.

Generalisations

- ASMs and TSSCPPs have been generalised to
- Gog- and Magog-trapezoids (one extra parameter): equinumerousity proven by Zeilberger '96.
- Gog- and Magog-trapezoids (two extra parameters): equinumerousity conjectured by Krattenthaler '96.
- Gog- and Magog-pentagons (three extra parameter): equinumerousity conjectured by Biane-Cheballah '16.
- DPPs and ASTs have been generalised to
- d-DPPs (one extra parameter) have been introduced by Andrews '79.
- AS-trapezoids (one extra parameter) have been announced by Ayyer-Behrend-Fischer '16 and introduced by Aigner '17; equinumerousity was proven by Fischer '18.

A refinement of ASMs

Let A be an ASM of size n. We denote by

- $\nu(A)=\sum_{1 \leq i<i^{\prime} \leq n} A_{i j} A_{i^{\prime} j^{\prime}}$ the inversion number of A, $1 \leq j^{\prime}<j \leq n$
- $\mu(A)$ the number of -1 's in A,
- $\rho_{1}(A)$ the number of 0 's to the left of the topmost 1 ,
- $\rho_{2}(A)$ the number of 0 's to the right of the bottommost 1 .

0	1	0	0	0	0	$\nu=9$
0	0	0	0	1	0	$\mu=2$
0	0	1	0	-1	1	
1	0	-1	0	1	0	$\rho_{1}=1$
0	0	0	1	0	0	$\rho_{2}=3$
0	0	1	0	0	0	

A refinement of DPPs

Let D be a DPP of size n. We denote by

- $\nu(D)$ the number of parts $D_{i j}$ with $D_{i j}>j-i$,
- $\mu(D)$ the number of parts $D_{i j}$ with $D_{i j} \leq j-i$,
- $\rho_{1}(D)$ the number of n 's in D,
- $\rho_{2}(D)$ the number of $(n-1)$'s in D plus the number of rows of D with length $n-1$.

6	6	6	5	1	
		$\nu=7$			
5	4	2			
	3	1		$\rho_{1}=3$	
			$\rho_{2}=3$		

A refinement of ASMs and DPPs

- Write $\operatorname{ASM}_{n}(a, b, c, d)$ for the number of ASMs A of size n with $\nu(A)=a, \mu(A)=b, \rho_{1}(A)=c, \rho_{2}(A)=d$.
- Write $\operatorname{DPP}_{n}(a, b, c, d)$ for the number of DPPs D of size n with $\nu(D)=a, \mu(D)=b, \rho_{1}(D)=c, \rho_{2}(D)=d$.

Theorem (Behrend-Di Francesco- Zinn-Justin, '13)

$$
\operatorname{ASM}_{n}(a, b, c, d)=\operatorname{DPP}_{n}(a, b, c, d)
$$

