(-1)-Enumerations of arrowed Gelfand-Tsetlin patterns

Florian Schreier-Aigner
joint work with I. Fischer

Overview

- Arrowed Gelfand-Tsetlin patterns
- A (-1)-enumeration of arrowed GT patterns
- The main results
- Signless versions of our results
- Proof Sketch
- A generalised bounded Littlewood identity
- Determinant manipulations
- Sister Celine's algorithm and creative telescoping

Classical GT pattern

A Gelfand-Tsetlin pattern (GT) is a triangular array of integers of the form

$$
T_{n, 1} \cdots \cdots \cdots \cdots \cdots \cdots \cdots T_{n, n}
$$

The weight of a GT pattern T is $\mathbf{x}^{T}:=\prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i}\left(T_{i, j}\right)-\sum_{j=1}^{i-1}\left(T_{i-1, j}\right)}$.

Classical GT pattern

A Gelfand-Tsetlin pattern (GT) is a triangular array of integers of the form

The weight of a GT pattern T is $\mathbf{x}^{T}:=\prod_{i=1}^{n} x_{i}^{\sum_{j=1}^{i}\left(T_{i, j}\right)-\sum_{j=1}^{i-1}\left(T_{i-1, j}\right)}$.
For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the Schur polynomial s_{λ} is

$$
s_{\lambda}(\mathbf{x})=\sum_{T} \mathbf{x}^{T}
$$

where the sum is over all GTs T with bottom row $\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}$.

An Example

For $\lambda=(2,2,1)$ we have

Arrowed Gelfand Tsetlin pattern

An arrowed Gelfand-Tsetlin pattern is a GT pattern ($T_{i, j}$) together with a decoration of the entries by the symbols $\emptyset, \nwarrow, \nearrow, \Varangle$ such that

$$
\begin{gathered}
T_{i+1, j}=T_{i, j} \text { and } T_{i+1, j} \text { is decorated by } \nearrow \text { or } \nwarrow \text {, } \\
T_{i+1, j+1}=T_{i, j} \text { and } T_{i+1, j+1} \text { is decorated by } \nwarrow \text { or } \nwarrow \text {. }
\end{gathered}
$$

The weight of an AGT

We call the following local configurations special little triangles

The sign of an AGT T is

$$
\operatorname{sgn}(T)=(-1)^{\# \text { of special little triangles in } T}
$$

We define the weight $W(A)$ of A as

$$
\operatorname{sgn}(T) \cdot t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \cdot \mathbf{x}^{T} \prod_{i=1}^{n} x_{i}^{\# \nearrow} \text { in row } \mathrm{i}-\# \nwarrow \text { in row } \mathrm{i}
$$

An example

$$
\operatorname{sgn}(T) \cdot t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \cdot \mathbf{x}^{T} \prod_{i=1}^{n} x_{i}^{\# \nearrow} \text { in row } \mathrm{i}-\# \nwarrow \text { in row } \mathrm{i}
$$

The arrowed Gelfand-Tsetlin pattern

has weight $-t^{7} u^{3} v^{2} w^{3} x_{1}^{4} x_{2}^{3} x_{3}^{5} x_{4}^{6} x_{5}^{5}$.

A multivariate generating function for AGTs

Denote by E_{x} the shift operator $E_{x} f(x)=f(x+1)$.
Theorem (Fischer - S.A., 2023)
The weighted enumeration $\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x})$ of all $A G T s$ with bottom row $\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$ is given by

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}^{n}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x})
\end{aligned}
$$

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nearrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(1,0,0,-t ; \mathbf{x})$ yields up to a multiplicative constant the Hall-Littlewood polynomials,

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(1,0,0,-t ; \mathbf{x})$ yields up to a multiplicative constant the Hall-Littlewood polynomials,
- $\mathcal{A}_{(n, n-1, \ldots, 1)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of ASMs,
- $\mathcal{A}_{(2 n, 2 n-2, \ldots, 2)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of vertically symmetric ASMs,

Known specialisations

$$
t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow}
$$

- $\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(0,0,1,0 ; \mathbf{x})=s_{\left(\lambda_{1}-n, \lambda_{2}-n+1, \ldots, \lambda_{n}-1\right)}(\mathbf{x})$,
- $\mathcal{A}_{\lambda}(1,0,0,-t ; \mathbf{x})$ yields up to a multiplicative constant the Hall-Littlewood polynomials,
- $\mathcal{A}_{(n, n-1, \ldots, 1)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of ASMs,
- $\mathcal{A}_{(2 n, 2 n-2, \ldots, 2)}(0, u, v, w ; \mathbf{x})$ yields a weighted enumeration of vertically symmetric ASMs,
For this talk we are interested in
- $\left.\mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{x})\right|_{x_{i}=1}$ and $\left.\mathcal{A}_{\lambda}(1,1,1,0 ; \mathbf{x})\right|_{x_{i}=1}$.

The main results

Theorem (Fischer - S.A.)
For positive integers n, m we have

$$
\begin{aligned}
\sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} & \mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{1}) \\
= & 2^{n} \prod_{i=1}^{n} \frac{(m-n+3 i+1)_{i-1}(m-n+i+1)_{i}}{\left(\frac{m-n+i+2}{2}\right)_{i-1}(i)_{i}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1,0 ; 1) \\
&=3^{\binom{n+1}{2}} \prod_{i=1}^{n} \frac{(2 n+m+2-3 i)_{i}}{(i)_{i}} .
\end{aligned}
$$

The case $m=n-1$

Setting $m=n-1$ implies $\lambda=(n-1, n-2, \ldots, 1,0)$ and hence

$$
\begin{aligned}
2^{-n} \mathcal{A}_{(n-1, n-2, \ldots, 1,0)}(1,1,1,-1 ; \mathbf{1}) & =2^{n(n-1) / 2} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 j+1)!} \\
& =1,4,60,3328,678912, \ldots
\end{aligned}
$$

The case $m=n-1$

Setting $m=n-1$ implies $\lambda=(n-1, n-2, \ldots, 1,0)$ and hence

$$
\begin{aligned}
2^{-n} \mathcal{A}_{(n-1, n-2, \ldots, 1,0)}(1,1,1,-1 ; \mathbf{1}) & =2^{n(n-1) / 2} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 j+1)!} \\
& =1,4,60,3328,678912, \ldots
\end{aligned}
$$

These numbers were conjectured by Di Francesco to enumerate

- configurations of the 20 vertex model in a certain domain, and
- domino tilings of Aztec-like triangles respectively.

The case $m=n-1$

Setting $m=n-1$ implies $\lambda=(n-1, n-2, \ldots, 1,0)$ and hence

$$
\begin{aligned}
2^{-n} \mathcal{A}_{(n-1, n-2, \ldots, 1,0)}(1,1,1,-1 ; \mathbf{1}) & =2^{n(n-1) / 2} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 j+1)!} \\
& =1,4,60,3328,678912, \ldots
\end{aligned}
$$

These numbers were conjectured by Di Francesco to enumerate

- configurations of the 20 vertex model in a certain domain, and
- domino tilings of Aztec-like triangles respectively.

This was proved by Koutschan and extended in a recent preprint by Corteel, Huang and Krattenthaler.

A signless formulation

For a GT pattern A define $r(A)$ as the number of entries which are not equal to their north-east and north-west neighbours.

Theorem (Fischer - S.A.)
The (-1)-enumeration of AGT pattern with bottom row λ is equal to the weighted enumeration of GT pattern with bottom row λ where only the bottom row can contain three equal entries with respect to the weight $2^{r(A)}$.

We also have an analogous theorem in the $w=0$ case.

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

*

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof I

Assume there are four equal entries in one row. We regard the possible decorations of the top most such configuration:

Proof II

three equal entries, not in bottom row

Proof II

three equal entries, not in bottom row

Proof II

three equal entries, not in bottom row

Proof II

three equal entries, not in bottom row

topmost special little triangle

Proof II

three equal entries, not in bottom row

Proof II

three equal entries, not in bottom row

topmost
 special little triangle

Proof II

three equal entries, not in bottom row

> topmost
> special little triangle

We can therefore assume:

- only the bottom row contains three equal entries,
- there are no special little triangles.

Proof III

Finally we regard the possible decorations of a single entry which do not yield a special little triangle.

Reminder of the main results

Theorem (Fischer - S.A.)
For positive integers n, m we have

$$
\begin{aligned}
\sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} & \mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{1}) \\
& =2^{n} \prod_{i=1}^{n} \frac{(m-n+3 i+1)_{i-1}(m-n+i+1)_{i}}{\left(\frac{m-n+i+2}{2}\right)_{i-1}(i)_{i}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1,0 ; 1) \\
&=3^{\binom{n+1}{2}} \prod_{i=1}^{n} \frac{(2 n+m+2-3 i)_{i}}{(i)_{i}} .
\end{aligned}
$$

Overview of the proof of the main results

(1) Obtain a determinant
(2) Guess a (partial) LU decomposition.
(3) Proof the LU decomposition

Overview of the proof of the main results

(1) Obtain a determinant

- This is done by using a generalised bounded Littlewood identity.
(2) Guess a (partial) LU decomposition.
(3) Proof the LU decomposition

Overview of the proof of the main results

(1) Obtain a determinant

- This is done by using a generalised bounded Littlewood identity.
(2) Guess a (partial) LU decomposition.
- Actually we need to do a case distinction: m even/odd.
- Avoid this by showing that it is a polynomial in m.
(3) Proof the LU decomposition

Overview of the proof of the main results

(1) Obtain a determinant

- This is done by using a generalised bounded Littlewood identity.
(2) Guess a (partial) LU decomposition.
- Actually we need to do a case distinction: m even/odd.
- Avoid this by showing that it is a polynomial in m.
(3) Proof the LU decomposition
- It "suffices" to prove a hypergeometric triple sum.
- For this we use Mathematica implementations of Sister Celine's algorithm and creative telescoping

Reminder

We have the operator formula for evaluating \mathcal{A}_{λ}

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}^{n}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x}) .
\end{aligned}
$$

Reminder

We have the operator formula for evaluating \mathcal{A}_{λ}

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x}) & =\prod_{i=1}^{n}\left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
\times & \prod_{1 \leq i<j \leq n}\left(t \mathrm{id}+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x})
\end{aligned}
$$

The classical Littlewood identity is

$$
\sum_{\lambda} s_{\lambda}(\mathbf{x})=\prod_{i=1}^{n} \frac{1}{1-x_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-x_{i} x_{j}}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

A generalised bounded Littlewood identity

Theorem (Fischer, 2023+)

For positive integers n, m we have

$$
\begin{aligned}
& \sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1, w ; \mathbf{1})= \\
& \prod_{i=1}^{n}\left(x_{i}^{-1}+1+w+x_{i}\right) \frac{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{j-1} f_{j}\left(x_{i}\right)-x_{i}^{m+2 n-j} f_{j}\left(x_{i}^{-1}\right)\right)}{\prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-x_{i} x_{j}\right)\left(x_{j}-x_{i}\right)},
\end{aligned}
$$

where $f_{j}(x)=(1+x)^{j-1}(1+w x)^{n-j}$.
For $m=2 \ell+1$ we rewrite the above using the complete homogeneous symmetric polynomials h_{k} and set $x_{1}=\ldots=x_{n}=1$

A simple determinant

... and obtain

$$
\begin{aligned}
(3+w)^{n} 2^{n} \operatorname{det}_{1 \leq i, j \leq n} & \left(\sum_{p, q} w^{n-j-q}(-1)^{j}\right. \\
& \left.\times\binom{ j-1}{p}\binom{n-j}{q}\binom{p-q-\ell+i-2}{2 i-1}\right)
\end{aligned}
$$

A simple determinant

... and obtain

$$
\begin{aligned}
(3+w)^{n} 2^{n} \operatorname{det}_{1 \leq i, j \leq n} & \left(\sum_{p, q} w^{n-j-q}(-1)^{j}\right. \\
& \left.\times\binom{ j-1}{p}\binom{n-j}{q}\binom{p-q-\ell+i-2}{2 i-1}\right)
\end{aligned}
$$

For $w=-1$ this can be simplified by using the Chu-Vandermonde identity

$$
2^{2 n} \operatorname{det}_{1 \leq i, j \leq n}\left(\sum_{p}\binom{n-j}{p}\binom{\ell-p+i}{2 i-j}\right) .
$$

Guessing the LU decomposition

Define $a_{i, j}=\sum_{p}\binom{n-j}{p}\binom{\ell-p+i}{2 i-j}$ and

$$
x_{i, j}=\left\{\begin{array}{l}
(-1)^{i+1} \frac{(j)_{j}}{(2 \ell-n+3 j+2)_{j-1}(2 \ell-n+i+2)_{j}} \\
\times \sum_{t}\left(2^{2 i-4 t-n}(\ell-n / 2+j / 2+t+3 / 2)_{i-2 t-1} \quad i \leq j,\right. \\
\left.\times \frac{(i-j-2 t+1)_{2 t}(i-2 j+1)_{j-1-t}}{(1)_{t}(1)_{i-2 t-1}}\right)
\end{array}\right.
$$

otherwise.

Lemma

We have

$$
\sum_{k=1}^{n} a_{i, k} x_{k, j}= \begin{cases}1 & i=j \\ 0 & i<j\end{cases}
$$

Next steps

- The expression in the sum can be simplified by using transformations for hypergeometric series (the package HYP by Krattenthaler was very useful for this!).
- It is then immediate that the expression is a polynomial in n and rational function in ℓ.

Next steps

- The expression in the sum can be simplified by using transformations for hypergeometric series (the package HYP by Krattenthaler was very useful for this!).
- It is then immediate that the expression is a polynomial in n and rational function in ℓ.
- However, the triple sum can not be evaluated by summation rules for hypergeometric series (as far as we are aware of).

Next steps

- The expression in the sum can be simplified by using transformations for hypergeometric series (the package HYP by Krattenthaler was very useful for this!).
- It is then immediate that the expression is a polynomial in n and rational function in ℓ.
- However, the triple sum can not be evaluated by summation rules for hypergeometric series (as far as we are aware of).
- We use two algorithms (described next) which help us to prove the Lemma.

Idea of Sister Celine's method

- Given a function $F(n)=\sum_{k} f(n, k)$ which we want to evaluate,
- in our case: we want to show $F(n)=0$ or $F(n)=1$,
- $f(n, k)$ consists of Pochhammer symbols.

Idea of Sister Celine's method

- Given a function $F(n)=\sum_{k} f(n, k)$ which we want to evaluate,
- in our case: we want to show $F(n)=0$ or $F(n)=1$,
- $f(n, k)$ consists of Pochhammer symbols.
- Assume we can find a recursion for f of the form

$$
\sum_{r, s} a_{r, s}(n) f(n-r, k-s)=0
$$

then we obtain

$$
0=\sum_{k}\left(\sum_{r, s} a_{r, s}(n) f(n-r, k-s)\right)=\sum_{r, s} a_{r, s} F(n-r) .
$$

Basic idea of creative telescoping

- Given a function $F(n)=\sum_{k=i}^{j} f(n, k)$ which we want to evaluate.
- Assume we can find a recursion

$$
a(n) f(n, k)+b(n) f(n+1, k)=g(n, k+1)-g(n, k),
$$

- then we obtain for $F(n)$

$$
a(n) F(n)+b(n) F(n+1)=g(n, j+1)-g(n, i)
$$

Careful checking is necessary!

Let $f(n)=(n+1)_{n}$ and remember

$$
(x)_{n}= \begin{cases}(x)(x+1) \cdots(x+n-1) & n>0 \\ 1 & n=0 \\ \frac{1}{(x-1)(x-2) \cdots(x+n)} & n<0 .\end{cases}
$$

The above algorithms will yield the recursion

$$
f(n)=2(2 n-1) f(n-1),
$$

which is however only true if $n \neq 0$.

More details on the proof.

I'm currently looking for a PostDoc position:)

The triple sum

$$
\begin{gathered}
\sum_{\substack{s, t \\
1 \leq k \leq j}}(-1)^{1+k+s+t} 2^{2-k-s}(k-n)_{s}(-r)_{k-1+2 t}(j-t)_{j-t-1} \\
\times \frac{\left(\frac{-1-2 i+4 k-n-r+2 s}{2}\right)_{2 i-k-s}(2-2 j+r)_{j-1-2 t}}{(1)_{2 i-k-s}(1)_{s}(1)_{k-1-2 t}(1)_{t}} \\
= \begin{cases}\frac{(-r)_{2 j-1}(-1+3 j-r)_{j-1}}{(j)_{j}}, & 0<i=j \\
0, & 0<i<j\end{cases}
\end{gathered}
$$

Call $f(n, r, i, j, k, s, t)$ the summand in the above sum ($\ell=\frac{n-r-3}{2}$).

Note that we can assume $t<j$.

A recursion for f

Using the computer, we found for $j \neq t$ the recursion

$$
\begin{aligned}
& \quad(3 j-r-2)(r+1)_{4} f(n, r, i, j, k, s, t)= \\
& 2(2 j+1)(2-2 j+r)_{2} f(n+2, r+4, i+1, j+1, k+2, s, t+1) \\
& \quad+(j-r-3) f(n+2, r+4, i+1, j+2, k+2, s, t+1)
\end{aligned}
$$

which can be verified by hand.
Note that the polynomials in front of the f 's do not depend on k, s, t.

Summing over k, s, t

Define

$$
\begin{aligned}
g(n, r, i, j, k) & =\sum_{s, t} f(n, r, i, j, k, s, t), \\
h(n, r, i, j) & =\sum_{1 \leq k \leq j} g(n, r, i, j, k),
\end{aligned}
$$

then the above implies

$$
\begin{aligned}
& \quad(3 j-r-2)(r+1)_{4} h(n, r, i, j)=2(2 j+1)(2 j-r-3)_{2} \\
& \times(h(n+2, r+4, i+1, j+1)-g(n+2, r+4, i+1, j+1, j+2)) \\
& \quad+(j-r-3) h(n+2, r+4, i+1, j+2) .
\end{aligned}
$$

Summing over k, s, t

Define

$$
\begin{aligned}
g(n, r, i, j, k) & =\sum_{s, t} f(n, r, i, j, k, s, t) \\
h(n, r, i, j) & =\sum_{1 \leq k \leq j} g(n, r, i, j, k)
\end{aligned}
$$

then the above implies

$$
\begin{aligned}
& \quad(3 j-r-2)(r+1)_{4} h(n, r, i, j)=2(2 j+1)(2 j-r-3)_{2} \\
& \times(h(n+2, r+4, i+1, j+1)-g(n+2, r+4, i+1, j+1, j+2)) \\
& \quad+(j-r-3) h(n+2, r+4, i+1, j+2) .
\end{aligned}
$$

We show in an extra step $g(n, r, i, j, j+1)=0$ which simplifies the above.

Summing over k, s, t

Define

$$
\begin{aligned}
g(n, r, i, j, k) & =\sum_{s, t} f(n, r, i, j, k, s, t) \\
h(n, r, i, j) & =\sum_{1 \leq k \leq j} g(n, r, i, j, k)
\end{aligned}
$$

then the above implies

$$
\begin{aligned}
& \quad(3 j-r-2)(r+1)_{4} h(n, r, i, j)=2(2 j+1)(2 j-r-3)_{2} \\
& \times(h(n+2, r+4, i+1, j+1) \\
& \quad+(j-r-3) h(n+2, r+4, i+1, j+2)
\end{aligned}
$$

We show in an extra step $g(n, r, i, j, j+1)=0$ which simplifies the above.

An auxiliary result

We use creative telescoping to prove

$$
h(n, r, i, j)=0,
$$

for $j \geq 2 i$.
The involved polynomial coefficients have up to 1168 monomials.

Two inductions

For $i<j$ we need to show $h(n, r, i, j)=0$. We use the previous recursion

$$
\begin{aligned}
& (3 j-r-2)(r+1)_{4} h(n, r, i, j)= \\
& \quad \begin{array}{l}
2(2 j+1)(2 j-r-3)_{2} h(n+2, r+4, i+1, j+1) \\
\quad \\
\quad+(j-r-3) h(n+2, r+4, i+1, j+2)
\end{array}
\end{aligned}
$$

and induction on i (starting with $i=1$) and then $j-i$ (starting with $j \geq 2 i$).

Two inductions

For $i<j$ we need to show $h(n, r, i, j)=0$. We use the previous recursion

$$
\begin{aligned}
& (3 j-r-2)(r+1)_{4} h(n, r, i, j)= \\
& \quad \begin{array}{l}
2(2 j+1)(2 j-r-3)_{2} h(n+2, r+4, i+1, j+1) \\
\quad \\
\quad+(j-r-3) h(n+2, r+4, i+1, j+2)
\end{array}
\end{aligned}
$$

and induction on i (starting with $i=1$) and then $j-i$ (starting with $j \geq 2 i$).

- The base case follows from the auxiliary result.

Two inductions

For $i<j$ we need to show $h(n, r, i, j)=0$. We use the previous recursion

$$
\begin{aligned}
& (3 j-r-2)(r+1)_{4} h(n, r, i, j)= \\
& \quad \begin{array}{l}
2(2 j+1)(2 j-r-3)_{2} h(n+2, r+4, i+1, j+1) \\
\quad+(j-r-3) h(n+2, r+4, i+1, j+2)
\end{array}
\end{aligned}
$$

and induction on i (starting with $i=1$) and then $j-i$ (starting with $j \geq 2 i$).

- The base case follows from the auxiliary result.
- The first induction hypothesis implies $h(n, r, i, j)=0$.

Two inductions

For $i<j$ we need to show $h(n, r, i, j)=0$. We use the previous recursion

$$
\begin{gathered}
0= \\
2(2 j+1)(2 j-r-3)_{2} h(n+2, r+4, i+1, j+1) \\
+(j-r-3) h(n+2, r+4, i+1, j+2)
\end{gathered}
$$

and induction on i (starting with $i=1$) and then $j-i$ (starting with $j \geq 2 i$).

- The base case follows from the auxiliary result.
- The first induction hypothesis implies $h(n, r, i, j)=0$.

Two inductions

For $i<j$ we need to show $h(n, r, i, j)=0$. We use the previous recursion

$$
\begin{gathered}
0= \\
2(2 j+1)(2 j-r-3)_{2} h(n+2, r+4, i+1, j+1) \\
+(j-r-3) h(n+2, r+4, i+1, j+2)
\end{gathered}
$$

and induction on i (starting with $i=1$) and then $j-i$ (starting with $j \geq 2 i$).

- The base case follows from the auxiliary result.
- The first induction hypothesis implies $h(n, r, i, j)=0$.
- The second induction hypothesis implies

$$
h(n+2, r+4, i+1, j+2)=0
$$

Two inductions

For $i<j$ we need to show $h(n, r, i, j)=0$. We use the previous recursion

$$
\begin{gathered}
0= \\
2(2 j+1)(2 j-r-3)_{2} h(n+2, r+4, i+1, j+1)
\end{gathered}
$$

and induction on i (starting with $i=1$) and then $j-i$ (starting with $j \geq 2 i$).

- The base case follows from the auxiliary result.
- The first induction hypothesis implies $h(n, r, i, j)=0$.
- The second induction hypothesis implies

$$
h(n+2, r+4, i+1, j+2)=0
$$

- We obtain the assertion since r is a variable.

I'm currently looking for a PostDoc position:)

A signless formulation for $w=0$

Theorem (Fischer - S.A.)
The (-1)-enumeration of AGT pattern with bottom row λ is equal to the weighted enumeration of GT pattern with bottom row λ where each entry appears at most twice in a row and entries are decorated by $\{\emptyset, \nearrow, \nwarrow\}$ such that the following is satisfied:

- An entry may only point to entries with different values,
- two equal entries in a row are not allowed to be decorated both by \emptyset.

Back to previous slide

