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Overview

@ Partitions in various dimensions
o Fully complementary higher dimensional partitions

@ Restricting to the two dimensional case
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Part 1
Partitions in various dimensions
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Partitions |

A partition A = (A1, Az, ..

.) is a weakly decreasing sequence of

non-negative integers with all but finitely many entries equal to 0.
We define the size |[A| = A1 + Ao+ - -.

The partitions of size 5 are
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Partitions Il

Theorem
The generating function for partitions is
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Proof.
Define mj(\) as the number of parts in \ equal to i. Then
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Partitions Il

Theorem
The generating function for partitions is
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Partitions Il

Theorem
The generating function for partitions is

qu_Hl_q

i>1

Proof.
Define mj(\) as the number of parts in \ equal to i. Then

Zq'A'—ZHq"”(A =[[+d +¢* +--)

A i>1 i>1
1
:Hl_—q;- .
i>1

Florian Schreier-Aigner University of Vienna Fully Complementary Higher Dimensional Partitions



Partitions Il

A Young diagram A is a finite subset of N2 such that (xi,x2) € A
implies (y1,y2) € A for 1 <y; < x; for 1 < < 2. We represent
Young diagrams as collection of boxes:
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Partitions Il

A Young diagram A is a finite subset of N2 such that (xi,x2) € A
implies (y1,y2) € A for 1 <y; < x; for 1 < < 2. We represent

Young diagrams as collection of boxes:

G) LILTTTT (221

(2,1,1,1)

1]

(1,1,1,1,1)

In the following we identify partitions and Young diagrams.
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Partitions IV

We say that a Young diagram X is contained in an (a, b)-box if
A C [a] x [b].

Theorem

The generating function of Young diagrams inside an (a, b)-box is

+b b 1 gt
S =[] T

A i=1j=1
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Plane partitions |

A plane partition 7 is an array (m; ;) of non-negative integers and

finite support, which is weakly decreasing along rows and columns.
3221
2 21
1
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Plane partitions |

A plane partition 7 is an array (m; ;) of non-negative integers and
finite support, which is weakly decreasing along rows and columns.
3221
2 21
1

A 2-dimensional Young diagram A is a finite subset of Nio such
that (x1,x2,x3) € A implies (y1,y2,y3) € A for 1 < y; < x; for
1<i<3.
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Plane partitions |l

Theorem (MacMahon)

The generating function for plane partitions is
1
S =Ty
g™ = —
™ i>1 (1-a)

One can prove this theorem by using the Cauchy identity for Schur
polynomials together with the RSK algorithm.
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Plane partitions Ill

A 2-dimensional Young diagram \ is contained in an (a, b, ¢)-box if
A C [a] x [b] x [c].

Theorem (MacMahon)

The generating function for 2-dimensional Young diagrams inside
an (a, b, c)-box is

I+J+k 1

zqw—nnnlj

i=1j=1 k=1
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Plane partitions Ill

A 2-dimensional Young diagram \ is contained in an (a, b, ¢)-box if
A C [a] x [b] x [c].

Theorem (MacMahon)

The generating function for 2-dimensional Young diagrams inside
an (a, b, c)-box is

l+j+k 1

zqw—nnnli

i=1j=1 k=1

@ The above can be proven by using Lattice paths together with
the Lindstrom—Gessel-Viennot lemma.

@ The left hand side can be interpreted as the principal
specialisation of a Schur polynomial of rectangular shape
which can be evaluated using Stanley's hook-content formula.
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d-dimensional partitions |

A d-dimensional partition 7 is an array (7, i,) of non-negative
integers and finite support, such that

Tt eiig 2 Tkt L, iy s
forall i1,...,ig € Nygand 1 < k < d.
1 0 1 0
00 0 0
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d-dimensional partitions |

A d-dimensional partition 7 is an array (7, i,) of non-negative
integers and finite support, such that

Trilv“a"d Z 7Ti1,..‘,l.k+1,‘..7id7
forall it,...,ig € Nygand 1 < k < d.
10 1 0

&
00 0 0 {(1,1,1,1),(1,1,2,1)}

A d-dimensional Young diagram X is a finite subset of of Nd;gl
such that x € A impliesy e Afor 1 <y; < x;for1 <i<d+ 1.
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d-dimensional partitions Il

Conjecture (MacMahon)

The generating function of d-dimensional partitions 7 is

L G
;q 11 7y

i>1(1—q')\ d1
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d-dimensional partitions Il

Conjecture (MacMahon)

The generating function of d-dimensional partitions 7 is

Sa=I—

i (1- ) (550

This was disproved by Atkin, Bratley, Macdonald and McKay in
1967.
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d-dimensional partitions Il

Conjecture (MacMahon)

The generating function of d-dimensional partitions 7 is
1
Iml H - -
Z q = (dti—2\°
- =1 (1— gn)(as)
This was disproved by Atkin, Bratley, Macdonald and McKay in
1967.

Theorem (Amanov—Yeliussizov, 2023)

The generating function of d-dimensional partitions m with respect
to two statistics cor and | - |, is given by

3 eeotmgirlen — T(1 - tq')~ (&3,

i>1
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d-dimensional partitions Il

What can we say about d-dimensional partitions inside an
(m,...,Nndgy1)-box?
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d-dimensional partitions Il

What can we say about d-dimensional partitions inside an
(m,...,Nndgy1)-box?

@ Up to dimension 2, the enumeration formula is a product
formula, i.e., of the form

ﬁ . nﬁl ;... ia+1)
. - ’
h=1 ig+1=1 g(ll’ Tt Id+1)

where f, g are linear polynomials in i1, ..., ig+1-
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d-dimensional partitions Il

What can we say about d-dimensional partitions inside an
(m,...,Nndgy1)-box?

@ Up to dimension 2, the enumeration formula is a product
formula, i.e., of the form

Ng+1
H H /17 = /d+1)
11 .. Id 1
=1 ig+1= ’ + )
where f, g are linear polynomials in i1, ..., ig+1-

@ This implies that only “small” prime factors can appear.
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d-dimensional partitions Il

What can we say about d-dimensional partitions inside an
(m,...,Nndgy1)-box?

@ Up to dimension 2, the enumeration formula is a product
formula, i.e., of the form

Ng41
H H /17 = /d+1)
11 .. Id 1
=1 ig+1= ’ + )
where f, g are linear polynomials in i1, ..., ig+1-

@ This implies that only “small” prime factors can appear.

@ However the number of 3-dimensional partitions inside a
(2,2,2,3)-box is already 887, which is a prime.
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Part 2
Fully complementary higher
dimensional partitions
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Symmetries of boxed plane partitions

de B &

reflection rotation complementation

[ R EE T
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Self-complementary VS fully complementary

A 2d-Young diagram A inside an (a, b, c)-box is called
self-complementary if it is equal to its complementation.
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Self-complementary VS fully complementary

A 2d-Young diagram A inside an (a, b, c)-box is called
self-complementary if A, and A “placed” at the corner (a, b, c) fills

the (a, b, c)-box without overlap.

(1,1,¢)

(1,1,1)|-(1, b, 1)
(a,1,1)
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Self-complementary VS fully complementary

A 2d-Young diagram A inside an (a, b, c)-box is called
self-complementary if A, and A “placed” at the corner (a, b, c) fills
the (a, b, c)-box without overlap.

| “’“)ﬂ g

(1,1,1)|-(1, b, 1)

A 2d-Young diagram X inside an (a, b, ¢)-box is called fully
complementary if A, and A “placed” at the corners (a, b, 1),
(a,1,c¢) and (1, b, ¢) fill the (a, b, c)-box without overlap.
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Fully Complementary in higher dimensions
(intuitive)

Let n = (n1,...,nq+1) be a sequence of positive integers and A a
d-dimensional Young diagram.

o We take 29 copies of A and “place” them at the corners
(c1,...,Cq+1) where an even number of the ¢; are of the form
2n;, all others are 1.

We call A fully complementary inside a (2n1,...,2n441)-box if
@ no two copies of \ overlap,
@ the union of all copies is the full (2n1,...,2n441)-box.
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Fully Complementary in higher dimensions (precise)

Let n = (n1,...,nq+1) be a sequence of positive integers and
I Cld+1]={1,2,...,d + 1}. We define for x = (x1,...,Xd+1)

X; i &1,
o) = (7 ki .
2n;+1—x; i€l 1<i<dil

A d-dimensional Young diagram A is called fully complementary
inside a (2n1,...,2n441)-box if

o for all even sized | # J C [d + 1] holds p;n(A) N pyn(X) =0,

@ and U pra(A) = [2m] x -+ X [2ng41].

IC[d+1]
|I| even
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An example

orn=(1,1,1,1) the 3-dimensional Young diagram
1),(2,1,1,1)} is fully complementary inside the

pi2r(M) =1(22,1,1),(1,2,1,1)},  pra(N) ={(1,2,2,1),(2,2,2,1)},
pa(N) =1{(2,1,2,1),(1,1,2,1)},  pray(d) ={(1,2,1,2),(2,2,1,2)},

) {(2a17172)7(1’17172)}7 p{3,4}(/\) = {(1a1ﬂ2’2)7(2a17272)}
,2),(1,2,2,2)}.

piiay(A
pi123.43(A) =1{(2,2,2
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An example

1) the 3-dimensional Young diagram
1),(2,1,1,1)} is fully complementary inside the

p2y (M) ={(221,1),(1,21.1)},  ppy() ={(1,22,1),(2,2,2.1)},
pr13(A) ={(2,1,2,1),(1, 1,2, 1)}, pra(d) ={(1,2,1,2),(2,2,1,2)},
p{1,4}(>‘) {(2317172)7(1 L1 2)}7 p{3,4}(/\) = {(131;272)7(2317272)}
pr1234r(AN) =1{(2,2,2,2),(1,2,2,2)}.

There are three further Young diagrams which are fully
complementary inside (2,2,2,2):

{(1,1,1,1),(1,2,1,1)}

{(1,1,1,1),(1,1,2,1)}

{(1,1,1,1),(1,1,1,2)}
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A main theorem

We call a d-dimensional partition 7 fully complementary inside a
(2n1,...,2n441)-box if its Young diagram is fully complementary
in this box.

Theorem (SA, 2023)

Let x = (x1,...,Xd+1), n=(n1,...,Ng+1) € Nd;gl and denote by
FCP(n) the set of fully complementary partitions inside a

(2n1,...,2n441)-box. Then
d+1 d+1
(d-l—].— ZX,') H X;
i=1

n__ i=1
Z | FCP(n)[x" = d+1 d+1 ’
neN‘;r)l (1 = X,') H (1 — X,')

i=1 =il
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Stretching maps (intuitive)

We want to map d-dimensional partitions from FCP(n) injectively
to FCP(n + ex) by a stretching map ¢k. For d = 1, this map can
be defined by as shown next:
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Stretching maps (intuitive)

We want to map d-dimensional partitions from FCP(n) injectively
to FCP(n + ex) by a stretching map ¢k. For d = 1, this map can

be defined by as shown next:
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Stretching maps (intuitive)

We want to map d-dimensional partitions from FCP(n) injectively
to FCP(n + ex) by a stretching map ¢k. For d = 1, this map can
be defined by as shown next:

¥1

®2

B
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Stretching maps (intuitive)

We want to map d-dimensional partitions from FCP(n) injectively
to FCP(n + ex) by a stretching map ¢k. For d = 1, this map can
be defined by as shown next:

¥1

®2
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Stretching maps (precise)

For 1 < k < d define the map ¢, : FCP(n) — FCP(n + &)

iy .. ig Ik < Nk,
Ng+1 ik € {nk+1,n,+2}
ok(m)iyiy = and j; < njforall1 <j# k<d,
iy esip=2,ig Ik > N+ 2,
0 otherwise,

and the map @411 : FCP(n) — FCP(n + e4.11) as

Tiy,..ig + 2 i <njforalll <;j<d,
Pa+1(T )iy, iy = _
Tt ynsig otherwise.
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A recursive structure

Proposition

Let n = (ny,...,nq41) be a sequence of positive integers. Then
FCP(n) is equal to the disjoint union

FcP(n) = |

Note, that if exactly one n; = 0, we have to define FCP(n) to
consist of “the empty array” and extend the definitions of the ¢
appropriately.

1<k<d+1 7K (FCP(n — ex)).
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Part 3
Restricting to the 2-dimensional case
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Symmetry classes of FCPs |

There are many interesting symmetry classes of plane partitions. Is
the same true for fully complementary plane partitions?
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Symmetry classes of FCPs |

There are many interesting symmetry classes of plane partitions. Is
the same true for fully complementary plane partitions?

symmetric
cyclically symmetric
self-complementary
transpose-complementary

Florian Schreier-Aigner University of Vienna
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quasi symmetric
?

self-complementary
quasi transpose-complementary
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Symmetry classes of FCPs Il

A plane partition 7 inside an (a, a, ¢)-box is called
@ quasi-symmetric if
Tij = Tj,i,

forall 1 <i,j<awithi+j#a+1,

@ quasi transpose-complementary if
Tij+ Tatl—jat+1—i = C,

holds for all 1 < /i,j < nwith i+j # a+1.
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Symmetry classes of FCPs Il

Proposition

@ Denote by QS(a, c) the set of quasi symmetric fully
complementary plane partitions (FCPP) inside an
(a, a, c)-box, then holds

X+y—2x*—xy
(1=x)(1—=2x—y)

S 1QS(a, ) x?y< =

a,c>0

@ The number of self~-complementary FCPPs inside an
(2a,2b, 2¢)-box is (*17).

© The number of quasi transpose-complementary FCPPs inside
an (2a,2a,2c)-box is 2°.
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Quasi transpose-complementary PPs

Theorem

The number of quasi transpose-symmetric plane partitions inside
an (a, a, ¢)-box is equal to the number of symmetric plane
partitions inside an (a, a, c)-box.

As a side product of the proof of the above theorem, we stumble
upon the relation

2""1TCPP(n,n,2c) = SPP(n—1,n—1,2c + 1),

where TCPP denotes the number of transpose-complementary
plane partitions and SPP the number of symmetric plane partitions.
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Proof idea

6 66 5 4
65331
65330 .
6 4 110
10000
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Proof idea

6 6 654 [

6 53 3 1

65330 \/(}\/
6 4110 X
10000
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Proof idea

\/\/(}\/

(S2BNe) BNe BN e) INe))
O B~ 01 o1 O
O W Wwo
O W WwoO;
(el el el

@ We can restrict ourselves to the “fundamental domain” of the
region, by reflecting diagonal entries if necessary and count
them with weight 2 if reflected.
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Proof idea

6 66 5 4
6 53 31 |
6 53 30 'H’
6 4110 H‘
50000 |

@ We can restrict ourselves to the “fundamental domain” of the
region, by reflecting diagonal entries if necessary and count
them with weight 2 if reflected.

@ Use the typical lattice path approach; however the first east
step might have weight 2.
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Some conjectures |

Conjecture (1)

Denote by qspp(a, c) the number of quasi symmetric plane
partitions inside an (a, a, c)-box. Then,

(5 palc) a is even,
(62?—_11) pa(c) a is odd,

qspp(a,c — a) = {

where p,(c) is an irreducible polynomial in Q[c] that is even, i.e.,
pa(c) = pa(—c).

Florian Schreier-Aigner University of Vienna Fully Complementary Higher Dimensional Partitions



We call a plane partition 7 inside an (a, a, ¢)-box quasi transpose
complementary of second kind (QTC2), if

Tij+ Tatl—jat1—i = C,
forall 1 <i,j < awithj#j.

Conjecture (2)

Then for a > 2, the number qtcpp,(a, ¢) of QTC2 plane partitions
inside an (a, a, ¢)-box is given by

a _{ (C+2 )pa(c) a is even,

teppy(a, c — =) = _
qateppa( 2) (C+2 Y pa(c) a is odd,

where p,(c) is an irreducible polynomial in Q[c] that is even.
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Conjecture (3)

Denote by qtcspp,(a, ¢) the number of symmetric QTC2 plane
partitions. Then for a > 2,

a c(c+g_1)pa(c) a is even,
tcs a,c— =)= g-1
sk 2) { (thl_l)pa(c) a is odd,

where p,(c) is an irreducible polynomial in Q[c] that is even.
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