Fully Complementary Higher Dimensional Partitions

Florian Schreier-Aigner
University of Vienna
Mathematical and Physical Sciences Research Seminar Ahmedabad University, September 27th, 2023

Overview

- Partitions in various dimensions
- Fully complementary higher dimensional partitions
- Restricting to the two dimensional case

Part 1
 Partitions in various dimensions

Partitions I

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a weakly decreasing sequence of non-negative integers with all but finitely many entries equal to 0 . We define the size $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots$.

The partitions of size 5 are
(5)
$(4,1)$
$(3,2)$
$(3,1,1)$
$(2,2,1)$
(2, 1, 1, 1)
(1, 1, 1, 1, 1)

Partitions II

Theorem

The generating function for partitions is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i \geq 1} \frac{1}{1-q^{i}}
$$

Partitions II

Theorem

The generating function for partitions is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i \geq 1} \frac{1}{1-q^{i}}
$$

Proof.

Define $m_{i}(\lambda)$ as the number of parts in λ equal to i. Then

$$
\sum_{\lambda} q^{|\lambda|}
$$

Partitions II

Theorem

The generating function for partitions is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i \geq 1} \frac{1}{1-q^{i}}
$$

Proof.

Define $m_{i}(\lambda)$ as the number of parts in λ equal to i. Then

$$
\sum_{\lambda} q^{|\lambda|}=\sum_{\lambda} \prod_{i \geq 1} q^{m_{i}(\lambda) i}
$$

Partitions II

Theorem

The generating function for partitions is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i \geq 1} \frac{1}{1-q^{i}}
$$

Proof.

Define $m_{i}(\lambda)$ as the number of parts in λ equal to i. Then

$$
\sum_{\lambda} q^{|\lambda|}=\sum_{\lambda} \prod_{i \geq 1} q^{m_{i}(\lambda) i}=\prod_{i \geq 1}\left(1+q^{i}+q^{2 i}+\cdots\right)
$$

Partitions II

Theorem

The generating function for partitions is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i \geq 1} \frac{1}{1-q^{i}}
$$

Proof.

Define $m_{i}(\lambda)$ as the number of parts in λ equal to i. Then

$$
\begin{aligned}
& \sum_{\lambda} q^{|\lambda|}=\sum_{\lambda} \prod_{i \geq 1} q^{m i(\lambda) i}=\prod_{i \geq 1}\left(1+q^{i}+q^{2 i}+\cdots\right) \\
&=\prod_{i \geq 1} \frac{1}{1-q^{i}} .
\end{aligned}
$$

Partitions III

A Young diagram λ is a finite subset of $\mathbb{N}_{>0}^{2}$ such that $\left(x_{1}, x_{2}\right) \in \lambda$ implies $\left(y_{1}, y_{2}\right) \in \lambda$ for $1 \leq y_{i} \leq x_{i}$ for $1 \leq i \leq 2$. We represent Young diagrams as collection of boxes:

Partitions III

A Young diagram λ is a finite subset of $\mathbb{N}_{>0}^{2}$ such that $\left(x_{1}, x_{2}\right) \in \lambda$ implies $\left(y_{1}, y_{2}\right) \in \lambda$ for $1 \leq y_{i} \leq x_{i}$ for $1 \leq i \leq 2$. We represent Young diagrams as collection of boxes:

In the following we identify partitions and Young diagrams.

Partitions IV

We say that a Young diagram λ is contained in an (a, b)-box if $\lambda \subseteq[a] \times[b]$.

Theorem

The generating function of Young diagrams inside an (a, b)-box is

$$
\sum_{\lambda} q^{|\lambda|}=\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}=\prod_{i=1}^{a} \prod_{j=1}^{b} \frac{1-q^{i+j}}{1-q^{i+j-1}} .
$$

Plane partitions I

A plane partition π is an array $\left(\pi_{i, j}\right)$ of non-negative integers and finite support, which is weakly decreasing along rows and columns.

```
3 2 2 2 1
2 2 1
1
```


Plane partitions I

A plane partition π is an array ($\pi_{i, j}$) of non-negative integers and finite support, which is weakly decreasing along rows and columns.

A 2-dimensional Young diagram λ is a finite subset of $\mathbb{N}_{>0}^{3}$ such that $\left(x_{1}, x_{2}, x_{3}\right) \in \lambda$ implies $\left(y_{1}, y_{2}, y_{3}\right) \in \lambda$ for $1 \leq y_{i} \leq x_{i}$ for $1 \leq i \leq 3$.

Plane partitions II

Theorem (MacMahon)

The generating function for plane partitions is

$$
\sum_{\pi} q^{|\pi|}=\prod_{i \geq 1} \frac{1}{\left(1-q^{i}\right)^{i}}
$$

One can prove this theorem by using the Cauchy identity for Schur polynomials together with the RSK algorithm.

Plane partitions III

A 2-dimensional Young diagram λ is contained in an (a, b, c)-box if $\lambda \subseteq[a] \times[b] \times[c]$.

Theorem (MacMahon)

The generating function for 2-dimensional Young diagrams inside an (a, b, c)-box is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Plane partitions III

A 2-dimensional Young diagram λ is contained in an (a, b, c)-box if $\lambda \subseteq[a] \times[b] \times[c]$.

Theorem (MacMahon)

The generating function for 2-dimensional Young diagrams inside an (a, b, c)-box is

$$
\sum_{\lambda} q^{|\lambda|}=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

- The above can be proven by using Lattice paths together with the Lindström-Gessel-Viennot lemma.
- The left hand side can be interpreted as the principal specialisation of a Schur polynomial of rectangular shape which can be evaluated using Stanley's hook-content formula.

d-dimensional partitions I

A d-dimensional partition π is an array $\left(\pi_{i_{1}, \ldots, i_{d}}\right)$ of non-negative integers and finite support, such that

$$
\pi_{i_{1}, \ldots, i_{d}} \geq \pi_{i_{1}, \ldots, i_{k}+1, \ldots, i_{d}}
$$

for all $i_{1}, \ldots, i_{d} \in \mathbb{N}_{>0}$ and $1 \leq k \leq d$.

1	0		1	0
0	0		0	0

d-dimensional partitions I

A d-dimensional partition π is an array $\left(\pi_{i_{1}, \ldots, i_{d}}\right)$ of non-negative integers and finite support, such that

$$
\pi_{i_{1}, \ldots, i_{d}} \geq \pi_{i_{1}, \ldots, i_{k}+1, \ldots, i_{d}}
$$

for all $i_{1}, \ldots, i_{d} \in \mathbb{N}_{>0}$ and $1 \leq k \leq d$.

$$
\begin{array}{llllll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array} \quad \Leftrightarrow \quad\{(1,1,1,1),(1,1,2,1)\}
$$

A d-dimensional Young diagram λ is a finite subset of of $\mathbb{N}_{>0}^{d+1}$ such that $\mathbf{x} \in \lambda$ implies $\mathbf{y} \in \lambda$ for $1 \leq y_{i} \leq x_{i}$ for $1 \leq i \leq d+1$.

d-dimensional partitions II

Conjecture (MacMahon)

The generating function of d-dimensional partitions π is

$$
\sum_{\pi} q^{|\pi|}=\prod_{i \geq 1} \frac{1}{\left(1-q^{i}\right)^{(d+i-2}(d-1)} .
$$

d-dimensional partitions II

Conjecture (MacMahon)

The generating function of d-dimensional partitions π is

$$
\sum_{\pi} q^{|\pi|}=\prod_{i \geq 1} \frac{1}{\left(1-q^{i}\right)^{\binom{d+i-2}{d-1}}}
$$

This was disproved by Atkin, Bratley, Macdonald and McKay in 1967.

d-dimensional partitions II

Conjecture (MacMahon)

The generating function of d-dimensional partitions π is

$$
\sum_{\pi} q^{|\pi|}=\prod_{i \geq 1} \frac{1}{\left(1-q^{i}\right)^{(d+i-2}(d-1)} .
$$

This was disproved by Atkin, Bratley, Macdonald and McKay in 1967.

Theorem (Amanov-Yeliussizov, 2023)
The generating function of d-dimensional partitions π with respect to two statistics cor and $|\cdot|_{c h}$ is given by

$$
\sum_{\pi} t^{c o r(\pi)} q^{|\pi|_{c h}}=\prod_{i \geq 1}\left(1-t q^{i}\right)^{-\binom{i+d-2}{d-1}}
$$

d-dimensional partitions III

What can we say about d-dimensional partitions inside an $\left(n_{1}, \ldots, n_{d+1}\right)$-box?

d-dimensional partitions III

What can we say about d-dimensional partitions inside an
$\left(n_{1}, \ldots, n_{d+1}\right)$-box?

- Up to dimension 2, the enumeration formula is a product formula, i.e., of the form

$$
\prod_{i_{1}=1}^{n_{1}} \cdots \prod_{i_{d+1}=1}^{n_{d+1}} \frac{f\left(i_{1}, \ldots, i_{d+1}\right)}{g\left(i_{1}, \ldots, i_{d+1}\right)}
$$

where f, g are linear polynomials in i_{1}, \ldots, i_{d+1}.

d-dimensional partitions III

What can we say about d-dimensional partitions inside an $\left(n_{1}, \ldots, n_{d+1}\right)$-box?

- Up to dimension 2, the enumeration formula is a product formula, i.e., of the form

$$
\prod_{i_{1}=1}^{n_{1}} \cdots \prod_{i_{d+1}=1}^{n_{d+1}} \frac{f\left(i_{1}, \ldots, i_{d+1}\right)}{g\left(i_{1}, \ldots, i_{d+1}\right)}
$$

where f, g are linear polynomials in i_{1}, \ldots, i_{d+1}.

- This implies that only "small" prime factors can appear.

d-dimensional partitions III

What can we say about d-dimensional partitions inside an $\left(n_{1}, \ldots, n_{d+1}\right)$-box?

- Up to dimension 2, the enumeration formula is a product formula, i.e., of the form

$$
\prod_{i_{1}=1}^{n_{1}} \cdots \prod_{i_{d+1}=1}^{n_{d+1}} \frac{f\left(i_{1}, \ldots, i_{d+1}\right)}{g\left(i_{1}, \ldots, i_{d+1}\right)}
$$

where f, g are linear polynomials in i_{1}, \ldots, i_{d+1}.

- This implies that only "small" prime factors can appear.
- However the number of 3-dimensional partitions inside a $(2,2,2,3)$-box is already 887 , which is a prime.

Part 2 Fully complementary higher dimensional partitions

Symmetries of boxed plane partitions

reflection

Self-complementary VS fully complementary

A $2 d$-Young diagram λ inside an (a, b, c)-box is called self-complementary if it is equal to its complementation.

Self-complementary VS fully complementary

A $2 d$-Young diagram λ inside an (a, b, c)-box is called self-complementary if λ, and λ "placed" at the corner (a, b, c) fills the (a, b, c)-box without overlap.

Self-complementary VS fully complementary

A $2 d$-Young diagram λ inside an (a, b, c)-box is called self-complementary if λ, and λ "placed" at the corner (a, b, c) fills the (a, b, c)-box without overlap.

A $2 d$-Young diagram λ inside an (a, b, c)-box is called fully complementary if λ, and λ "placed" at the corners ($a, b, 1$), $(a, 1, c)$ and $(1, b, c)$ fill the (a, b, c)-box without overlap.

Fully Complementary in higher dimensions (intuitive)

Let $\mathbf{n}=\left(n_{1}, \ldots, n_{d+1}\right)$ be a sequence of positive integers and λ a d-dimensional Young diagram.

- We take 2^{d} copies of λ and "place" them at the corners $\left(c_{1}, \ldots, c_{d+1}\right)$ where an even number of the c_{i} are of the form $2 n_{i}$, all others are 1 .

We call λ fully complementary inside a $\left(2 n_{1}, \ldots, 2 n_{d+1}\right)$-box if

- no two copies of λ overlap,
- the union of all copies is the full $\left(2 n_{1}, \ldots, 2 n_{d+1}\right)$-box.

Fully Complementary in higher dimensions (precise)

Let $\mathbf{n}=\left(n_{1}, \ldots, n_{d+1}\right)$ be a sequence of positive integers and $I \subseteq[d+1]=\{1,2, \ldots, d+1\}$. We define for $\mathbf{x}=\left(x_{1}, \ldots, x_{d+1}\right)$

$$
\rho_{l, \mathbf{n}}(\mathbf{x}):=\left(\begin{array}{ll}
x_{i} & i \notin I, \\
2 n_{i}+1-x_{i} & i \in I,
\end{array}\right)_{1 \leq i \leq d+1}
$$

A d-dimensional Young diagram λ is called fully complementary inside a $\left(2 n_{1}, \ldots, 2 n_{d+1}\right)$-box if

- for all even sized $I \neq J \subseteq[d+1]$ holds $\rho_{I, \mathbf{n}}(\lambda) \cap \rho_{J, \mathbf{n}}(\lambda)=\emptyset$,
- and $\bigcup \rho_{l, \mathbf{n}}(\lambda)=\left[2 n_{1}\right] \times \cdots \times\left[2 n_{d+1}\right]$.

$$
\begin{aligned}
& I \subseteq[d+1] \\
& |I| \text { even }
\end{aligned}
$$

An example

For $\mathbf{n}=(1,1,1,1)$ the 3-dimensional Young diagram $\lambda=\{(1,1,1,1),(2,1,1,1)\}$ is fully complementary inside the (2, 2, 2, 2)-box.

$$
\begin{array}{lll}
\rho_{\{1,2\}}(\lambda)=\{(2,2,1,1),(1,2,1,1)\}, & & \rho_{\{2,3\}}(\lambda)=\{(1,2,2,1),(2,2,2,1)\}, \\
\rho_{\{1,3\}}(\lambda)=\{(2,1,2,1),(1,1,2,1)\}, & \rho_{\{2,4\}}(\lambda)=\{(1,2,1,2),(2,2,1,2)\}, \\
\rho_{\{1,4\}}(\lambda)=\{(2,1,1,2),(1,1,1,2)\}, & \rho_{\{3,4\}}(\lambda)=\{(1,1,2,2),(2,1,2,2)\}, \\
\rho_{\{1,2,3,4\}}(\lambda)=\{(2,2,2,2),(1,2,2,2)\} . &
\end{array}
$$

An example

For $\mathbf{n}=(1,1,1,1)$ the 3-dimensional Young diagram $\lambda=\{(1,1,1,1),(2,1,1,1)\}$ is fully complementary inside the (2, 2, 2, 2)-box.
$\rho_{\{1,2\}}(\lambda)=\{(2,2,1,1),(1,2,1,1)\}, \quad \rho_{\{2,3\}}(\lambda)=\{(1,2,2,1),(2,2,2,1)\}$,
$\rho_{\{1,3\}}(\lambda)=\{(2,1,2,1),(1,1,2,1)\}, \quad \rho_{\{2,4\}}(\lambda)=\{(1,2,1,2),(2,2,1,2)\}$,
$\rho_{\{1,4\}}(\lambda)=\{(2,1,1,2),(1,1,1,2)\}, \quad \rho_{\{3,4\}}(\lambda)=\{(1,1,2,2),(2,1,2,2)\}$,
$\rho_{\{1,2,3,4\}}(\lambda)=\{(2,2,2,2),(1,2,2,2)\}$.
There are three further Young diagrams which are fully complementary inside ($2,2,2,2$):

$$
\begin{aligned}
& \{(1,1,1,1),(1,2,1,1)\} \\
& \{(1,1,1,1),(1,1,2,1)\} \\
& \{(1,1,1,1),(1,1,1,2)\}
\end{aligned}
$$

A main theorem

We call a d-dimensional partition π fully complementary inside a $\left(2 n_{1}, \ldots, 2 n_{d+1}\right)$-box if its Young diagram is fully complementary in this box.

Theorem (SA, 2023)

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{d+1}\right), \mathbf{n}=\left(n_{1}, \ldots, n_{d+1}\right) \in \mathbb{N}_{>0}^{d+1}$ and denote by FCP(\mathbf{n}) the set of fully complementary partitions inside a $\left(2 n_{1}, \ldots, 2 n_{d+1}\right)$-box. Then

$$
\sum_{\mathbf{n} \in \mathbb{N}_{>0}^{d+1}}|\operatorname{FCP}(\mathbf{n})| \mathbf{x}^{\mathbf{n}}=\frac{\left(d+1-\sum_{i=1}^{d+1} x_{i}\right) \prod_{i=1}^{d+1} x_{i}}{\left(1-\sum_{i=1}^{d+1} x_{i}\right) \prod_{i=1}^{d+1}\left(1-x_{i}\right)}
$$

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

$\overrightarrow{\varphi_{1}}$

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

Stretching maps (intuitive)

We want to map d-dimensional partitions from $\operatorname{FCP}(\mathbf{n})$ injectively to $\operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$ by a stretching map φ_{k}. For $d=1$, this map can be defined by as shown next:

$\downarrow \varphi_{2}$

Stretching maps (precise)

For $1 \leq k \leq d$ define the map $\varphi_{k}: \operatorname{FCP}(\mathbf{n}) \rightarrow \operatorname{FCP}\left(\mathbf{n}+e_{k}\right)$

$$
\varphi_{k}(\pi)_{i_{1}, \ldots, i_{d}}= \begin{cases}\pi_{i_{1}, \ldots, i_{d}} & i_{k} \leq n_{k}, \\ n_{d+1} & i_{k} \in\left\{n_{k}+1, n_{k}+2\right\} \\ & \text { and } i_{j} \leq n_{j} \text { for all } 1 \leq j \neq k \leq d, \\ \pi_{i_{1}, \ldots, i_{k}-2, \ldots, i_{d}} & i_{k}>n_{k}+2, \\ 0 & \text { otherwise },\end{cases}
$$

and the map $\varphi_{d+1}: \operatorname{FCP}(\mathbf{n}) \rightarrow \operatorname{FCP}\left(\mathbf{n}+e_{d+1}\right)$ as

$$
\varphi_{d+1}(\pi)_{i_{1}, \ldots, i_{d}}= \begin{cases}\pi_{i_{1}, \ldots, i_{d}}+2 & i_{j} \leq n_{j} \text { for all } 1 \leq j \leq d \\ \pi_{i_{1}, \ldots, i_{d}} & \text { otherwise }\end{cases}
$$

A recursive structure

Proposition

Let $\mathbf{n}=\left(n_{1}, \ldots, n_{d+1}\right)$ be a sequence of positive integers. Then $\mathrm{FCP}(\mathbf{n})$ is equal to the disjoint union

$$
\operatorname{FCP}(\mathbf{n})=\bigcup_{1 \leq k \leq d+1} \varphi_{k}\left(\operatorname{FCP}\left(\mathbf{n}-e_{k}\right)\right)
$$

Note, that if exactly one $n_{i}=0$, we have to define $\operatorname{FCP}(\mathbf{n})$ to consist of "the empty array" and extend the definitions of the φ_{k} appropriately.

Part 3

Restricting to the 2-dimensional case

Symmetry classes of FCPs I

There are many interesting symmetry classes of plane partitions. Is the same true for fully complementary plane partitions?

Symmetry classes of FCPs I

There are many interesting symmetry classes of plane partitions. Is the same true for fully complementary plane partitions?

symmetric	\Rightarrow	quasi symmetric
cyclically symmetric	\Rightarrow	$?$
self-complementary	\Rightarrow	self-complementary
transpose-complementary	\Rightarrow	quasi transpose-complementary

Symmetry classes of FCPs II

A plane partition π inside an (a, a, c)-box is called

- quasi-symmetric if

$$
\pi_{i, j}=\pi_{j, i},
$$

for all $1 \leq i, j \leq a$ with $i+j \neq a+1$,

- quasi transpose-complementary if

$$
\pi_{i, j}+\pi_{a+1-j, a+1-i}=c
$$

holds for all $1 \leq i, j \leq n$ with $i+j \neq a+1$.

Symmetry classes of FCPs III

Proposition

(1) Denote by $\mathrm{QS}(a, c)$ the set of quasi symmetric fully complementary plane partitions (FCPP) inside an (a, a, c)-box, then holds

$$
\sum_{a, c \geq 0}|\operatorname{QS}(a, c)| x^{a} y^{c}=\frac{x+y-2 x^{2}-x y}{(1-x)(1-2 x-y)}
$$

(2) The number of self-complementary FCPPs inside an $(2 a, 2 b, 2 c)$-box is $\binom{a+b}{a}$.
(3) The number of quasi transpose-complementary FCPPs inside an $(2 a, 2 a, 2 c)$-box is 2^{a}.

Quasi transpose-complementary PPs

Theorem

The number of quasi transpose-symmetric plane partitions inside an (a, a, c)-box is equal to the number of symmetric plane partitions inside an (a, a, c)-box.

As a side product of the proof of the above theorem, we stumble upon the relation

$$
2^{n-1} \operatorname{TCPP}(n, n, 2 c)=\operatorname{SPP}(n-1, n-1,2 c+1)
$$

where TCPP denotes the number of transpose-complementary plane partitions and SPP the number of symmetric plane partitions.

Proof idea

$$
\begin{array}{lllll}
6 & 6 & 6 & 5 & 4 \\
6 & 5 & 3 & 3 & 1 \\
6 & 5 & 3 & 3 & 0 \\
6 & 4 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}
$$

Proof idea

$$
\begin{array}{lllll}
6 & 6 & 6 & 5 & 4 \\
6 & 5 & 3 & 3 & 1 \\
6 & 5 & 3 & 3 & 0 \\
6 & 4 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}
$$

Proof idea

6	6	6	5	4
6	5	3	3	1
6	5	3	3	0
6	4	1	1	0
5	0	0	0	0

- We can restrict ourselves to the "fundamental domain" of the region, by reflecting diagonal entries if necessary and count them with weight 2 if reflected.

Proof idea

$$
\begin{array}{lllll}
6 & 6 & 6 & 5 & 4 \\
6 & 5 & 3 & 3 & 1 \\
6 & 5 & 3 & 3 & 0 \\
6 & 4 & 1 & 1 & 0 \\
5 & 0 & 0 & 0 & 0
\end{array}
$$

- We can restrict ourselves to the "fundamental domain" of the region, by reflecting diagonal entries if necessary and count them with weight 2 if reflected.
- Use the typical lattice path approach; however the first east step might have weight 2.

Some conjectures I

Conjecture (1)

Denote by $\operatorname{qspp}(a, c)$ the number of quasi symmetric plane partitions inside an (a, a, c)-box. Then,

$$
\operatorname{qspp}(a, c-a)= \begin{cases}c\binom{c+a-1}{2 a-1} p_{a}(c) & a \text { is even } \\ \binom{c+a-1}{2 a-1} p_{a}(c) & a \text { is odd }\end{cases}
$$

where $p_{a}(c)$ is an irreducible polynomial in $\mathbb{Q}[c]$ that is even, i.e., $p_{a}(c)=p_{a}(-c)$.

We call a plane partition π inside an (a, a, c)-box quasi transpose complementary of second kind (QTC2), if

$$
\pi_{i, j}+\pi_{a+1-j, a+1-i}=c
$$

for all $1 \leq i, j \leq a$ with $i \neq j$.
Conjecture (2)
Then for $a \geq 2$, the number $\operatorname{qtcpp}_{2}(a, c)$ of $Q T C 2$ plane partitions inside an (a, a, c)-box is given by

$$
\operatorname{qtcpp}_{2}\left(a, c-\frac{a}{2}\right)= \begin{cases}c\binom{c+\frac{a}{2}-1}{\frac{a}{2}-1} p_{a}(c) & a \text { is even } \\ \binom{a+\frac{a}{2}-1}{a-1} p_{a}(c) & a \text { is odd }\end{cases}
$$

where $p_{a}(c)$ is an irreducible polynomial in $\mathbb{Q}[c]$ that is even.

Conjecture (3)

Denote by qtcspp $2(a, c)$ the number of symmetric QTC2 plane partitions. Then for $a \geq 2$,

$$
\operatorname{qtcspp}_{2}\left(a, c-\frac{a}{2}\right)= \begin{cases}c\binom{c+\frac{a}{2}-1}{\frac{a}{2}-1} p_{a}(c) & a \text { is even, } \\ \binom{+\frac{a}{2}-1}{a-1} p_{a}(c) & a \text { is odd, }\end{cases}
$$

where $p_{a}(c)$ is an irreducible polynomial in $\mathbb{Q}[c]$ that is even.

