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Noncrossing matchings

Definition

Let n be an integer. A noncrossing matching π of size n is a
matching of the numbers 1, . . . , 2n such that there exist no integers
1 ≤ a < b < c < d ≤ 2n for which π connects a, c and b, d .

π =

(
1 2 3 4 5 6
4 3 2 1 6 5

)
⇔ 1 2 3 4 5 6

NCn is the set of noncrossing matchings of size n.

Its cardinality is given by |NCn| = Cn = 1
n+1

(2n
n

)
.
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Notations I

For noncrossing matchings π ∈ NCn, σ ∈ NCn′ denote by
πσ ∈ NCn+n′ the concatenation of π and σ.

1 2 3 4 5 6 7 8 9 10

π

1 2 3 4 5 6

σ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

πσ
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Notations II

Let m ∈ N. For π ∈ NCn write (π)m for the noncrossing matching
which has m consecutive nested arches around π.

(π)2
1 2 3 4 5 6

π
1 2 3 4 5 6 7 8 9 10
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Young Diagrams

Definition

A Young Diagram λ is a finite collection of boxes, arranged in
left-justified rows and weakly decreasing row-length from top to
bottom.
Denote by |λ| the number of boxes of λ.
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From noncrossing matchings to Young Diagrams

Let π ∈ NCn. Denote by λ(π) the Young Diagram obtained by the
following algorithm:

Draw a north-step if an arc is open.

Draw a east-step if an arc is closed.

The Young Diagram λ(π) is the area between the above path
and the path which consists out of n consecutive north-steps
followed by n consecutive east-steps.

This yields an bijection between NCn and the Young Diagrams
with at most n − i boxes in the i-th row from top.
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Example

1 2 3 4 5 6 7 8 9 10

π
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Example

1 2 3 4 5 6 7 8 9 10

π

λ(π)
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Fully packed Loop Configurations

Definition

A Fully packed Loop Configuration (FPL) F of size n is a subgraph
of the n × n grid with n external edges on every side s.t.:

F contains all vertices of the n × n grid and every vertex of F
has degree 2.

F contains every other external edge, beginning with the
topmost at the left side.

n
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All FPLs of size 3
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Number of FPLs

FPLs are in bijection with ASMs.

Theorem (Zeilberger, Kuperberg,. . . )

#of FPLs of size n =
n−1∏
i=0

(3i + 1)!

(n + i)!
.
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Link pattern

Definition

We number the external edges of a FPL F counter-clockwise with 1
up to 2n. The link pattern π(F ) is the noncrossing matching given
by π(F )(i) = j iff the labels i and j are connected by a path in F .

1

2

3

4 5

6

7

8

910

1 2 3 4 5 6 7 8 9 10
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The Conjecture

Definition

Let π ∈ NCn. Denote by Aπ the number of FPLs F with link
pattern π(F ) = π.

Conjecture (Zuber)

Let π ∈ NCn, π′ ∈ NCn′ and m ∈ N. Then A(π)mπ′ is a polynomial
in m of degree |λ(π)|+ |λ(π′)| with leading coefficient
dim(λ(π)) dim(λ(π′))
|λ(π)|!|λ(π′)|! .

The special case for π′ the empty matching was proven by
Caselli, Krattenthaler, Lass and Nadeau in 2004.

The general case was also proven by them but only for large
values of m.
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Wheel polynomials

Definition

Let n be an integer. A polynomial p ∈ Q(q)[z1, . . . , z2n] is called
wheel polynomial of order n if p is homogeneous of degree
n(n − 1) and satisfies the wheel condition:

p(z1, . . . , z2n)|q4zi=q2zj=zk = 0,

for all 1 ≤ i < j < k ≤ 2n.

Example ∏
1≤i<j≤n

(qzi − q−1zj)(qzn+i − q−1zn+j)

is a wheel polynomial of order n.
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Two families of operator

Definition

For 1 ≤ k ≤ 2n define the linear maps
Sk ,Dk : Q(q)[z1, . . . , z2n] −→ Q(q)[z1, . . . , z2n] via

Sk(f )(z1, . . . , z2n) := f (z1, . . . , zk−1, zk+1, zk , zk+2, . . . , z2n),

Dk(f )(z1, . . . , z2n) :=
qzk − q−1zk+1

zk+1 − zk
(Sk(f )− f ).
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Two families of operator

Denote by Wn[z ] the Q(q)-vector space of Wheel polynomials of
order n.

Lemma

Wn[z ] is closed under the action of Dk for all 1 ≤ k ≤ 2n.

For all f , g ∈ Q(q)[z1, . . . , z2n] and 1 ≤ k ≤ 2n holds

Dk(fg) = Dk(f )Sk(g) + f Dk(g).
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Partial order on NCn

Definition

For σ, π ∈ NCn we say σ ≤ π iff λ(σ) is contained in λ(π).

σ π

σ < π
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Partial order on NCn

We can refine this notion:

Definition

For σ, π ∈ NCn we say σ ↗j π iff λ(π) is obtained by adding a box
to λ(σ) on the j-th diagonal.

1

2

3

4

5

6

7

σ

1

2

3

4

5

6

7

π

σ ↗2 π
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The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a Q(q)-basis {Ψπ |π ∈ NCn} of Wn[z ] s.t.:

Ψ()n =

(q − q−1)−n(n−1)
∏

1≤i<j≤n(qzi − q−1zj)(qzn+i − q−1zn+j).

Ψπ(z) = Dj(Ψσ)−∑τ∈e−1
j (σ)\{σ,π}Ψτ , if σ ↗j π.

Ψρ(π)(z1, . . . , z2n) = Ψπ(z2, . . . , z2n, q
6z1).

Set q = e
2πi
3 , then Ψπ(1, . . . , 1) = Aπ holds for all π ∈ NCn.

The last statement follows by the Razumov-Stroganov
(ex-)Conjecture, which was proven by Cantini and Sportiello.
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“Explicit Basis for W3[z ]

Let n = 3. Then we obtain by the previous Theorem:

Ψ = (−3)−3
∏

1≤i<j≤3(qzi − q−1zj)(qz3+i − q−1z3+j),

Ψ = D3(Ψ ),

Ψ = D4(Ψ )−Ψ = D4 ◦ D3(Ψ )−Ψ ,

Ψ = D2(Ψ )−Ψ = D2 ◦ D3(Ψ )−Ψ ,

Ψ = D2(Ψ ) = D2 ◦ D4 ◦ D3(Ψ )− D2(Ψ ).
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Remark on the order

Lemma

Let π, π′ be noncrossing matchings of size n or n′ respectively and
m an integer. Then

e−12(n+m)+i ((π)mπ
′) = {(π)mσ|ei (σ) = π′},

for 2 ≤ i ≤ 2n′ − 2.

π

π′

m

n

n′

n′
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The Main Theorem

Theorem (A.)

Let π ∈ NCn, π′ ∈ NCn′ and m ∈ N. Then A(π)mπ′ is a polynomial
in m of degree |λ(π)|+ |λ(π′)| with leading coefficient
dim(λ(π)) dim(λ(π′))
|λ(π)|!|λ(π′)|! .
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The basic idea of the proof I

A(π)mπ′ is given by

A(π)mπ′ = Ψ(π)mπ′(1, . . . , 1). Therefore we will first calculate
Ψ(π)mπ′ in an “intelligent” way.

π

m

n

n′

n′mn

π′

(π)mπ
′
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The basic idea of the proof II

We will calculate Ψ(π)mπ′ in three steps:

We calculate Ψ(π)m+n′
by the recursion starting from Ψ()m+n+n′

.

By rotating (π)m+n′ n
′ times we obtain

Ψρ−n′((π)m+n′)
(z1, . . . , z2(m+n+n′)) =

Ψ(π)m+n′
(z2(m+n′)+1, . . . , z2(m+n+n′), z1, . . . , z2(m+n)+n′).

Ψ(π)mπ′ can be obtained by the recursion from Ψρ−n′((π)m+n′)
.

n

n

n′ +m

n′ +m
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.

π

m

n

n′

n′mn

π′
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The basic idea of the proof III

Ψ(π)mπ′ is a sum of products of the form

Di1 ◦ · · · ◦ Dik

(
Ψ()m+n+n′

)
,

with:

k ≤ |λ(π)|+ |λ(π′)|,
ij ∈ {2, . . . , n′ − 2,m + n′ + 2, . . . ,m + 2n + n′ − 2, 2(m +
n) + n′ + 2, . . . , 2(m + n + n′)} for 1 ≤ j ≤ k .

Hence we want to show that the above term is for
z1 = . . . = z2(m+n+n′) = 1 a polynomial in m of degree k .
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Notations

Remember

Ψ()n = (−3)−(n2)
∏

1≤i<j≤n
(qzi − q−1zj)(qzn+i − q−1zn+j)

For 1 ≤ i 6= j ≤ 2n we define:

f (i , j) :=
qzi−q−1zj
q−q−1 ,

g(i) := q−q−1zi
q−q−1 ,

h(i) := qzi−q−1

q−q−1 ,
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Notations

Remember

Ψ()n =
∏

1≤i<j≤n
f (i , j)f (n + i , n + j)

For 1 ≤ i 6= j ≤ 2n we define:

f (i , j) :=
qzi−q−1zj
q−q−1 ,

g(i) := q−q−1zi
q−q−1 ,

h(i) := qzi−q−1

q−q−1 ,
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Some observations I

Lemma

For 1 ≤ i , j , k ≤ 2n and i 6= j holds

Dk(f (i , j)) =

{
a · f (k , k + 1) {i , j} ∩ {k , k + 1} 6= ∅
0 otherwise

,

Dk(g(i)) =

{
a · f (k , k + 1) i ∈ {k, k + 1}
0 otherwise

,

Dk(h(i)) =

{
a · f (k , k + 1) i ∈ {k , k + 1}
0 otherwise

,

with appropriate a ∈ {±1,±q,±q−1}.
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Some observations II

Lemma

Let 1 ≤ i , j , k ≤ 2n, i 6= j and m be a positive integer. Then the
following holds:

Dk(f (i , j)m) = Dk(f (i , j))
∑m−1

l=0 f (i , j)lSk(f (i , j)m−1−l),

Dk(g(i)m) = Dk(g(i))
∑m−1

l=0 g(i)lSk(g(i)m−1−l),

Dk(h(i)m) = Dk(h(i))
∑m−1

l=0 h(i)lSk(h(i)m−1−l),

We will write in the following for αi ,j , βi , γi ∈ N with
1 ≤ i 6= j ≤ 2n

P(αi ,j |βi |γi ) :=
∏

1≤i 6=j≤2n
f (i , j)αi,j

2n∏
i=1

g(i)βih(i)γi .
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A technical theorem

Theorem (A.)

Let P = P(αi ,j |βi |γi ) , k an integer and i1, . . . , ik ∈ {1, . . . , 2n}.
Then there exists a polynomial Q ∈ Q(q)[y1, . . . , y2n(2n+1)] of
degree at most k such that

(Di1 ◦ · · · ◦ Dik ) (P)|z1=...=z2n=1 = Q((αi ,j), (βi ), (γi )).
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Proof-sketch of the technical theorem

We proof this by induction on k in the following steps:

DikP =
∑

s∈S asPs , for S finite, as ∈ {±1,±q,±q−1} and
Ps = P(αi ,j ;s |βi ;s |γi ;s) for all s ∈ S .

as and Ps depend piecewise linear in αi ,j , βi , γi .

Finally use

Di1 ◦ · · · ◦ Dik−1

(∑
s∈S

asPs

)
=
∑
s∈S

asDi1 ◦ · · · ◦ Dik−1
(Ps).

Florian Aigner FPLs: polynomiality and nested arches



An example

We calculate D1(P(αi ,j |βi |γi )) for n = 1 explicitly:

D1

(
f (1, 2)α1,2 f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
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An example

D1

(
f (1, 2)α1,2 f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
=−

α1,2∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1
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An example

D1

(
f (1, 2)α1,2 f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
=−

α1,2∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1

+

α2,1∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1
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An example

D1

(
f (1, 2)α1,2 f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
=−

α1,2∑
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+
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t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1

− q−1
β1∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ1
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An example
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β2∑
t=1
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An example

D1

(
f (1, 2)α1,2 f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
=−

α1,2∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1

+

α2,1∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1

− q−1
β1∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ1

+ q−1
β2∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ2

+ q

γ1∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1+γ2−th(2)t−1
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An example

=−
α1,2∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1

+

α2,1∑
t=1

f (1, 2)α1,2+α2,1−t+1f (2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1

− q−1
β1∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ1

+ q−1
β2∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ2

+ q

γ1∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1+γ2−th(2)t−1

− q

γ2∑
t=1

f (1, 2)α1,2+1f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1+γ2−th(2)t−1.
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An example

By setting z1 = z2 = z3 = z4 = 1 we obtain:

D1

(
f (1, 2)α1,2f (2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
=−

α1,2∑
t=1

1 +

α2,1∑
t=1

1− q−1
β1∑
t=1

1 + q−1
β2∑
t=1

1 + q

γ1∑
t=1

1− q

γ2∑
t=1

1

= −α1,2 + α2,1 + q−1(β2 − β1) + q(γ1 − γ2).
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Proof-sketch of the technical theorem

DikP = Dik

 ∏
1≤i 6=j≤2n

f (i , j)αi,j

2n∏
i=1

g(i)βih(i)γi

 =
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Proof-sketch of the technical theorem

DikP = Dik

 ∏
1≤i 6=j≤2n

f (i , j)αi,j

2n∏
i=1

g(i)βih(i)γi

 =

=
∑

1≤i 6=j≤2n

∏
1≤i ′ 6=j ′≤2n

(i ′<i)∨(i ′=i ,j ′<j)

f (i ′, j ′)αi′,j′ × Dk(f (i , j)αi,j )×

× Sk

 ∏
1≤i ′i 6=j ′≤2n

(i ′>i)∨(i ′=i ,j ′>j)

f (i ′, j ′)αi′,j′
2n∏
i ′=1

g(i ′)βi′h(i ′)γi′

+ . . .
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Proof-sketch of the technical theorem

. . .+
2n∑
i=1

∏
1≤i ′ 6=j ′≤2n

f (i ′, j ′)αi′,j′
i−1∏
i ′=1

g(i ′)βi′ × Dk(g(i)βi )×

× Sk

(
2n∏

i ′=i+1

g(i ′)βi′
2n∏
i ′=1

h(i ′)γi′
)

+

+
2n∑
i=1

∏
1≤i ′ 6=j ′≤2n

f (i ′, j ′)αi′,j′
2n∏
i ′=1

g(i ′)βi′
i−1∏
i ′=1

h(i ′)γi′×

× Dk(h(i)γi )× Sk

(
2n∏

i ′=i+1

h(i ′)γi′
)
.
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Proof-sketch of the Main Theorem

Remember

Ψ(π)mπ′ is a sum of products of the form

Di1 ◦ · · · ◦ Dik

(
Ψ()m+n+n′

)
,

k ≤ |λ(π)|+ |λ(π′)|,
ij ∈ I := {2, . . . , n′ − 2,m + n′ + 2, . . . ,m + 2n + n′ −
2, 2(m + n) + n′ + 2, . . . , 2(m + n + n′)} for 1 ≤ j ≤ k.

A(π)mπ′(m) = Ψ(π)mπ′|z1=...=z2(m+n+n′)=1.
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Proof-sketch of the Main Theorem

Ψ()m+n+n′
=

∏
1≤i<j≤m+n+n′

f (i , j)f (m + n + n′ + i ,m + n + n′ + j)

The Dij with ij as before act trivially on the variables
zn′+1, . . . , zm+n′ , zm+2n+n′+1, . . . , z2(m+n)+n′ , hence we can
set them equal 1.

Therefore Ψ()m+n+n′
is of the form P(αi ,j |βi |γi ) with:
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Proof-sketch of the Main Theorem

αi ,j =

{
1 i , j /∈ I , i < j , (j ≤ (m + n + n′) or i > m + n + n′)

0 otherwise
,

βi =


m i ∈ {m + n′ + 1, . . . ,m + n + n′, 2(m + n) + n′ + 1,

. . . , 2(m + n + n′)}
0 otherwise

,

γi =

{
m i ∈ {1, . . . , n′,m + n + n′ + 1, . . . ,m + 2n + n′}
0 otherwise

,

I = {n′ + 1, . . . , n′ + m,m + 2n + n′ + 1, . . . , 2(m + n) + n′}.
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