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Part 1
Partitions in various dimensions
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Partitions I

A partition λ = (λ1, λ2, . . .) is a weakly decreasing sequence of
non-negative integers with all but finitely many entries equal to 0.
We define the size |λ| = λ1 + λ2 + · · · .

The partitions of size 5 are

(5)

(4, 1)

(3, 2)

(3, 1, 1)

(2, 2, 1)

(2, 1, 1, 1)

(1, 1, 1, 1, 1)
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Partitions II

Theorem

The generating function for partitions is∑
λ

q|λ| =
∏
i≥1

1

1− qi
.

Proof.

Define mi (λ) as the number of parts in λ equal to i . Then∑
λ

q|λ|

=
∑
λ

∏
i≥1

qmi (λ)i =
∏
i≥1

(1 + qi + q2i + · · · )

=
∏
i≥1

1

1− qi
.
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Partitions III

A Young diagram λ is a finite subset of N2
>0 such that (x1, x2) ∈ λ

implies (y1, y2) ∈ λ for 1 ≤ yi ≤ xi for 1 ≤ i ≤ 2. We represent
Young diagrams as collection of boxes:

(5)

(4, 1)

(3, 2)

(3, 1, 1)

(2, 2, 1)

(2, 1, 1, 1)

(1, 1, 1, 1, 1)

In the following we identify partitions and Young diagrams.
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Partitions IV

We say that a Young diagram λ is contained in an (a, b)-box if
λ ⊆ [a]× [b].

Theorem

The generating function of Young diagrams inside an (a, b)-box is

∑
λ

q|λ| =

[
a+ b

a

]
q

=
a∏

i=1

b∏
j=1

1− qi+j

1− qi+j−1
.
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Plane partitions I

A plane partition π is an array (πi ,j) of non-negative integers and
finite support, which is weakly decreasing along rows and columns.

3 2 2 1

2 2 1

1

⇔

A 2-dimensional Young diagram λ is a finite subset of N3
>0 such

that (x1, x2, x3) ∈ λ implies (y1, y2, y3) ∈ λ for 1 ≤ yi ≤ xi for
1 ≤ i ≤ 3.
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Plane partitions II

Theorem (MacMahon)

The generating function for plane partitions is∑
π

q|π| =
∏
i≥1

1

(1− qi )i
.

One can prove this theorem by using the Cauchy identity for Schur
polynomials together with the RSK algorithm.
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Plane partitions III

A 2-dimensional Young diagram λ is contained in an (a, b, c)-box if
λ ⊆ [a]× [b]× [c].

Theorem (MacMahon)

The generating function for 2-dimensional Young diagrams inside
an (a, b, c)-box is

∑
λ

q|λ| =
a∏

i=1

b∏
j=1

c∏
k=1

1− qi+j+k−1

1− qi+j+k−2
.

The above can be proven by using Lattice paths together with
the Lindström–Gessel–Viennot lemma.

The left hand side can be interpreted as the principal
specialisation of a Schur polynomial of rectangular shape
which can be evaluated using Stanley’s hook-content formula.
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d-dimensional partitions I

A d-dimensional partition π is an array (πi1,...,id ) of non-negative
integers and finite support, such that

πi1,...,id ≥ πi1,...,ik+1,...,id ,

for all i1, . . . , id ∈ N>0 and 1 ≤ k ≤ d .

1 0
0 0

1 0
0 0

⇔ {(1, 1, 1, 1), (1, 1, 2, 1)}

A d-dimensional Young diagram λ is a finite subset of of Nd+1
>0

such that x ∈ λ implies y ∈ λ for 1 ≤ yi ≤ xi for 1 ≤ i ≤ d + 1.
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d-dimensional partitions II

Conjecture (MacMahon)

The generating function of d-dimensional partitions π is∑
π

q|π| =
∏
i≥1

1

(1− qi )(
d+i−2
d−1 )

.

This was disproved by Atkin, Bratley, Macdonald and McKay in
1967.

Theorem (Amanov–Yeliussizov, 2023)

The generating function of d-dimensional partitions π with respect
to two statistics cor and | · |ch is given by∑

π

tcor(π)q|π|ch =
∏
i≥1

(1− tqi )−(
i+d−2
d−1 ).
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d-dimensional partitions III

What can we say about d-dimensional partitions inside an
(n1, . . . , nd+1)-box?

Up to dimension 2, the enumeration formula is a product
formula, i.e., of the form

n1∏
i1=1

· · ·
nd+1∏

id+1=1

f (i1, . . . , id+1)

g(i1, . . . , id+1)
,

where f , g are linear polynomials in i1, . . . , id+1.

This implies that only “small” prime factors can appear.

However the number of 3-dimensional partitions inside a
(2, 2, 2, 3)-box is already 887, which is a prime.
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Part 2
Fully complementary higher

dimensional partitions
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Symmetries of boxed plane partitions

reflection rotation complementation
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Self-complementary VS fully complementary

A 2d-Young diagram λ inside an (a, b, c)-box is called
self-complementary if it is equal to its complementation.

(a, 1, 1)

(1, 1, 1)

(1, 1, c)

(1, b, 1)

A 2d-Young diagram λ inside an (a, b, c)-box is called fully
complementary if λ, and λ “placed” at the corners (a, b, 1),
(a, 1, c) and (1, b, c) fill the (a, b, c)-box without overlap.
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Fully Complementary in higher dimensions
(intuitive)

Let n = (n1, . . . , nd+1) be a sequence of positive integers and λ a
d-dimensional Young diagram.

We take 2d copies of λ and “place” them at the corners
(c1, . . . , cd+1) where an even number of the ci are of the form
2ni , all others are 1.

We call λ fully complementary inside a (2n1, . . . , 2nd+1)-box if

no two copies of λ overlap,

the union of all copies is the full (2n1, . . . , 2nd+1)-box.
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Fully Complementary in higher dimensions (precise)

Let n = (n1, . . . , nd+1) be a sequence of positive integers and
I ⊆ [d + 1] = {1, 2, . . . , d + 1}. We define for x = (x1, . . . , xd+1)

ρI ,n(x) :=

({
xi i /∈ I ,

2ni + 1− xi i ∈ I ,

)
1≤i≤d+1

.

A d-dimensional Young diagram λ is called fully complementary
inside a (2n1, . . . , 2nd+1)-box if

for all even sized I ̸= J ⊆ [d + 1] holds ρI ,n(λ) ∩ ρJ,n(λ) = ∅,

and
⋃

I⊆[d+1]
|I | even

ρI ,n(λ) = [2n1]× · · · × [2nd+1].
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An example

For n = (1, 1, 1, 1) the 3-dimensional Young diagram
λ = {(1, 1, 1, 1), (2, 1, 1, 1)} is fully complementary inside the
(2, 2, 2, 2)-box.

ρ{1,2}(λ) = {(2, 2, 1, 1), (1, 2, 1, 1)}, ρ{2,3}(λ) = {(1, 2, 2, 1), (2, 2, 2, 1)},
ρ{1,3}(λ) = {(2, 1, 2, 1), (1, 1, 2, 1)}, ρ{2,4}(λ) = {(1, 2, 1, 2), (2, 2, 1, 2)},
ρ{1,4}(λ) = {(2, 1, 1, 2), (1, 1, 1, 2)}, ρ{3,4}(λ) = {(1, 1, 2, 2), (2, 1, 2, 2)},
ρ{1,2,3,4}(λ) = {(2, 2, 2, 2), (1, 2, 2, 2)}.

There are three further Young diagrams which are fully
complementary inside (2, 2, 2, 2):

{(1, 1, 1, 1), (1, 2, 1, 1)}
{(1, 1, 1, 1), (1, 1, 2, 1)}
{(1, 1, 1, 1), (1, 1, 1, 2)}
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A main theorem

We call a d-dimensional partition π fully complementary inside a
(2n1, . . . , 2nd+1)-box if its Young diagram is fully complementary
in this box.

Theorem (SA, 2023)

Let x = (x1, . . . , xd+1), n = (n1, . . . , nd+1) ∈ Nd+1
>0 and denote by

FCP(n) the set of fully complementary partitions inside a
(2n1, . . . , 2nd+1)-box. Then

∑
n∈Nd+1

>0

|FCP(n)|xn =

(
d + 1−

d+1∑
i=1

xi

)
d+1∏
i=1

xi(
1−

d+1∑
i=1

xi

)
d+1∏
i=1

(1− xi )

.
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Stretching maps (intuitive)

We want to map d-dimensional partitions from FCP(n) injectively
to FCP(n+ ek) by a stretching map φk . For d = 1, this map can
be defined by as shown next:

φ1

φ2
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Stretching maps (precise)

For 1 ≤ k ≤ d define the map φk : FCP(n) → FCP(n+ ek)

φk(π)i1,...,id =



πi1,...,id ik ≤ nk ,

nd+1 ik ∈ {nk + 1, nk + 2}
and ij ≤ nj for all 1 ≤ j ̸= k ≤ d ,

πi1,...,ik−2,...,id ik > nk + 2,

0 otherwise,

and the map φd+1 : FCP(n) → FCP(n+ ed+1) as

φd+1(π)i1,...,id =

{
πi1,...,id + 2 ij ≤ nj for all 1 ≤ j ≤ d ,

πi1,...,id otherwise.
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A recursive structure

Proposition

Let n = (n1, . . . , nd+1) be a sequence of positive integers. Then
FCP(n) is equal to the disjoint union

FCP(n) =
⋃̇

1≤k≤d+1
φk

(
FCP(n− ek)

)
.

Note, that if exactly one ni = 0, we have to define FCP(n) to
consist of “the empty array” and extend the definitions of the φk

appropriately.
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Part 3
Restricting to the 2-dimensional case
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Symmetry classes of FCPs I

There are many interesting symmetry classes of plane partitions. Is
the same true for fully complementary plane partitions?

symmetric ⇒ quasi symmetric
cyclically symmetric ⇒ ?
self-complementary ⇒ self-complementary

transpose-complementary ⇒ quasi transpose-complementary
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Symmetry classes of FCPs II

A plane partition π inside an (a, a, c)-box is called

quasi-symmetric if
πi ,j = πj ,i ,

for all 1 ≤ i , j ≤ a with i + j ̸= a+ 1,

quasi transpose-complementary if

πi ,j + πa+1−j ,a+1−i = c ,

holds for all 1 ≤ i , j ≤ n with i + j ̸= a+ 1.
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Symmetry classes of FCPs III

Proposition

1 Denote by QS(a, c) the set of quasi symmetric fully
complementary plane partitions (FCPP) inside an
(a, a, c)-box, then holds

∑
a,c≥0

|QS(a, c)|xay c =
x + y − 2x2 − xy

(1− x)(1− 2x − y)
.

2 The number of self-complementary FCPPs inside an
(2a, 2b, 2c)-box is

(a+b
a

)
.

3 The number of quasi transpose-complementary FCPPs inside
an (2a, 2a, 2c)-box is 2a.
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Quasi transpose-complementary PPs

Theorem

The number of quasi transpose-symmetric plane partitions inside
an (a, a, c)-box is equal to the number of symmetric plane
partitions inside an (a, a, c)-box.

As a side product of the proof of the above theorem, we stumble
upon the relation

2n−1 TCPP(n, n, 2c) = SPP(n − 1, n − 1, 2c + 1),

where TCPP denotes the number of transpose-complementary
plane partitions and SPP the number of symmetric plane partitions.
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Proof idea

6 6 6 5 4
6 5 3 3 1
6 5 3 3 0
6 4 1 1 0
1 0 0 0 0

We can restrict ourselves to the “fundamental domain” of the
region, by reflecting diagonal entries if necessary and count
them with weight 2 if reflected.

Use the typical lattice path approach; however the first east
step might have weight 2.
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Proof idea

6 6 6 5 4
6 5 3 3 1
6 5 3 3 0
6 4 1 1 0
1 0 0 0 0

We can restrict ourselves to the “fundamental domain” of the
region, by reflecting diagonal entries if necessary and count
them with weight 2 if reflected.

Use the typical lattice path approach; however the first east
step might have weight 2.
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Proof idea

6 6 6 5 4
6 5 3 3 1
6 5 3 3 0
6 4 1 1 0
5 0 0 0 0

We can restrict ourselves to the “fundamental domain” of the
region, by reflecting diagonal entries if necessary and count
them with weight 2 if reflected.

Use the typical lattice path approach; however the first east
step might have weight 2.
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Proof idea

6 6 6 5 4
6 5 3 3 1
6 5 3 3 0
6 4 1 1 0
5 0 0 0 0

We can restrict ourselves to the “fundamental domain” of the
region, by reflecting diagonal entries if necessary and count
them with weight 2 if reflected.

Use the typical lattice path approach; however the first east
step might have weight 2.
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Some conjectures I

Conjecture (1)

Denote by qspp(a, c) the number of quasi symmetric plane
partitions inside an (a, a, c)-box. Then,

qspp(a, c − a) =

{
c
(c+a−1

2a−1

)
pa(c) a is even,(c+a−1

2a−1

)
pa(c) a is odd,

where pa(c) is an irreducible polynomial in Q[c] that is even, i.e.,
pa(c) = pa(−c).
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We call a plane partition π inside an (a, a, c)-box quasi transpose
complementary of second kind (QTC2), if

πi ,j + πa+1−j ,a+1−i = c ,

for all 1 ≤ i , j ≤ a with i ̸= j .

Conjecture (2)

Then for a ≥ 2, the number qtcpp2(a, c) of QTC2 plane partitions
inside an (a, a, c)-box is given by

qtcpp2(a, c − a

2
) =

{
c
(c+ a

2
−1

a−1

)
pa(c) a is even,(c+ a

2
−1

a−1

)
pa(c) a is odd,

where pa(c) is an irreducible polynomial in Q[c] that is even.
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Conjecture (3)

Denote by qtcspp2(a, c) the number of symmetric QTC2 plane
partitions. Then for a ≥ 2,

qtcspp2(a, c − a

2
) =

{
c
(c+ a

2
−1

a−1

)
pa(c) a is even,(c+ a

2
−1

a−1

)
pa(c) a is odd,

where pa(c) is an irreducible polynomial in Q[c] that is even.
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