Alternating sign matrices and totally symmetric plane partitions

Florian Aigner

joint work with I. Fischer

Combinatorial Coworkspace 2022

Schur polynomials

A Gelfand-Tsetlin pattern (GT) is an array of integers of the form

$$
\begin{array}{lll}
T_{n, 1} & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots & T_{n, n}
\end{array}
$$

The weight of a GT pattern T is $\mathbf{x}^{T}:=\prod_{i=1}^{n} x_{i} \sum_{j=1}^{i}\left(T_{i, j}\right)-\sum_{j=1}^{i-1}\left(T_{i-1, j}\right)$.

Schur polynomials

A Gelfand-Tsetlin pattern (GT) is an array of integers of the form

$T_{1,1}$		
$T_{2,1}$	$T_{2,2}$	$L^{T_{i, i}} \stackrel{\checkmark}{ }$
		$T_{i+1, j} \leq T_{i+1, j+1}$

$$
\begin{array}{lll}
T_{n, 1} & \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & T_{n, n}
\end{array}
$$

The weight of a GT pattern T is $\mathbf{x}^{T}:=\prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i}\left(T_{i, j}\right)-\sum_{j=1}^{i-1}\left(T_{i-1, j}\right)}$.
For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ we define the Schur polynomial s_{λ} as

$$
s_{\lambda}(\mathbf{x})=\sum_{T} \mathbf{x}^{T}
$$

where the sum is over all GTs T with bottom row $\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}$.

An Example

For $\lambda=(2,2,1)$ we have

Monotone Triangles

A monotone triangle (MT) is an array of integers of the form

Monotone triangles with bottom row $1,2, \ldots, n$ are in bijection with alternating sign matrices of size n.

Monotone Triangles

A monotone triangle (MT) is an array of integers of the form

Monotone triangles with bottom row $1,2, \ldots, n$ are in bijection with alternating sign matrices of size n.

Theorem (Zeilberger, 1996)
The number of ASMs of size n is given by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

Monotone Triangles

A monotone triangle (MT) is an array of integers of the form

Monotone triangles with bottom row $1,2, \ldots, n$ are in bijection with alternating sign matrices of size n.

Theorem (Zeilberger, 1996)
The number of ASMs of size n is given by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}=3^{-\binom{n}{2}} S_{(n-1, n-1, n-2, n-2, \ldots, 1,1)}\left(\mathbf{1}_{2 n}\right) .
$$

Motivation

How to encounter ASMs:

- Leibniz formula for λ-determinant; (deformation of Weyl's denominator formula).
- 6-vertex model with DWBC
- MacNeille completion of the Bruhat order on S_{n}.

Motivation

How to encounter ASMs:

- Leibniz formula for λ-determinant; (deformation of Weyl's denominator formula).
- 6-vertex model with DWBC
- MacNeille completion of the Bruhat order on S_{n}.

ASMs are connected to:

- Plane partitions
- $O(\tau)$-loop model via the

Razumov-Stroganov-Cantini-Sportiello Theorem

Arrowed monotone triangles

We define the signed interval

$$
\underline{[a, b]}=\left\{\begin{array}{ll}
{[a, b]} & a \leq b, \\
\emptyset & a=b+1, \\
{[b+1, a-1]} & a>b+1,
\end{array} \quad \operatorname{sgn}(\underline{[a, b]})=\left\{\begin{array}{l}
1, \\
1, \\
-1 .
\end{array}\right.\right.
$$

Arrowed monotone triangles

We define the signed interval

$$
\underline{[a, b]}=\left\{\begin{array}{ll}
{[a, b]} & a \leq b, \\
\emptyset & a=b+1, \\
{[b+1, a-1]} & a>b+1,
\end{array} \quad \operatorname{sgn}(\underline{[a, b]})=\left\{\begin{array}{l}
1, \\
1, \\
-1 .
\end{array}\right.\right.
$$

A arrowed monotone triangle is a monotone triangle $T=\left(T_{i, j}\right)$ where the entries have a decoration $d\left(T_{i, j}\right) \subseteq\{\nwarrow, \nearrow\}$, s.t.

$$
\left.T_{i, j} \in \underline{\left[T_{i+1, j}\right.} \quad, T_{i, j+1}\right]
$$

$$
T_{i+1, j} \quad{ }^{T_{i, i}} T_{i+1, j+1}
$$

Arrowed monotone triangles

We define the signed interval

$$
\underline{[a, b]}=\left\{\begin{array}{ll}
{[a, b]} & a \leq b, \\
\emptyset & a=b+1, \\
{[b+1, a-1]} & a>b+1,
\end{array} \quad \operatorname{sgn}(\underline{[a, b]})=\left\{\begin{array}{l}
1, \\
1, \\
-1 .
\end{array}\right.\right.
$$

A arrowed monotone triangle is a monotone triangle $T=\left(T_{i, j}\right)$ where the entries have a decoration $d\left(T_{i, j}\right) \subseteq\{\nwarrow, \nearrow\}$, s.t.

$$
\left.T_{i, j} \in \underline{\left[T_{i+1, j}+\left[\nearrow \in d\left(T_{i+1, j}\right)\right], T_{i, j+1}\right.}\right]
$$

$$
T_{i, i}
$$

$$
T_{i+1, j} \quad T_{i+1, j+1}
$$

Arrowed monotone triangles

We define the signed interval

$$
\underline{[a, b]}=\left\{\begin{array}{ll}
{[a, b]} & a \leq b, \\
\emptyset & a=b+1, \\
{[b+1, a-1]} & a>b+1,
\end{array} \quad \operatorname{sgn}(\underline{[a, b]})=\left\{\begin{array}{l}
1, \\
1, \\
-1 .
\end{array}\right.\right.
$$

A arrowed monotone triangle is a monotone triangle $T=\left(T_{i, j}\right)$ where the entries have a decoration $d\left(T_{i, j}\right) \subseteq\{\nwarrow, \nearrow\}$, s.t.

$$
T_{i, j} \in \underline{\left[T_{i+1, j}+\left[\nearrow \in d\left(T_{i+1, j}\right)\right], T_{i, j+1}-\left[\nwarrow \in d\left(T_{i, j+1}\right]\right]\right.} .
$$

$$
T_{i, i}
$$

$$
T_{i+1, j} \quad T_{i+1, j+1}
$$

Examples

Question: What can one say about arrowed MTs from a geometrical point of view?

Weights for arrowed monotone triangles
We define the weight $M(T)$ of an arrowed MT T as

$$
W(M)=\omega_{\emptyset}^{\# \emptyset} \omega_{\nearrow}^{\#\{\nearrow\}} \omega_{\nwarrow}^{\#\{\nwarrow\}} \omega_{\nwarrow \nearrow}^{\#\{\nwarrow, \nearrow\}}
$$

Weights for arrowed monotone triangles

We define the weight $M(T)$ of an arrowed MT T as

$$
\begin{aligned}
W(M) & \left.=\omega_{\emptyset}^{\# \emptyset} \omega_{\nearrow}^{\#\{\nearrow\}} \omega_{\nwarrow}^{\#\{\nwarrow\}} \omega_{\nwarrow}^{\#\{ }, \nearrow\right\} \\
& \times \prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i} T_{i, j}-\sum_{j=1}^{i-1} T_{i-1, j}+\#(\nearrow \text { in row } i)-\#(\nwarrow \text { in row } i)}
\end{aligned}
$$

Weights for arrowed monotone triangles

We define the weight $M(T)$ of an arrowed MT T as

$$
\begin{aligned}
W(M) & =\omega_{\emptyset}^{\# \emptyset} \omega_{\nearrow}^{\#\{\nearrow\}} \omega_{\nwarrow}^{\#\{\nwarrow\}} \omega_{\nwarrow}^{\#\{ }{ }_{\nearrow} \\
& \times \prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i} T_{i, j}-\sum_{j=1}^{i-1} T_{i-1, j}+\#(\nearrow \text { in row } i)-\#(\nwarrow \text { in row } i)} \\
\times \prod_{1 \leq j \leq i<n} & \operatorname{sgn}\left(\underline{\left[T_{i+1, j}+\left[\nearrow \in d\left(T_{i+1, j}\right)\right], T_{i, j+1}-\left[\nwarrow \in d\left(T_{i, j+1}\right]\right]\right.}\right) .
\end{aligned}
$$

Weights for arrowed monotone triangles

We define the weight $M(T)$ of an arrowed MT T as

$$
\begin{aligned}
W(M) & =\omega_{\emptyset}^{\# \emptyset} \omega_{\nearrow}^{\#\{\nearrow\}} \omega_{\nwarrow}^{\#\{\Uparrow\}} \omega_{\nearrow}^{\#} \\
& \times \prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i} T_{i, j}-\sum_{j=1}^{i-1} T_{i-1, j}+\#(\nearrow \text { in row } i)-\#(\nwarrow \text { in row } i)} \\
\times \prod_{1 \leq j \leq i<n} & \operatorname{sgn}\left(\underline{\left[T_{i+1, j}+\left[\nearrow \in d\left(T_{i+1, j}\right)\right], T_{i, j+1}-\left[\nwarrow \in d\left(T_{i, j+1}\right]\right]\right.}\right) .
\end{aligned}
$$

- $\left(\omega_{\emptyset}, \omega_{\nearrow}, \omega_{\nwarrow}, \omega_{\nwarrow}\right)=(0, u, v, w)$: weighted enumeration of alternating sign matrices,

Weights for arrowed monotone triangles

We define the weight $M(T)$ of an arrowed MT T as

$$
\begin{aligned}
& \left.W(M)=\omega_{\emptyset}^{\# \emptyset} \omega_{\nearrow}^{\#\{\nearrow\}} \omega_{\nwarrow}^{\#\{\Uparrow\}} \omega_{\pi}^{\#\{ }{ }^{\#}, \nearrow\right\} \\
& \times \prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i} T_{i, j}-\sum_{j=1}^{i-1} T_{i-1, j}+\#(\nearrow \text { in row } i)-\#(\mathbb{} \text { in row } i)} \\
& \times \prod_{1 \leq j \leq i<n} \operatorname{sgn}\left(\underline{\left[T_{i+1, j}+\left[\nearrow \in d\left(T_{i+1, j}\right)\right], T_{i, j+1}-\left[\nwarrow \in d\left(T_{i, j+1}\right]\right]\right.}\right) .
\end{aligned}
$$

- $\left(\omega_{\emptyset}, \omega_{\nearrow}, \omega_{\nwarrow}, \omega_{\nwarrow}\right)=(0, u, v, w)$: weighted enumeration of alternating sign matrices,
- $\left(\omega_{\emptyset}, \omega_{\nearrow}, \omega_{\nwarrow}, \omega_{\nwarrow}\right)=(1,0,0,0)$: Schur polynomials,

Weights for arrowed monotone triangles

We define the weight $M(T)$ of an arrowed MT T as

$$
\begin{aligned}
& \left.W(M)=\omega_{\emptyset}^{\# \emptyset} \omega_{\nearrow}^{\#\{\nearrow\}} \omega_{\nwarrow}^{\#\{\Uparrow\}} \omega_{\pi}^{\#\{ }{ }^{\#}, \nearrow\right\} \\
& \times \prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i} T_{i, j}-\sum_{j=1}^{i-1} T_{i-1, j}+\#(\nearrow \text { in row } i)-\#(\mathbb{} \text { in row } i)} \\
& \times \prod_{1 \leq j \leq i<n} \operatorname{sgn}\left(\underline{\left[T_{i+1, j}+\left[\nearrow \in d\left(T_{i+1, j}\right)\right], T_{i, j+1}-\left[\nwarrow \in d\left(T_{i, j+1}\right]\right]\right.}\right) .
\end{aligned}
$$

- $\left(\omega_{\emptyset}, \omega_{\nearrow}, \omega_{\nwarrow}, \omega_{\nwarrow}\right)=(0, u, v, w)$: weighted enumeration of alternating sign matrices,
- $\left(\omega_{\emptyset}, \omega_{\nearrow}, \omega_{\nwarrow}, \omega_{\nwarrow}\right)=(1,0,0,0)$: Schur polynomials,
- $\left(\omega_{\emptyset}, \omega_{\nearrow}, \omega_{\nwarrow}, \omega_{\nwarrow} \nearrow\right)=(1,0,0,-t)$: Hall-Littlewood polynomials (up to rational function in t).

Denote by E_{x} denote the shift operator $E_{x} f(x)=f(x+1)$.

Theorem (A.-Fischer)

The multivariate generating function for arrowed monotone triangles with bottom row $\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$ w.r.t. the weight W is

$$
\begin{aligned}
& \sum_{M} W(M)=\prod_{i=1}^{n}\left(\omega_{\emptyset}+\omega_{\nearrow} x_{i}+\omega_{\nwarrow} x_{i}^{-1}+\omega_{\nwarrow}\right) \\
\times & \left.\prod_{1 \leq i<j \leq n}\left(\omega_{\emptyset} \mathrm{id}+\omega_{\nearrow} E_{k_{i}}+\omega_{\nwarrow} E_{k_{j}}^{-1}+\omega_{\nwarrow} E_{k_{i}} E_{k_{j}}^{-1}\right) s_{\left(k_{n}, \ldots, k_{1}\right)}(\mathbf{x})\right|_{k_{i}=\lambda_{i}},
\end{aligned}
$$

where the sum is over all monotone triangles with bottom row $\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$.

Frobenius notation for partitions

Let λ be a partition and I the length of the Durfee square. The Frobenius notation of λ is $\left(\lambda_{1}-1, \ldots, \lambda_{I}-I \mid \lambda_{1}^{\prime}-1, \ldots, \lambda_{I}^{\prime}-I\right)$.

$$
\lambda=(4,4,3,3,3,2,1)
$$

Frobenius notation for partitions

Let λ be a partition and I the length of the Durfee square. The Frobenius notation of λ is $\left(\lambda_{1}-1, \ldots, \lambda_{I}-I \mid \lambda_{1}^{\prime}-1, \ldots, \lambda_{I}^{\prime}-I\right)$.

$$
\begin{aligned}
\lambda & =(4,4,3,3,3,2,1) \\
& =(3, \quad \mid 6, \quad)
\end{aligned}
$$

Frobenius notation for partitions

Let λ be a partition and I the length of the Durfee square. The Frobenius notation of λ is $\left(\lambda_{1}-1, \ldots, \lambda_{I}-I \mid \lambda_{1}^{\prime}-1, \ldots, \lambda_{I}^{\prime}-I\right)$.

Frobenius notation for partitions

Let λ be a partition and I the length of the Durfee square. The Frobenius notation of λ is $\left(\lambda_{1}-1, \ldots, \lambda_{I}-I \mid \lambda_{1}^{\prime}-1, \ldots, \lambda_{I}^{\prime}-I\right)$.

Plane partitions

Definition (MacMahon)

A plane partition $\pi=\left(\pi_{i, j}\right)$ inside an (a, b, c)-box is an array of non-negative integers

$$
\begin{array}{cccc}
\pi_{1,1} & \pi_{1,2} & \cdots & \pi_{1, b} \\
\pi_{2,1} & \pi_{2,2} & \cdots & \pi_{2, b} \\
\vdots & \vdots & & \vdots \\
\pi_{a, 1} & \pi_{a, 2} & \cdots & \pi_{a, b}
\end{array}
$$

such that $\pi_{i, j} \leq c$ and all rows and columns are weakly decreasing.

Five times plane partitions

```
6 4 2 1
5 3 2 0
2 1 0 0
```


Five times plane partitions

```
6 4 2 1
5 3 2 0
2 1 0 0
```


Five times plane partitions

6	4	2	1
5	3	2	0
2	1	0	0

Five times plane partitions

6	4	2	1
5	3	2	0
2	1	0	0

Five times plane partitions

6	4	2	1
5	3	2	0
2	1	0	0

Symmetry operations on plane partitions

π

rotation

$$
\pi_{i, j}^{c}:=c-\pi_{a+1-i, b+1-j}
$$

A new family of symmetric polynomials

Denote by TSPP_{n} the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \mathrm{TSPP}_{n}$ define

4443
4321
4211
3110

T

A new family of symmetric polynomials

Denote by TSPP_{n} the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \operatorname{TSPP}_{n}$ define

$$
\operatorname{diag}(T)=\left(T_{i, i}\right)^{\prime}=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right)
$$

4443
4321
4211
3110

T

$\operatorname{diag}(T)$

A new family of symmetric polynomials

Denote by TSPP_{n} the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \operatorname{TSPP}_{n}$ define

$$
\begin{aligned}
\operatorname{diag}(T) & =\left(T_{i, i}\right)^{\prime}=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right) \\
\pi_{k}(T) & =\left(a_{1}, \ldots, a_{l} \mid b_{1}+k, \ldots, b_{l}+k\right),
\end{aligned}
$$

T

$\operatorname{diag}(T)$

$\pi_{1}(T)$

$\pi_{2}(T)$

$$
=\pi_{0}(T)
$$

A new family of symmetric polynomials

Denote by TSPP_{n} the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \operatorname{TSPP}_{n}$ define

$$
\begin{aligned}
\operatorname{diag}(T) & =\left(T_{i, i}\right)^{\prime}=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right), \\
\pi_{k}(T) & =\left(a_{1}, \ldots, a_{l} \mid b_{1}+k, \ldots, b_{l}+k\right), \\
\omega_{T}(r, u, v, w) & =r^{\prime} u^{\sum_{i=1}^{\prime}\left(a_{i}+1\right)} v^{\binom{n}{2}-\sum_{i=1}^{\prime}\left(b_{i}+1\right)} w^{\sum_{i=1}^{\prime}\left(b_{i}-a_{i}\right)} .
\end{aligned}
$$

A new family of symmetric polynomials

Denote by TSPP_{n} the set of totally symmetric plane partitions inside an (n, n, n)-box. For $T \in \operatorname{TSPP}_{n}$ define

$$
\begin{aligned}
\operatorname{diag}(T) & =\left(T_{i, i}\right)^{\prime}=\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right), \\
\pi_{k}(T) & =\left(a_{1}, \ldots, a_{l} \mid b_{1}+k, \ldots, b_{l}+k\right), \\
\omega_{T}(r, u, v, w) & =r^{\prime} u^{\sum_{i=1}^{\prime}\left(a_{i}+1\right)} v^{\binom{n}{2}-\sum_{i=1}^{\prime}\left(b_{i}+1\right)} w^{\sum_{i=1}^{\prime}\left(b_{i}-a_{i}\right)} .
\end{aligned}
$$

We define the symmetric polynomial in $\mathbf{x}=\left(x_{1}, \ldots, x_{n+k-1}\right)$

$$
\mathcal{A}_{n, k}(r, u, v, w ; \mathbf{x})=\sum_{T \in \operatorname{TSPP}_{n-1}} \omega_{T}(r, u, v, w) s_{\pi_{k}}(T)(\mathbf{x}) .
$$

A multivariate generating function for ASMs

Theorem (A.-Fischer-Konvalinka-Nadeau-Tewari)
The multivariate generating function for $A S M$ s w.r.t W is

$$
\prod_{i=1}^{n} \frac{1}{\left(u x_{i}+v x_{i}^{-1}+w\right)^{n}} \sum_{M} W(M)=\mathcal{A}_{n, 1}(1, u, v, w ; \mathbf{x})
$$

where the sum is over all monotone triangles with bottom row $(1,2, \ldots, n)$.

A multivariate generating function for ASMs

Theorem (A.-Fischer-Konvalinka-Nadeau-Tewari)

The multivariate generating function for ASMs w.r.t W is
$\prod_{i=1}^{n} \frac{1}{\left(u x_{i}+v x_{i}^{-1}+w\right)^{n}} \sum_{M} W(M)=\sum_{T \in \mathrm{TSPP}_{n-1}} \omega_{T}(1, u, v, w) s_{\pi_{1}(T)}(\mathbf{x})$,
where the sum is over all monotone triangles with bottom row $(1,2, \ldots, n)$.

Question: Is there a representation theoretic interpretation?

Cyclically symmetric lozenge tilings

Denote by $\mathrm{CS}_{n, x}(r, t)$ the generating function of cyclically symmetric lozenge tilings in a cored hexagon with side lengths ($n, n+x, n, n+x, n, n+x$) with respect to the weight

Cyclically symmetric lozenge tilings

Denote by $\mathrm{CS}_{n, x}(r, t)$ the generating function of cyclically symmetric lozenge tilings in a cored hexagon with side lengths ($n, n+x, n, n+x, n, n+x$) with respect to the weight
$r^{\#>}$ on the red line $t^{\# \gg \text { in the blue region }}$

Three enumeration formulas

Remember, the symmetric polynomials $\mathcal{A}_{n, k}(r, u, v, w ; \mathbf{x})$ were defined as

$$
\mathcal{A}_{n, k}(r, u, v, w ; \mathbf{x})=\sum_{T \in \operatorname{TSPP}_{n-1}} \omega_{T}(r, u, v, w) s_{\pi_{k}(T)}(\mathbf{x})
$$

Theorem (A.-Fischer)

Let n be a positive integer and let $\mathbf{1}=(1, \ldots, 1)$. Then,

$$
\begin{aligned}
\mathcal{A}_{n, 0}(r, 1, t, 1 ; \mathbf{1}) & =\mathrm{CS}_{n-1,0}(r, t+2), \\
\mathcal{A}_{n, k}(r, 1,-1,1 ; \mathbf{1}) & =\mathrm{CS}_{n-1,2 k}(r, 1), \\
\mathcal{A}_{n, k}(r, 1,0,1 ; \mathbf{1}) & =\mathrm{CS}_{n-1, k}(r, 2)
\end{aligned}
$$

