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Alternating sign matrices

An alternating sign matrix (or short ASM) of size niis an n x n
matrix with entries 1,0, —1, such that

@ all row- and column-sums are equal 1,
@ in each row and column the non-zero entries alternate.
The ASMs of size 3 are

100 1 0 0\ /0
010],{00 1],[1
001 010/ \o

O O =
= O O

010\ /001 /00 1\ /0 1 0
00 1],{100),{010],[1 -1 1
100 \o10/ \100 \o 1 o0
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Counting ASMs

We denote by A,(Q) the number of ASMs of size n, where each
ASM has weight Qnumber of entries equal to =1 " Thjs s called the
Q-enumeration of ASMs.

n |1 23 4 5 6
A,(0)[1 2 6 24 120 720
An(1) |1 2 7 42 429 7436
An(2) |1 2 8 64 1024 32768
Ax(3)|1 2 9 90 2025 102060
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Counting ASMs

We denote by A,(Q) the number of ASMs of size n, where each
ASM has weight Qnumber of entries equal to =1 " Thjs s called the
Q-enumeration of ASMs.

n |1 23 4 5 6

Ap(0) |1 2 6 24 120 720 # of permutations
An(1)|1 2 7 42 429 7436

Ar(2)|1 2 8 64 1024 32768

Ap(3) |1 2 9 90 2025 102060
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Counting ASMs

We denote by A,(Q) the number of ASMs of size n, where each
ASM has weight Qnumber of entries equal to =1 " Thjs s called the
Q-enumeration of ASMs.

n |1 23 4 5 6

Ap(0) |1 2 6 24 120 720 # of permutations
An(1)|1 2 7 42 429 7436 # ASMs
Ar(2)|1 2 8 64 1024 32768

Ap(3) |1 2 9 90 2025 102060
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Counting ASMs

We denote by A,(Q) the number of ASMs of size n, where each
ASM has weight Qnumber of entries equal to —1 " Thjs s called the
®-enumeration of ASMs.

n |1 23 4 5 6
A,(0)|1 2 6 24 120 720 # of permutations
An(1)|1 2 7 42 429 7436 # ASMs
An(2) |1 2 8 64 1024 32768 +# perfect matchings of
An(3) |1 2 9 90 2025 102060 Atzec diamonds
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The ASM Conjecture

Conjecture (Mills-Robbins-Rumsey, 1982)

The number of ASMs of size n is given by
n—1 o
H (3i +1)!
(n+ i)~

i=0
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The ASM Conjecture

Conjecture (Mills-Robbins-Rumsey, 1982)

The number of ASMs of size n is given by

"ﬁ (3i +1)!

s (nt i) '

Descending Plane Partitions

6 6 5 3 1
5 3
2
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The ASM Conjecture

Conjecture (Mills-Robbins-Rumsey, 1982)

The number of ASMs of size n is given by

"ﬁl (3i +1)!

s (nt i) '

Descending Plane Partitions Totally Symmetric Self

Complementary Plane Partitions

6 6 5 3 1
5 3
2
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Proofs of the ASM Conjecture

@ 1996: D. Zeilberger. “Proof of the Alternating Sign Matrix
Conjecture” .

@ 1996: G. Kuperberg. “Another proof of the alternating sign
matrix conjecture” .

@ 2007: I. Fischer. “A new proof of the refined alternating sign
matrix theorem” .

@ 2016: I. Fischer. “Short proof of the ASM theorem avoiding
the six-vertex model" .
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Proofs of the ASM Conjecture

@ 1996: D. Zeilberger. “Proof of the Alternating Sign Matrix
Conjecture” .

@ 1996: G. Kuperberg. "Another proof of the alternating sign
matrix conjecture” .

@ 2007: I. Fischer. “A new proof of the refined alternating sign
matrix theorem” .

@ 2016: I. Fischer. “Short proof of the ASM theorem avoiding
the six-vertex model" .

“However, the greatest, still unsolved, mystery concerns the
question what plane partitions have to do with alternating sign
matrices.” — Krattenthaler.
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The many faces of ASMs
square ice
H=Q H=O=H Q=H Q=H Q-H monotone triangle
H H H H H
H=Q H= H=0-H Q=H Q=H 2
H H H H H
H=0=H &-H (I? H=0-H Q-H 2 3
oy onogoH 12 4
H=0 H=O H=O=H O H=O=H
H H H E H 1 235
H=0 H=0 H-0 H-0-H &-H 1 2 3 4 5
0 1.0 0 O
0 01 0O
1 0-110
00 1-11
0 001 O
six-vertex configuration ASM EPL
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Monotone triangles

A monotone triangle with n rows is a triangular array (a;j)i<j<i<n
of integers of the following form

an,1
an—1,1 an—1,2

Ny

N\
aii ai2 T al,n

whose entries are weakly increasing along north-east a;;1; < a;;
and south-east diagonals a;; < aj1 j4+1 and strictly increasing
along rows a; j < aj jt1.
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A bijection between ASMs and monotone triangles

o O R O O
o O O O =
\

—

o Rk o o O
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A bijection between ASMs and monotone triangles

01 0 0 O 0
0 01 0O
1 0-110
00 1-11
0 00 1O

@ We replace every entry by the partial column-sum of its
column from top to bottom.
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A bijection between ASMs and monotone triangles

01 0 0 O
0 01 0 O 0
1 0-110
00 1-11
0 00 1O

@ We replace every entry by the partial column-sum of its
column from top to bottom.
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A bijection between ASMs and monotone triangles

01 0 0 O 0
0 01 0 O
1 0-11 0 1
00 1-11
0 00 1O

@ We replace every entry by the partial column-sum of its
column from top to bottom.
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A bijection between ASMs and monotone triangles

01 0 0 O 0
0 01 0 O 0
1 0-11 0 1
0 0 1-11 1
0 00 1O

@ We replace every entry by the partial column-sum of its
column from top to bottom.
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A bijection between ASMs and monotone triangles

O O = O O
o O O O =
\

—

O = O O O
—_ o= Rk O O

@ We replace every entry by the partial column-sum of its
column from top to bottom.
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A bijection between ASMs and monotone triangles

01 0 0O 01 0 0O
0 01 0O 01 100
1 0-110 1 1 0 1 0
00 1-11 1 11 01
0 00 1O 111 11

@ We replace every entry by the partial column-sum of its
column from top to bottom.

A new determinant for the Q-enumeration of ASMs Florian Aigner



An overview on alternating sign matrices A Q-enumeration formula From integers to polynomials Outlook
00000 000000 000000000000 0000

A bijection between ASMs and monotone triangles

0100 0 0100 0

0010 0 011 0 0 2

1 0-11 0 11010 23
1 2 4

00 1 -11 1110 1 123 5

0001 0 1111 1 1 2 3 4 5

@ We replace every entry by the partial column-sum of its
column from top to bottom.

@ We form an triangular array by writing in the i-th row the
labels of the columns with entry 1 in the /-th row.
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An operator formula

We define the forward difference A  as the operator

A f(x) = f(x+ 1) — f(x).

Theorem (Fischer, 2010)

The Q-enumeration of ASMs of size n is given by

II Qd+@-1)a,+A,+A,48,) []

1<i<j<n 1<i<j<n

A new determinant for the Q-enumeration of ASMs Florian Aigner
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The operator formula for n = 2.

Remember: A ,f(x) = f(x+ 1) — f(x).

(Qld + (Q - ].)le +ZX2 +ZX1ZX2)(X2 - Xl)‘

x1=1,x0=2

A new determinant for the Q-enumeration of ASMs Florian Aigner
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The operator formula for n = 2.

Remember: A ,f(x) = f(x+ 1) — f(x).
(Qld + (Q - 1)Z X1 +ZX2 +ZX1Z Xz)(X2 - Xl)‘

x1=1,x0=2

= (Qbe =x1) +(Q=1)(=1) +1+0)[,_1 o0 =2
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A new determinant for the )-enumeration

Theorem (A. 2018)

The (g~ + 2 + q)-enumeration of ASMs is given by

An(gt+24q) = det ((i+j_2>Lc’)Hj_i) .

1<ij<n j—1 1+4+q

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Sketch of the proof

Set Q=g *+2+q.
@ Start with the operator formula.
— XJ — Xj

[I @d+@-12,+2,5+8,48,) [[ ==

1<i<j<n 1<i<j<n )
Xj=1

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Sketch of the proof

Set Q=g *+2+q.
@ Start with the operator formula.
@ Rewrite it to a constant term formula.

ASs...x, (H?:l(l + )’ [Ticicj<n(Q+(Q = 1)x + x + Xin))

H1gi<jgn(xj - X;)

CTXla"wxn

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Sketch of the proof

Set Q=g *+2+q.
@ Start with the operator formula.
@ Rewrite it to a constant term formula.
© Use a general Lemma (Fonseca, Zinn-Justin, '08; Fischer, '18)
which transforms the antisymmetriser into a determinant.

n(n+1)

CTa [ (1) 7 q"(g—q ")

n(n+3)

H(l + )" (% + 14 q)7?
i=1

1
X lim det

YiyesYn—11<i,j<n . Xitltq! S, § ) b
Yj xi+1+q Y xi+1+q

X H (x5 —xi) "My —yi) 7

1<i<j<n

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Sketch of the proof

Set Q=g *+2+q.
@ Start with the operator formula.
© Rewrite it to a constant term formula.
© Use a general Lemma (Fonseca, Zinn-Justin, '08; Fischer, '18)
which transforms the antisymmetriser into a determinant.
@ Use algebraic manipulations and a trick (Behrend, Di
Franceso,Zinn-Justin, 2012) to obtain the wanted formula.

SR ()i
det ((I —’.—J 2) il ) ) )
1<ij<n j—1 1+g

A new determinant for the Q-enumeration of ASMs Florian Aigner
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A more general determinant

Instead of the previous determinant we consider

e = g (177) G,

1<ij<n j—1 l+q
with kK € Z and x is a variable.

The weighted enumeration of ASMs is d, 1(0, q).

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Desnanot-Jacobi / Condensation method

Theorem (Desnanot-Jacobi, Condensation method)

Let n be a positive integer and A an n X n matrix, then holds
det Adet A} = det Al det A7 — det A} det A,
where A is an n X n matrix and A L Ji denotes the submatrix of A

in which the i1, - - , ix-th rows andj;l7 -, Jk-th columns are
omitted.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Desnanot-Jacobi applied

gt ((<Hitim 1= (9t !
1gi,ej§n j—1 1+g¢g 1
X —q° (x 3 x —q* (x 5 ix
G e Ly BLery) Led
2 1- 1 1-
0 (7)) 750 FE03) FED)
<(7) 0 (3 BT HE)
= 7(772 X p
e 3 I Tiew T B U= 4
S0 E ) R 0%0) 0 (3°)
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Desnanot-Jacobi applied

det <<x+i+j - 2) 1- (q)1+f")1
1<ij<n j—1 14g¢ 1
P B0 li" SYREAOY
0 (3 EECP) FL0D)
e o ey s
T () 5039 0 (3%
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Desnanot-Jacobi applied

1

P ()it
det ((XTItHi—2\1=(=9)
1<ij<n j-1 1+g¢ 1

_ (x+2)(x+3)(x+4)(x+5)...(x+n)
2.3.4-...-(n—1)

>

() RSCT) NS RS0
0 () R0 RL08
| A 0 () R
e {0 B N G
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Desnanot-Jacobi applied

X4it+j—2\1— (=g \"
det : —
1<ij<n j—1 1+g¢g 1

(XY e x+i+j\1-(-q)'"’
\n—1)1<ij<n1 j—1 1+g '
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What do we obtain for general g?

The determinant d, x(x, g) has the form
dn,k(X7 CI) = ch(n’k)pn,k(x)fn,k(xa Q),

with

(x + |k| +2i + 1),

i=1 i=0
0 k>0,n<k,
cq(n,k){nk k <0,n< —k,
~ S F 5] otherwise,

and f, «(x, q) being a polynomial in x and g which is given

recursively.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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A factorisation theorem for general g

Theorem (Kuperberg 1996, A. 2018)

Denote by A,(Q) the Q-enumeration of ASMs of size n. Then
there exists polynomials r,(Q) such that

A2:(Q) = 2r2p(Q) r2n41(Q),
A2711(Q) = r2n1(Q)r2n42( Q).

This was conjectured by Mills-Robbins-Rumsey for A,(Q) and by
Fischer for the evaluation of the determinant.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Various specialisations for g

0O-enumeration: g=-1 (primitive second root of unity),
l-enumeration: ¢q = —% ‘f (primitive third root of unity),
2-enumeration: qg==i (primitive fourth root of unity),
3-enumeration: g = % i (primitive sixth root of unity),
4-enumeration: g=1 (primitive first root of unity).

A new determinant for the Q-enumeration of ASMs Florian Aigner



An overview on alternating sign matrices A Q-enumeration formula From integers to polynomials Outlook
00000 000000 000000800000 0000

Various specialisations |

Theorem (A.)

The 0-enumeration case:

1
dna(x,—1) = (2| 22| — 1) T (x +20).

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Various specialisations |

Theorem (A.)

The 0-enumeration case:

1
dni(x,—1) = (2 ntrl g TG+ 20).

i=1
Corollary

There are n! permutations of size n.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Various specialisations ||
Theorem (A.)

The 1-enumeration case: let q be a primitive third root of unity.

where (a)j == a(a+1)---(a+i—1).

Corollary

This implies the enumeration formula of ASMs.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Various specialisations |l

Theorem (A.)

The 2-enumeration case: let q be a primitive fourth root of unity.
18] 4], 15]
3] (— + i) .

2 n—2i+1

i=1

Corollary (A.)

This implies the 2-enumeration formula of ASMs.

dnaks1(x,q) = ol 1:[

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Various specialisations 1V

Theorem (A.)
The 3-enumeration case: let q be a primitive sixth root of unity.

n;2J
dnsir1(x, @) = c(n) J] (x+2+3)n-1-21,
i=0

with
il Lé ! .
H,:o %~ nis even,
c(n) 1 4] )
H,n:o 2~ otherwise.
Corollary

This implies the 3-enumeration formula of ASMs.
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Various specialisations V

Theorem (A.)

The 4-enumeration case: q = 1.

2] 2]
dn,2k+1(Xv 1) = H(2i o 1)—(n+1—2i) H(X + 2i)pn(X)pn_1(X),

with
pl(X) =1, p3(X) = 2x+5, p2n(X) = p2n—1(X + 2)7

pania(6) = ((c-+ 20+ Dx-+ 20+ Dpar-a(pae-a(x-+4)-

—(x + 1)(x + 2)pon—1(x + 2)2> (2npan—3(x +4))~ L.
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Connection to another determinant

Let g be a sixth root of unity, then holds

—n X+i4+j—2
dn3—k(x,q°) = q " det << o > + qkéu) .

Theorem (Ciucu-Eisenkélbl-Krattenthaler-Zare, 2001)

The above determinant counts weighted cyclically symmetric
lozenge tilings of a hexagon with a triangular hole of size x.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Outlook | - What is x?

general x :

dn,k(Xa q)

specialising x :

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Outlook | - What is x?

general x :

dn,k(Xa q)

)
specialising x : ASMs

ASMs Alternating Sign Matrices
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An overview on alternating sign matrices A Q-enumeration formula From integers to polynomials
00000 000000 000000000000

Outlook
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Outlook | - What is x?

general x :

dok(x,q) detlﬁhjﬁn((mﬂfz)+qk5i,j)

j—1
)
specialising x : ASMs

ASMs Alternating Sign Matrices
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Outlook
€000

Outlook | - What is x?

general x :
dok(x,q) < deticij<n ((Xt'fjld) + qk5i,j)
\: \:
specialising x : ASMs DPPs

ASMs Alternating Sign Matrices
DPPs Descending Plane Partitions
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Outlook | - What is x?
general x :
. X+i+j—2 ks, .
dn,k(Xa Cl) — detlgl,jgn (( j—1 ) + q 61,1)
specialising x : ASMs DPPs ASTs

ASMs Alternating Sign Matrices
DPPs Descending Plane Partitions
ASTs Alternating Sign Triangles

A new determinant for the Q-enumeration of ASMs
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Outlook | - What is x?
general x : d-DPPs
. X+i+j—2 ks, .
dn,k(Xa Cl) And detlgl,jgn (( j—1 ) +q 61,1)
specialising x : ASMs DPPs ASTs

ASMs Alternating Sign Matrices
DPPs Descending Plane Partitions
ASTs Alternating Sign Triangles
d-DPPs  d-Descending Plane Partitions

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Outlook | - What is x?

general x : d-DPPs ASts
T /
duk(x,q) ¢ deticij<n ((Xt{'j{d) n qk5i7j> +
\: 1 N
specialising x : ASMs DPPs ASTs

ASMs Alternating Sign Matrices
DPPs Descending Plane Partitions
ASTs Alternating Sign Triangles
d-DPPs  d-Descending Plane Partitions
ASts Alternating Sign trapezoids
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Outlook | - What is x?

general x : ? d-DPPs ASts
T T e
dok(x,q) < deticij<n ((”jf’ld) + qk5i,j> )
\: | N\
specialising x : ASMs DPPs ASTs

ASMs Alternating Sign Matrices
DPPs Descending Plane Partitions
ASTs Alternating Sign Triangles
d-DPPs  d-Descending Plane Partitions
ASts Alternating Sign trapezoids
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Outlook Il - Different starting points

We started with an operator formula for ASMs weighted by their
number of —1's. However there are also further operator formulas,
e.g., for

@ ASMs with respect to their inv and inV’ statistic (this is a
refinement of the above),

@ vertically symmetric ASMs.

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Outlook Il - symmetric functions

We had in the proof sketch:

An(Q)
ASss..y (T 430 Thhicjn( @ +(Q = 1)+ + %))

H1§i<j§n(xj = X;)

= CTX1y~~~7Xn

A new determinant for the Q-enumeration of ASMs Florian Aigner
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Outlook Il - symmetric functions

We had in the proof sketch:
A(Q)

o A (0400 T @+ (Q = 1+ + %))
o [Ticicj<nlx —xi) .

By substituting x; — x; — 1 and dividing by x; ... x, we obtain

An(Q)
AS i (T () T jen(1 + (@ = 2%+ x0%)))

H1§i<j§n(xj - Xi)

x1=...=xp=1
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