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Classical GT pattern

A Gelfand-Tsetlin pattern (GT) is a triangular array of integers of
the form

T1,1

T2,1 T2,2

Tn,1 Tn,n

Ti ,i

Ti+1,j Ti+1,j+1≤
≤ ≤

The weight of a GT pattern T is xT :=
n∏

i=1
x

i∑
j=1

(Ti,j )−
i−1∑
j=1

(Ti−1,j )

i .

For a partition λ = (λ1, . . . , λn), the Schur polynomial sλ is

sλ(x) =
∑
T

xT ,

where the sum is over all GTs T with bottom row λn, λn−1, . . . , λ1.
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An Example

For λ = (2, 2, 1) we have

1

1 2

1 2 2

x1x
2
2x

2
3

2

1 2

1 2 2

x21x2x
2
3

2

2 2

1 2 2

x21x
2
2x3

s(2,2,1)(x1, x2, x3) = x1x
2
2x

2
3 + x21x2x

2
3 + x21x

2
2x3.
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Arrowed Gelfand Tsetlin pattern

An arrowed Gelfand-Tsetlin pattern is a GT pattern (Ti ,j) together
with a decoration of the entries by the symbols ∅,↖,↗,↖↗ such
that

Ti+1,j = Ti ,j and Ti+1,j is decorated by ↗ or ↖↗,

⇔
Ti+1,j+1 = Ti ,j and Ti+1,j+1 is decorated by ↖ or ↖↗ .

1 3 4 6 8

2 3 5 7

2 5 5

3 5

4

↗ ↖ ↖ ↗

↗

↗ ↖ ↗

↖

↖ ↗
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The weight of an AGT

We call the following local configurations special little triangles

x x

x
↗ ↖

x x

x
↖ ↗ ↖

x x

x
↗ ↖ ↗

x x

x
↖ ↗ ↖ ↗

The sign of an AGT T is

sgn(T ) = (−1)# of special little triangles in T .

We define the weight W (A) of A as

sgn(T ) · t#∅u#↗v#↖w#↖↗ · xT
n∏

i=1

x#↗ in row i−#↖ in row i
i .
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An example

sgn(T ) · t#∅u#↗v#↖w#↖↗ · xT
n∏

i=1

x#↗ in row i−#↖ in row i
i .

The arrowed Gelfand–Tsetlin pattern

1 3 4 6 8

2 3 5 7

2 5 5

3 5

4

↗ ↖ ↖ ↗

↗

↗ ↖ ↗

↖

↖ ↗

has weight −t7u3v2w3x41x
3
2x

5
3x

6
4x

5
5 .
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A multivariate generating function for AGTs

Denote by Ex the shift operator Ex f (x) = f (x + 1).

Theorem (Fischer – S.A., 2023)

The weighted enumeration Aλ(t, u, v ,w ; x) of all AGTs with
bottom row (λn, λn−1, . . . , λ1) is given by

Aλ(t, u, v ,w ; x) =
n∏

i=1

(
uxi + vx−1

i + w + t
)

×
∏

1≤i<j≤n

(
t id+uEλj

+ vE−1
λi

+ wEλj
E−1
λi

)
sλ(x).
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Known specialisations

t#∅u#↗v#↖w#↖↗

Aλ(1, 0, 0, 0; x) = sλ(x),

Aλ(0, 0, 1, 0; x) = s(λ1−n,λ2−n+1,...,λn−1)(x),

Aλ(1, 0, 0,−t; x) yields up to a multiplicative constant the
Hall–Littlewood polynomials,

A(n,n−1,...,1)(0, u, v ,w ; x) yields a weighted enumeration of
ASMs,

A(2n,2n−2,...,2)(0, u, v ,w ; x) yields a weighted enumeration of
vertically symmetric ASMs,

For this talk we are interested in

Aλ(1, 1, 1,−1; x)|xi=1 and Aλ(1, 1, 1, 0; x)|xi=1.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Known specialisations

t#∅u#↗v#↖w#↖↗

Aλ(1, 0, 0, 0; x) = sλ(x),

Aλ(0, 0, 1, 0; x) = s(λ1−n,λ2−n+1,...,λn−1)(x),

Aλ(1, 0, 0,−t; x) yields up to a multiplicative constant the
Hall–Littlewood polynomials,

A(n,n−1,...,1)(0, u, v ,w ; x) yields a weighted enumeration of
ASMs,

A(2n,2n−2,...,2)(0, u, v ,w ; x) yields a weighted enumeration of
vertically symmetric ASMs,

For this talk we are interested in

Aλ(1, 1, 1,−1; x)|xi=1 and Aλ(1, 1, 1, 0; x)|xi=1.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Known specialisations

t#∅u#↗v#↖w#↖↗

Aλ(1, 0, 0, 0; x) = sλ(x),

Aλ(0, 0, 1, 0; x) = s(λ1−n,λ2−n+1,...,λn−1)(x),

Aλ(1, 0, 0,−t; x) yields up to a multiplicative constant the
Hall–Littlewood polynomials,

A(n,n−1,...,1)(0, u, v ,w ; x) yields a weighted enumeration of
ASMs,

A(2n,2n−2,...,2)(0, u, v ,w ; x) yields a weighted enumeration of
vertically symmetric ASMs,

For this talk we are interested in

Aλ(1, 1, 1,−1; x)|xi=1 and Aλ(1, 1, 1, 0; x)|xi=1.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



Known specialisations

t#∅u#↗v#↖w#↖↗

Aλ(1, 0, 0, 0; x) = sλ(x),

Aλ(0, 0, 1, 0; x) = s(λ1−n,λ2−n+1,...,λn−1)(x),

Aλ(1, 0, 0,−t; x) yields up to a multiplicative constant the
Hall–Littlewood polynomials,

A(n,n−1,...,1)(0, u, v ,w ; x) yields a weighted enumeration of
ASMs,

A(2n,2n−2,...,2)(0, u, v ,w ; x) yields a weighted enumeration of
vertically symmetric ASMs,

For this talk we are interested in

Aλ(1, 1, 1,−1; x)|xi=1 and Aλ(1, 1, 1, 0; x)|xi=1.

Florian Schreier-Aigner (-1)-Enumerations of arrowed Gelfand–Tsetlin patterns



The main results

Theorem (Fischer – S.A.)

For positive integers n,m we have∑
0≤λn<λn−1<...<λ1≤m

Aλ(1, 1, 1,−1; 1)

= 2n
n∏

i=1

(m − n + 3i + 1)i−1(m − n + i + 1)i(
m−n+i+2

2

)
i−1

(i)i
,

and

∑
0≤λn<λn−1<...<λ1≤m

Aλ(1, 1, 1, 0; 1)

= 3(
n+1
2 )

n∏
i=1

(2n +m + 2− 3i)i
(i)i

.
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The case m = n − 1

Setting m = n − 1 implies λ = (n − 1, n − 2, . . . , 1, 0) and hence

2−nA(n−1,n−2,...,1,0)(1, 1, 1,−1; 1) = 2n(n−1)/2
n−1∏
i=0

(4i + 2)!

(n + 2j + 1)!

= 1, 4, 60, 3328, 678912, . . . .

These numbers were conjectured by Di Francesco to enumerate

configurations of the 20 vertex model in a certain domain, and

domino tilings of Aztec-like triangles respectively.

This was proved by Koutschan and extended in a recent preprint
by Corteel, Huang and Krattenthaler.
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A signless formulation

For a GT pattern A define r(A) as the number of entries which are
not equal to their north-east and north-west neighbours.

Theorem (Fischer – S.A.)

The (−1)-enumeration of AGT pattern with bottom row λ is equal
to the weighted enumeration of GT pattern with bottom row λ
where only the bottom row can contain three equal entries with
respect to the weight 2r(A).

We also have an analogous theorem in the w = 0 case.
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Proof I

Assume there are four equal entries in one row. We regard the
possible decorations of the top most such configuration:

x x x x

x x x

* *

* *

·(−1)

∅ ∅
·(−1)

x x x

x x x

*

*

·(−1)

∅ ∅
·(−1)
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Proof II

three equal entries,

not in bottom row

x x

x x x

∅ ∅
·(−1)

topmost

special little triangle

x x

x

·(−1)

We can therefore assume:

only the bottom row contains three equal entries,

there are no special little triangles.
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Proof III

Finally we regard the possible decorations of a single entry which
do not yield a special little triangle.

x

x x

∅

x

x

∅

x

x

∅

x

∅
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Reminder of the main results

Theorem (Fischer – S.A.)

For positive integers n,m we have∑
0≤λn<λn−1<...<λ1≤m

Aλ(1, 1, 1,−1; 1)

= 2n
n∏

i=1

(m − n + 3i + 1)i−1(m − n + i + 1)i(
m−n+i+2

2

)
i−1

(i)i
,

and

∑
0≤λn<λn−1<...<λ1≤m

Aλ(1, 1, 1, 0; 1)

= 3(
n+1
2 )

n∏
i=1

(2n +m + 2− 3i)i
(i)i

.
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Overview of the proof of the main results

1 Obtain a determinant

This is done by using a generalised bounded Littlewood
identity.

2 Guess a (partial) LU decomposition.

Actually we need to do a case distinction: m even/odd.
Avoid this by showing that it is a polynomial in m.

3 Proof the LU decomposition

It “suffices” to prove a hypergeometric triple sum.
For this we use Mathematica implementations of Sister
Celine’s algorithm and creative telescoping
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Reminder

We have the operator formula for evaluating Aλ

Aλ(t, u, v ,w ; x) =
n∏

i=1

(
uxi + vx−1

i + w + t
)

×
∏

1≤i<j≤n

(
t id+uEλj

+ vE−1
λi

+ wEλj
E−1
λi

)
sλ(x).

The classical Littlewood identity is

∑
λ

sλ(x) =
n∏

i=1

1

1− xi

∏
1≤i<j≤n

1

1− xixj
,

where x = (x1, . . . , xn).
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A generalised bounded Littlewood identity

Theorem (Fischer, 2023+)

For positive integers n,m we have∑
0≤λn<λn−1<...<λ1≤m

Aλ(1, 1, 1,w ; 1) =

n∏
i=1

(
x−1
i + 1 + w + xi

) det
1≤i ,j≤n

(
x j−1
i fj(xi )− xm+2n−j

i fj(x
−1
i )
)

n∏
i=1

(1− xi )
∏

1≤i<j≤n
(1− xixj)(xj − xi )

,

where fj(x) = (1 + x)j−1(1 + wx)n−j .

For m = 2ℓ+ 1 we rewrite the above using the complete
homogeneous symmetric polynomials hk and set x1 = . . . = xn = 1
. . .
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A simple determinant

. . . and obtain

(3 + w)n2n det
1≤i ,j≤n

(∑
p,q

wn−j−q(−1)j

×
(
j − 1

p

)(
n − j

q

)(
p − q − ℓ+ i − 2

2i − 1

))
.

For w = −1 this can be simplified by using the Chu-Vandermonde
identity

22n det
1≤i ,j≤n

(∑
p

(
n − j

p

)(
ℓ− p + i

2i − j

))
.
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Guessing the LU decomposition

Define ai ,j =
∑

p

(n−j
p

)(
ℓ−p+i
2i−j

)
and

xi ,j =



(−1)i+1 (j)j
(2ℓ− n + 3j + 2)j−1(2ℓ− n + i + 2)j

×
∑
t

(
22i−4t−n(ℓ− n/2 + j/2 + t + 3/2)i−2t−1

×
(i − j − 2t + 1)2t(i − 2j + 1)j−1−t

(1)t(1)i−2t−1

) i ≤ j ,

0 otherwise.

Lemma

We have
n∑

k=1

ai ,kxk,j =

{
1 i = j ,

0 i < j .
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Next steps

The expression in the sum can be simplified by using
transformations for hypergeometric series (the package HYP
by Krattenthaler was very useful for this!).

It is then immediate that the expression is a polynomial in n
and rational function in ℓ.

However, the triple sum can not be evaluated by summation
rules for hypergeometric series (as far as we are aware of).

We use two algorithms (described next) which help us to
prove the Lemma.
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Idea of Sister Celine’s method

Given a function F (n) =
∑

k f (n, k) which we want to
evaluate,

in our case: we want to show F (n) = 0 or F (n) = 1,
f (n, k) consists of Pochhammer symbols.

Assume we can find a recursion for f of the form∑
r ,s

ar ,s(n)f (n − r , k − s) = 0,

then we obtain

0 =
∑
k

(∑
r ,s

ar ,s(n)f (n − r , k − s)

)
=
∑
r ,s

ar ,sF (n − r).
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Basic idea of creative telescoping

Given a function F (n) =
∑j

k=i f (n, k) which we want to
evaluate.

Assume we can find a recursion

a(n)f (n, k) + b(n)f (n + 1, k) = g(n, k + 1)− g(n, k),

then we obtain for F (n)

a(n)F (n) + b(n)F (n + 1) = g(n, j + 1)− g(n, i).
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Careful checking is necessary!

Let f (n) = (n + 1)n and remember

(x)n =


(x)(x + 1) · · · (x + n − 1) n > 0,

1 n = 0,
1

(x−1)(x−2)···(x+n) n < 0.

The above algorithms will yield the recursion

f (n) = 2(2n − 1)f (n − 1),

which is however only true if n ̸= 0.

More details on the proof.
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The triple sum

∑
s,t

1≤k≤j

(−1)1+k+s+t22−k−s(k − n)s(−r)k−1+2t(j − t)j−t−1

×
(−1−2i+4k−n−r+2s

2

)
2i−k−s

(2− 2j + r)j−1−2t

(1)2i−k−s(1)s(1)k−1−2t(1)t

=

{
(−r)2j−1(−1+3j−r)j−1

(j)j
, 0 < i = j ,

0, 0 < i < j

Call f (n, r , i , j , k , s, t) the summand in the above sum
(ℓ = n−r−3

2 ).

Note that we can assume t < j .
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A recursion for f

Using the computer, we found for j ̸= t the recursion

(3j − r − 2)(r + 1)4f (n, r , i , j , k , s, t) =

2(2j + 1)(2− 2j + r)2f (n + 2, r + 4, i + 1, j + 1, k + 2, s, t + 1)

+ (j − r − 3)f (n + 2, r + 4, i + 1, j + 2, k + 2, s, t + 1),

which can be verified by hand.

Note that the polynomials in front of the f ’s do not depend on
k, s, t.
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Summing over k , s, t

Define

g(n, r , i , j , k) =
∑
s,t

f (n, r , i , j , k , s, t),

h(n, r , i , j) =
∑

1≤k≤j

g(n, r , i , j , k),

then the above implies

(3j − r − 2)(r + 1)4h(n, r , i , j) = 2(2j + 1)(2j − r − 3)2

×
(
h(n+ 2, r + 4, i + 1, j + 1)− g(n+ 2, r + 4, i + 1, j + 1, j + 2)

)
+ (j − r − 3)h(n + 2, r + 4, i + 1, j + 2).

We show in an extra step g(n, r , i , j , j + 1) = 0 which simplifies
the above.
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An auxiliary result

We use creative telescoping to prove

h(n, r , i , j) = 0,

for j ≥ 2i .

The involved polynomial coefficients have up to 1168 monomials.
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Two inductions

For i < j we need to show h(n, r , i , j) = 0. We use the previous
recursion

(3j − r − 2)(r + 1)4h(n, r , i , j)

0

=

2(2j + 1)(2j − r − 3)2h(n + 2, r + 4, i + 1, j + 1)

+ (j − r − 3)h(n + 2, r + 4, i + 1, j + 2).

and induction on i (starting with i = 1) and then j − i (starting
with j ≥ 2i).

The base case follows from the auxiliary result.

The first induction hypothesis implies h(n, r , i , j) = 0.

The second induction hypothesis implies
h(n + 2, r + 4, i + 1, j + 2) = 0.

We obtain the assertion since r is a variable.
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A signless formulation for w = 0

Theorem (Fischer – S.A.)

The (−1)-enumeration of AGT pattern with bottom row λ is equal
to the weighted enumeration of GT pattern with bottom row λ
where each entry appears at most twice in a row and entries are
decorated by {∅,↗,↖} such that the following is satisfied:

An entry may only point to entries with different values,

two equal entries in a row are not allowed to be decorated
both by ∅.

Back to previous slide
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