Fully packed loop configurations: polynomiality and nested arches

Florian Aigner

12.4.2016

Outline

(1) Preliminaries

- Noncrossing matchings
- Fully packed loop configurations
- Main Theorem
(2) Wheel polynomials
(3) Techniques and the proof

Noncrossing matchings

Definition

Let n be an integer. A noncrossing matching π of size n is a matching of the numbers $1, \ldots, 2 n$ such that there exist no integers $1 \leq a<b<c<d \leq 2 n$ for which π connects a, c and b, d.

$$
\pi=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 3 & 2 & 1 & 6 & 5
\end{array}\right) \quad \Leftrightarrow
$$

- $N C_{n}$ is the set of noncrossing matchings of size n.
- Its cardinality is given by $\left|N C_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

Noncrossing matchings

Definition

Let n be an integer. A noncrossing matching π of size n is a matching of the numbers $1, \ldots, 2 n$ such that there exist no integers $1 \leq a<b<c<d \leq 2 n$ for which π connects a, c and b, d.

$$
\pi=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 3 & 2 & 1 & 6 & 5
\end{array}\right) \quad \Leftrightarrow
$$

- $N C_{n}$ is the set of noncrossing matchings of size n.
- Its cardinality is given by $\left|N C_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

Notations I

For noncrossing matchings $\pi \in N C_{n}, \sigma \in N C_{n^{\prime}}$ denote by $\pi \sigma \in N C_{n+n^{\prime}}$ the concatenation of π and σ.

Notations II

Let $m \in \mathbb{N}$. For $\pi \in N C_{n}$ write $(\pi)_{m}$ for the noncrossing matching which has m consecutive nested arches around π.

Young Diagrams

Definition

A Young Diagram λ is a finite collection of boxes, arranged in left-justified rows and weakly decreasing row-length from top to bottom.
Denote by $|\lambda|$ the number of boxes of λ.

From noncrossing matchings to Young Diagrams

Let $\pi \in N C_{n}$. Denote by $\lambda(\pi)$ the Young Diagram obtained by the following algorithm:

- Draw a north-step if an arc is open.
- Draw a east-step if an arc is closed.
- The Young Diagram $\lambda(\pi)$ is the area between the above path and the path which consists out of n consecutive north-steps followed by n consecutive east-steps.
This yields an bijection between $N C_{n}$ and the Young Diagrams with at most $n-i$ boxes in the i-th row from top.

Example

Example

0

Example

Fully packed Loop Configurations

Definition

A Fully packed Loop Configuration (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- F contains all vertices of the $n \times n$ grid and every vertex of F has degree 2.
- F contains every other external edge, beginning with the topmost at the left side.

Fully packed Loop Configurations

Definition

A Fully packed Loop Configuration (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- F contains all vertices of the $n \times n$ grid and every vertex of F has degree 2.
- F contains every other external edge, beginning with the topmost at the left side.

Definition

A Fully packed Loop Configuration (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- F contains all vertices of the $n \times n$ grid and every vertex of F has degree 2.
- F contains every other external edge, beginning with the topmost at the left side.

Definition

A Fully packed Loop Configuration (FPL) F of size n is a subgraph of the $n \times n$ grid with n external edges on every side s.t.:

- F contains all vertices of the $n \times n$ grid and every vertex of F has degree 2.
- F contains every other external edge, beginning with the topmost at the left side.

All FPLs of size 3

Number of FPLs

FPLs are in bijection with ASMs.
Theorem (Zeilberger, Kuperberg,...)

$$
\text { \#of FPLs of size } n=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

Link pattern

Definition

We number the external edges of a FPL F counter-clockwise with 1 up to $2 n$. The link pattern $\pi(F)$ is the noncrossing matching given by $\pi(F)(i)=j$ iff the labels i and j are connected by a path in F.

The Conjecture

Definition

Let $\pi \in N C_{n}$. Denote by A_{π} the number of FPLs F with link pattern $\pi(F)=\pi$.

Conjecture (Zuber)

Let $\pi \in N C_{n}, \pi^{\prime} \in N C_{n^{\prime}}$ and $m \in \mathbb{N}$. Then $A_{(\pi)_{m} \pi^{\prime}}$ is a polynomial in m of degree $|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$ with leading coefficient $\frac{\operatorname{dim}(\lambda(\pi)) \operatorname{dim}\left(\lambda\left(\pi^{\prime}\right)\right)}{\mid \lambda(\pi)!!\lambda\left(\pi^{\prime}\right)!}$.

- The special case for π^{\prime} the empty matching was proven by Caselli, Krattenthaler, Lass and Nadeau in 2004.
- The general case was also proven by them but only for large values of m.

The Conjecture

Definition

Let $\pi \in N C_{n}$. Denote by A_{π} the number of FPLs F with link pattern $\pi(F)=\pi$.

Conjecture (Zuber)
Let $\pi \in N C_{n}, \pi^{\prime} \in N C_{n^{\prime}}$ and $m \in \mathbb{N}$. Then $A_{(\pi)_{m} \pi^{\prime}}$ is a polynomial in m of degree $|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$ with leading coefficient $\frac{\operatorname{dim}(\lambda(\pi)) \operatorname{dim}\left(\lambda\left(\pi^{\prime}\right)\right)}{|\lambda(\pi)!!| \lambda\left(\pi^{\prime}\right)!!}$.

- The special case for π^{\prime} the empty matching was proven by Caselli, Krattenthaler, Lass and Nadeau in 2004.
- The general case was also proven by them but only for large values of m.

The Conjecture

Definition

Let $\pi \in N C_{n}$. Denote by A_{π} the number of FPLs F with link pattern $\pi(F)=\pi$.

Conjecture (Zuber)

Let $\pi \in N C_{n}, \pi^{\prime} \in N C_{n^{\prime}}$ and $m \in \mathbb{N}$. Then $A_{(\pi)_{m} \pi^{\prime}}$ is a polynomial in m of degree $|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$ with leading coefficient $\frac{\operatorname{dim}(\lambda(\pi)) \operatorname{dim}\left(\lambda\left(\pi^{\prime}\right)\right)}{|\lambda(\pi)!!| \lambda\left(\pi^{\prime}\right)!!}$.

- The special case for π^{\prime} the empty matching was proven by Caselli, Krattenthaler, Lass and Nadeau in 2004.
- The general case was also proven by them but only for large values of m.

Wheel polynomials

Definition

Let n be an integer. A polynomial $p \in \mathbb{Q}(q)\left[z_{1}, \ldots, z_{2 n}\right]$ is called wheel polynomial of order n if p is homogeneous of degree $n(n-1)$ and satisfies the wheel condition:

$$
p\left(z_{1}, \ldots, z_{2 n}\right)_{\mid q^{4} z_{i}=q^{2} z_{j}=z_{k}}=0,
$$

for all $1 \leq i<j<k \leq 2 n$.

Example

$$
\prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right)
$$

is a wheel polynomial of order n.

Wheel polynomials

Definition

Let n be an integer. A polynomial $p \in \mathbb{Q}(q)\left[z_{1}, \ldots, z_{2 n}\right]$ is called wheel polynomial of order n if p is homogeneous of degree $n(n-1)$ and satisfies the wheel condition:

$$
p\left(z_{1}, \ldots, z_{2 n}\right)_{\mid q^{4} z_{i}=q^{2} z_{j}=z_{k}}=0,
$$

for all $1 \leq i<j<k \leq 2 n$.

Example

$$
\prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right)
$$

is a wheel polynomial of order n.

Two families of operator

Definition

For $1 \leq k \leq 2 n$ define the linear maps
$S_{k}, D_{k}: \mathbb{Q}(q)\left[z_{1}, \ldots, z_{2 n}\right] \longrightarrow \mathbb{Q}(q)\left[z_{1}, \ldots, z_{2 n}\right]$ via

$$
\begin{aligned}
S_{k}(f)\left(z_{1}, \ldots, z_{2 n}\right) & :=f\left(z_{1}, \ldots, z_{k-1}, z_{k+1}, z_{k}, z_{k+2}, \ldots, z_{2 n}\right), \\
D_{k}(f)\left(z_{1}, \ldots, z_{2 n}\right) & :=\frac{q z_{k}-q^{-1} z_{k+1}}{z_{k+1}-z_{k}}\left(S_{k}(f)-f\right) .
\end{aligned}
$$

Two families of operator

Denote by $W_{n}[z]$ the $\mathbb{Q}(q)$-vector space of Wheel polynomials of order n.

Lemma

- $W_{n}[z]$ is closed under the action of D_{k} for all $1 \leq k \leq 2 n$.
- For all $f, g \in \mathbb{Q}(q)\left[z_{1}, \ldots, z_{2 n}\right]$ and $1 \leq k \leq 2 n$ holds

$$
D_{k}(f g)=D_{k}(f) S_{k}(g)+f D_{k}(g) .
$$

Denote by $W_{n}[z]$ the $\mathbb{Q}(q)$-vector space of Wheel polynomials of order n.

Lemma

- $W_{n}[z]$ is closed under the action of D_{k} for all $1 \leq k \leq 2 n$.
- For all $f, g \in \mathbb{Q}(q)\left[z_{1}, \ldots, z_{2 n}\right]$ and $1 \leq k \leq 2 n$ holds

$$
D_{k}(f g)=D_{k}(f) S_{k}(g)+f D_{k}(g)
$$

Partial order on $N C_{n}$

Definition

For $\sigma, \pi \in N C_{n}$ we say $\sigma \leq \pi$ iff $\lambda(\sigma)$ is contained in $\lambda(\pi)$.

Partial order on $N C_{n}$

We can refine this notion:

Definition

For $\sigma, \pi \in N C_{n}$ we say $\sigma \nearrow_{j} \pi$ iff $\lambda(\pi)$ is obtained by adding a box to $\lambda(\sigma)$ on the j-th diagonal.

$\sigma \nearrow_{2} \pi$

The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a $\mathbb{Q}(q)$-basis $\left\{\Psi_{\pi} \mid \pi \in N C_{n}\right\}$ of $W_{n}[z]$ s.t.:

- $\Psi_{()_{n}}=$

$$
\left(q-q^{-1}\right)^{-n(n-1)} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right)
$$

- $\Psi_{\pi}(z)=D_{j}\left(\Psi_{\sigma}\right)-\sum_{\tau \in e_{j}^{-1}(\sigma) \backslash\{\sigma, \pi\}} \Psi_{\tau}$, if $\sigma \nearrow_{j} \pi$.
- $\psi_{\rho(\pi)}\left(z_{1}, \ldots, z_{2 \pi}\right)=\psi_{\pi}\left(z_{2}, \ldots, z_{2 \pi}, q^{6} z_{1}\right)$.
- Set $q=e^{\frac{2 \pi i}{3}}$, then $\Psi_{\pi}(1, \ldots, 1)=A_{\pi}$ holds for all $\pi \in N C_{n}$.

The last statement follows by the Razumov-Stroganov (ex-)Conjecture, which was proven by Cantini and Sportiello.

The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a $\mathbb{Q}(q)$-basis $\left\{\Psi_{\pi} \mid \pi \in N C_{n}\right\}$ of $W_{n}[z]$ s.t.:

- $\Psi_{()_{n}}=$

$$
\left(q-q^{-1}\right)^{-n(n-1)} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right) .
$$

- $\Psi_{\pi}(z)=D_{j}\left(\Psi_{\sigma}\right)-\sum_{\tau \in e_{j}^{-1}(\sigma) \backslash\{\sigma, \pi\}} \Psi_{\tau}$, if $\sigma \nearrow_{j} \pi$.
- $\psi_{\rho(\pi)}\left(z_{1}, \ldots, z_{2 n}\right)=\Psi_{\pi}\left(z_{2}, \ldots, z_{2 n}, q^{6} z_{1}\right)$.
- Set $q=e^{\frac{2 \pi i}{3}}$, then $\Psi_{\pi}(1, \ldots, 1)=A_{\pi}$ holds for all $\pi \in N C_{n}$.

The last statement follows by the Razumov-Stroganov (ex-)Conjecture, which was proven by Cantini and Sportiello.

The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a $\mathbb{Q}(q)$-basis $\left\{\Psi_{\pi} \mid \pi \in N C_{n}\right\}$ of $W_{n}[z]$ s.t.:

- $\Psi_{()_{n}}=$

$$
\left(q-q^{-1}\right)^{-n(n-1)} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right) .
$$

- $\Psi_{\pi}(z)=D_{j}\left(\Psi_{\sigma}\right)-\sum_{\tau \in e_{j}^{-1}(\sigma) \backslash\{\sigma, \pi\}} \Psi_{\tau}$, if $\sigma \nearrow_{j} \pi$.
- $\psi_{\rho(\pi)}\left(z_{1}, \ldots, z_{2 n}\right)=\Psi_{\pi}\left(z_{2}, \ldots, z_{2 n}, q^{6} z_{1}\right)$.
- Set $q=e^{\frac{2 \pi i}{3}}$, then $\Psi_{\pi}(1, \ldots, 1)=A_{\pi}$ holds for all $\pi \in N C_{n}$.

The last statement follows by the Razumov-Stroganov (ex-)Conjecture, which was proven by Cantini and Sportiello.

The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a $\mathbb{Q}(q)$-basis $\left\{\Psi_{\pi} \mid \pi \in N C_{n}\right\}$ of $W_{n}[z]$ s.t.:

- $\Psi_{()_{n}}=$

$$
\left(q-q^{-1}\right)^{-n(n-1)} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right) .
$$

- $\Psi_{\pi}(z)=D_{j}\left(\Psi_{\sigma}\right)-\sum_{\tau \in e_{j}^{-1}(\sigma) \backslash\{\sigma, \pi\}} \Psi_{\tau}$, if $\sigma \nearrow_{j} \pi$.
- $\Psi_{\rho(\pi)}\left(z_{1}, \ldots, z_{2 n}\right)=\psi_{\pi}\left(z_{2}, \ldots, z_{2 n}, q^{6} z_{1}\right)$.
- Set $q=e^{\frac{2 \pi i}{3}}$, then $\Psi_{\pi}(1, \ldots, 1)=A_{\pi}$ holds for all $\pi \in N C_{n}$.

The last statement follows by the Razumov-Stroganov (ex-)Conjecture, which was proven by Cantini and Sportiello.

The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a $\mathbb{Q}(q)$-basis $\left\{\Psi_{\pi} \mid \pi \in N C_{n}\right\}$ of $W_{n}[z]$ s.t.:

- $\Psi_{()_{n}}=$

$$
\left(q-q^{-1}\right)^{-n(n-1)} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right) .
$$

- $\Psi_{\pi}(z)=D_{j}\left(\Psi_{\sigma}\right)-\sum_{\tau \in e_{j}^{-1}(\sigma) \backslash\{\sigma, \pi\}} \Psi_{\tau}$, if $\sigma \nearrow_{j} \pi$.
- $\Psi_{\rho(\pi)}\left(z_{1}, \ldots, z_{2 n}\right)=\Psi_{\pi}\left(z_{2}, \ldots, z_{2 n}, q^{6} z_{1}\right)$.
- Set $q=e^{\frac{2 \pi i}{3}}$, then $\Psi_{\pi}(1, \ldots, 1)=A_{\pi}$ holds for all $\pi \in N C_{n}$.

The last statement follows by the Razumov-Stroganov (ex-)Conjecture, which was proven by Cantini and Sportiello.

The vector space of wheel polynomials

Theorem (Zinn-Justin, Di Francesco)

There exists a $\mathbb{Q}(q)$-basis $\left\{\Psi_{\pi} \mid \pi \in N C_{n}\right\}$ of $W_{n}[z]$ s.t.:

- $\Psi_{()_{n}}=$

$$
\left(q-q^{-1}\right)^{-n(n-1)} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right) .
$$

- $\Psi_{\pi}(z)=D_{j}\left(\Psi_{\sigma}\right)-\sum_{\tau \in e_{j}^{-1}(\sigma) \backslash\{\sigma, \pi\}} \Psi_{\tau}$, if $\sigma \nearrow_{j} \pi$.
- $\Psi_{\rho(\pi)}\left(z_{1}, \ldots, z_{2 n}\right)=\psi_{\pi}\left(z_{2}, \ldots, z_{2 n}, q^{6} z_{1}\right)$.
- Set $q=e^{\frac{2 \pi i}{3}}$, then $\Psi_{\pi}(1, \ldots, 1)=A_{\pi}$ holds for all $\pi \in N C_{n}$.

The last statement follows by the Razumov-Stroganov (ex-)Conjecture, which was proven by Cantini and Sportiello.

"Explicit Basis for $W_{3}[z]$

Let $n=3$. Then we obtain by the previous Theorem:

- $\Psi_{\Gamma}=(-3)^{-3} \prod_{1 \leq i<j \leq 3}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{3+i}-q^{-1} z_{3+j}\right)$,
- $\Psi_{\Gamma}=D_{3}\left(\Psi_{\Gamma}\right)$,
- $\Psi_{\Gamma}=D_{4}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\psi_{\square}=D_{2}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{2} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\Psi_{\Gamma}=D_{2}\left(\Psi_{\Gamma}\right)=D_{2} \circ D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-D_{2}\left(\Psi_{\Gamma}\right)$.

"Explicit Basis for $W_{3}[z]$

Let $n=3$. Then we obtain by the previous Theorem:

- $\Psi_{\Gamma}=(-3)^{-3} \prod_{1 \leq i<j \leq 3}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{3+i}-q^{-1} z_{3+j}\right)$,
- $\Psi_{\Gamma}=D_{3}\left(\Psi_{\Gamma}\right)$,
- $\Psi_{\Gamma}=D_{4}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\Psi_{\square}=D_{2}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{2} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\Psi_{\mp}=D_{2}\left(\Psi_{\Gamma}\right)=D_{2} \circ D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-D_{2}\left(\Psi_{\Gamma}\right)$.

"Explicit Basis for $W_{3}[z]$

Let $n=3$. Then we obtain by the previous Theorem:

- $\Psi_{\Gamma}=(-3)^{-3} \prod_{1 \leq i<j \leq 3}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{3+i}-q^{-1} z_{3+j}\right)$,
- $\Psi_{\digamma}=D_{3}\left(\Psi_{\lceil }\right)$,
- $\Psi_{\Gamma}=D_{4}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\psi_{\square}=D_{2}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{2} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\Psi_{\mp}=D_{2}\left(\Psi_{\Gamma}\right)=D_{2} \circ D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-D_{2}\left(\Psi_{\Gamma}\right)$.

"Explicit Basis for $W_{3}[z]$

Let $n=3$. Then we obtain by the previous Theorem:

- $\Psi_{\Gamma}=(-3)^{-3} \prod_{1 \leq i<j \leq 3}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{3+i}-q^{-1} z_{3+j}\right)$,
- $\Psi_{\Gamma}=D_{3}\left(\Psi_{\Gamma}\right)$,
- $\Psi_{\Gamma}=D_{4}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\Psi_{Ð}=D_{2}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{2} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}$,
- $\Psi_{\Gamma}=D_{2}\left(\Psi_{\Gamma}\right)=D_{2} \circ D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-D_{2}(\Psi-)$.

"Explicit Basis for $W_{3}[z]$

Let $n=3$. Then we obtain by the previous Theorem:

- $\Psi_{\Gamma}=(-3)^{-3} \prod_{1 \leq i<j \leq 3}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{3+i}-q^{-1} z_{3+j}\right)$,
- $\Psi_{\Gamma}=D_{3}\left(\Psi_{\Gamma}\right)$,
- $\Psi_{\Gamma}=D_{4}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\lceil }$,
- $\Psi_{\square}=D_{2}\left(\Psi_{\Gamma}\right)-\Psi_{\Gamma}=D_{2} \circ D_{3}\left(\Psi_{\Gamma}\right)-\Psi_{\lceil }$,
- $\Psi_{\mp}=D_{2}\left(\Psi_{\Gamma}\right)=D_{2} \circ D_{4} \circ D_{3}\left(\Psi_{\Gamma}\right)-D_{2}(\Psi \leftharpoondown)$.

Remark on the order

Lemma

Let π, π^{\prime} be noncrossing matchings of size n or n^{\prime} respectively and m an integer. Then

$$
e_{2(n+m)+i}^{-1}\left((\pi)_{m} \pi^{\prime}\right)=\left\{(\pi)_{m} \sigma \mid e_{i}(\sigma)=\pi^{\prime}\right\}
$$

for $2 \leq i \leq 2 n^{\prime}-2$.

Theorem (A.)

Let $\pi \in N C_{n}, \pi^{\prime} \in N C_{n^{\prime}}$ and $m \in \mathbb{N}$. Then $A_{(\pi)_{m} \pi^{\prime}}$ is a polynomial in m of degree $|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$ with leading coefficient $\frac{\operatorname{dim}(\lambda(\pi)) \operatorname{dim}\left(\lambda\left(\pi^{\prime}\right)\right)}{|\lambda(\pi)!!| \lambda\left(\pi^{\prime}\right)!!}$.

The basic idea of the proof I

- $A_{(\pi)_{m} \pi^{\prime}}$ is given by
- $A_{(\pi)_{m} \pi^{\prime}}=\Psi_{(\pi)_{m} \pi^{\prime}}(1, \ldots, 1)$. Therefore we will first calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in an "intelligent" way.

The basic idea of the proof II
We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{2(m+n)+n^{\prime}}\right) .
\end{aligned}
$$

- $\Psi_{(\pi)_{m} \pi^{\prime}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}}\left((\pi)_{m+n^{\prime}}\right)$.

The basic idea of the proof II
We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$.
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{\left.2(m+n)+n^{\prime}\right)}\right) .
\end{aligned}
$$

- $\Psi_{(\pi)_{m} \pi^{\prime}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}}\left((\pi)_{m+n^{\prime}}\right)$.

The basic idea of the proof II
We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$.
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{\left.2(m+n)+n^{\prime}\right)} .\right.
\end{aligned}
$$

- $\Psi_{(\pi)_{m} \pi^{\prime}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}}\left((\pi)_{m+n^{\prime}}\right)$.

The basic idea of the proof II
We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$.
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{2(m+n)+n^{\prime}}\right)
\end{aligned}
$$

- $\Psi_{(\pi)_{m \pi^{\prime}}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}}\left((\pi)_{m+n^{\prime}}\right)$.

The basic idea of the proof II
We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$.
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+\prime^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{2(m+n)+n^{\prime}}\right) .
\end{aligned}
$$

- $\Psi_{(\pi)_{m \pi^{\prime}}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}}\left((\pi)_{m+n^{\prime}}\right)$.

We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$.
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{2(m+n)+n^{\prime}}\right)
\end{aligned}
$$

- $\Psi_{(\pi)_{m} \pi^{\prime}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}$.

We will calculate $\Psi_{(\pi)_{m} \pi^{\prime}}$ in three steps:

- We calculate $\Psi_{(\pi)_{m+n^{\prime}}}$ by the recursion starting from $\Psi_{()_{m+n+n^{\prime}}}$.
- By rotating $(\pi)_{m+n^{\prime}} n^{\prime}$ times we obtain

$$
\begin{aligned}
& \Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}\left(z_{1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}\right)= \\
& \Psi_{(\pi)_{m+n^{\prime}}}\left(z_{2\left(m+n^{\prime}\right)+1}, \ldots, z_{2\left(m+n+n^{\prime}\right)}, z_{1}, \ldots, z_{2(m+n)+n^{\prime}}\right) .
\end{aligned}
$$

- $\Psi_{(\pi)_{m} \pi^{\prime}}$ can be obtained by the recursion from $\Psi_{\rho^{-n^{\prime}}\left((\pi)_{m+n^{\prime}}\right)}$.

The basic idea of the proof III
$\Psi_{(\pi)_{m} \pi^{\prime}}$ is a sum of products of the form

$$
D_{i_{1}} \circ \cdots \circ D_{i_{k}}\left(\Psi_{()_{m+n+n^{\prime}}}\right)
$$

with:

$$
\begin{aligned}
& \text { - } k \leq|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right| \\
& \text { - } i_{j} \in\left\{2, \ldots, n^{\prime}-2, m+n^{\prime}+2, \ldots, m+2 n+n^{\prime}-2,2(m+\right. \\
& \text { n) } \left.+n^{\prime}+2, \ldots, 2\left(m+n+n^{\prime}\right)\right\} \text { for } 1 \leq j \leq k .
\end{aligned}
$$

Hence we want to show that the above term is for
$z_{1}=\ldots=z_{2\left(m+n+n^{\prime}\right)}=1$ a polynomial in m of degree k.

The basic idea of the proof III
$\Psi_{(\pi)_{m} \pi^{\prime}}$ is a sum of products of the form

$$
D_{i_{1}} \circ \cdots \circ D_{i_{k}}\left(\Psi_{()_{m+n+n^{\prime}}}\right)
$$

with:

- $k \leq|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$,
- $i_{j} \in\left\{2, \ldots, n^{\prime}-2, m+n^{\prime}+2, \ldots, m+2 n+n^{\prime}-2,2(m+\right.$
$\left.n)+n^{\prime}+2, \ldots, 2\left(m+n+n^{\prime}\right)\right\}$ for $1 \leq j \leq k$.
Hence we want to show that the above term is for
$z_{1}=\ldots=z_{2\left(m+n+n^{\prime}\right)}=1$ a polynomial in m of degree k.

The basic idea of the proof III
$\Psi_{(\pi)_{m} \pi^{\prime}}$ is a sum of products of the form

$$
D_{i_{1}} \circ \cdots \circ D_{i_{k}}\left(\Psi_{()_{m+n+n^{\prime}}}\right)
$$

with:

- $k \leq|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$,
- $i_{j} \in\left\{2, \ldots, n^{\prime}-2, m+n^{\prime}+2, \ldots, m+2 n+n^{\prime}-2,2(m+\right.$
$\left.n)+n^{\prime}+2, \ldots, 2\left(m+n+n^{\prime}\right)\right\}$ for $1 \leq j \leq k$.

Hence we want to show that the above term is for

$z_{1}=\ldots=z_{2\left(m+n+n^{\prime}\right)}=1$ a polynomial in m of degree k.
$\Psi_{(\pi)_{m} \pi^{\prime}}$ is a sum of products of the form

$$
D_{i_{1}} \circ \cdots \circ D_{i_{k}}\left(\Psi_{()_{m+n+n^{\prime}}}\right)
$$

with:

- $k \leq|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$,
- $i_{j} \in\left\{2, \ldots, n^{\prime}-2, m+n^{\prime}+2, \ldots, m+2 n+n^{\prime}-2,2(m+\right.$
$\left.n)+n^{\prime}+2, \ldots, 2\left(m+n+n^{\prime}\right)\right\}$ for $1 \leq j \leq k$.
Hence we want to show that the above term is for $z_{1}=\ldots=z_{2\left(m+n+n^{\prime}\right)}=1$ a polynomial in m of degree k.

Notations

Remember

$$
\Psi_{()_{n}}=(-3)^{-\binom{n}{2}} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right)
$$

For $1 \leq i \neq j \leq 2 n$ we define:

- $f(i, j):=\frac{q z_{i}-q^{-1} z_{j}}{q-q^{-1}}$,
- $g(i):=\frac{q-q^{-1} z_{i}}{q-q^{-1}}$,
- $h(i):=\frac{q z_{i}-q^{-1}}{q-q^{-1}}$,

Notations

Remember

$$
\Psi_{()_{n}}=(-3)^{-\binom{n}{2}} \prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{n+i}-q^{-1} z_{n+j}\right)
$$

For $1 \leq i \neq j \leq 2 n$ we define:

- $f(i, j):=\frac{q z_{i}-q^{-1} z_{j}}{q-q^{-1}}$,
- $g(i):=\frac{q-q^{-1} z_{i}}{q-q^{-1}}$,
- $h(i):=\frac{q z_{i}-q^{-1}}{q-q^{-1}}$,

Notations

Remember

$$
\Psi_{()_{n}}=\prod_{1 \leq i<j \leq n} f(i, j) f(n+i, n+j)
$$

For $1 \leq i \neq j \leq 2 n$ we define:

- $f(i, j):=\frac{q z_{i}-q^{-1} z_{j}}{q-q^{-1}}$,
- $g(i):=\frac{q-q^{-1} z_{i}}{q-q^{-1}}$,
- $h(i):=\frac{q z_{i}-q^{-1}}{q-q^{-1}}$,

Some observations I

Lemma

For $1 \leq i, j, k \leq 2 n$ and $i \neq j$ holds

- $D_{k}(f(i, j))= \begin{cases}a \cdot f(k, k+1) & \{i, j\} \cap\{k, k+1\} \neq \emptyset \\ 0 & \text { otherwise },\end{cases}$
- $D_{k}(g(i))=\left\{\begin{array}{ll}a \cdot f(k, k+1) & i \in\{k, k+1\} \\ 0 & \text { otherwise }\end{array}\right.$,
- $D_{k}(h(i))=\left\{\begin{array}{ll}a \cdot f(k, k+1) & i \in\{k, k+1\} \\ 0 & \text { otherwise }\end{array}\right.$,
with appropriate $a \in\left\{ \pm 1, \pm q, \pm q^{-1}\right\}$.

Lemma

For $1 \leq i, j, k \leq 2 n$ and $i \neq j$ holds

- $D_{k}(f(i, j))=\left\{\begin{array}{ll}a \cdot f(k, k+1) & \{i, j\} \cap\{k, k+1\} \neq \emptyset \\ 0 & \text { otherwise }\end{array}\right.$,
- $D_{k}(g(i))=\left\{\begin{array}{ll}a \cdot f(k, k+1) & i \in\{k, k+1\} \\ 0 & \text { otherwise }\end{array}\right.$,
- $D_{k}(h(i))=\left\{\begin{array}{ll}a \cdot f(k, k+1) & i \in\{k, k+1\} \\ 0 & \text { otherwise }\end{array}\right.$,
with appropriate $a \in\left\{ \pm 1, \pm q, \pm q^{-1}\right\}$.

Lemma

For $1 \leq i, j, k \leq 2 n$ and $i \neq j$ holds

$$
\begin{aligned}
& \text { - } D_{k}(f(i, j))= \begin{cases}a \cdot f(k, k+1) & \{i, j\} \cap\{k, k+1\} \neq \emptyset \\
0 & \text { otherwise }\end{cases} \\
& \text { - } D_{k}(g(i))= \begin{cases}a \cdot f(k, k+1) & i \in\{k, k+1\} \\
0 & \text { otherwise }\end{cases} \\
& \text { - } D_{k}(h(i))= \begin{cases}a \cdot f(k, k+1) & i \in\{k, k+1\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with appropriate $a \in\left\{ \pm 1, \pm q, \pm q^{-1}\right\}$.

Some observations II

Lemma

Let $1 \leq i, j, k \leq 2 n, i \neq j$ and m be a positive integer. Then the following holds:

$$
\begin{aligned}
& \text { - } D_{k}\left(f(i, j)^{m}\right)=D_{k}(f(i, j)) \sum_{l=0}^{m-1} f(i, j)^{\prime} S_{k}\left(f(i, j)^{m-1-l}\right), \\
& \text { - } D_{k}\left(g(i)^{m}\right)=D_{k}(g(i)) \sum_{l=0}^{m-1} g(i)^{\prime} S_{k}\left(g(i)^{m-1-l}\right), \\
& \text { - } D_{k}\left(h(i)^{m}\right)=D_{k}(h(i)) \sum_{l=0}^{m-1} h(i)^{\prime} S_{k}\left(h(i)^{m-1-l}\right),
\end{aligned}
$$

We will write in the following for $\alpha_{i, j}, \beta_{i}, \gamma_{i} \in \mathbb{N}$ with

$$
1 \leq i \neq j \leq 2 n
$$

$$
P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right):=\prod_{1 \leq i \neq j \leq 2 n} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}} .
$$

Some observations II

Lemma

Let $1 \leq i, j, k \leq 2 n, i \neq j$ and m be a positive integer. Then the following holds:

- $D_{k}\left(f(i, j)^{m}\right)=D_{k}(f(i, j)) \sum_{l=0}^{m-1} f(i, j)^{l} S_{k}\left(f(i, j)^{m-1-l}\right)$,
- $D_{k}\left(g(i)^{m}\right)=D_{k}(g(i)) \sum_{l=0}^{m-1} g(i)^{l} S_{k}\left(g(i)^{m-1-l}\right)$,
- $D_{k}\left(h(i)^{m}\right)=D_{k}(h(i)) \sum_{l=0}^{m-1} h(i)^{l} S_{k}\left(h(i)^{m-1-l}\right)$,

We will write in the following for $\alpha_{i, j}, \beta_{i}, \gamma_{i} \in \mathbb{N}$ with $1 \leq i \neq j \leq 2 n$

$$
P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right):=\prod_{1 \leq i \neq j \leq 2 n} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}} .
$$

Lemma

Let $1 \leq i, j, k \leq 2 n, i \neq j$ and m be a positive integer. Then the following holds:

- $D_{k}\left(f(i, j)^{m}\right)=D_{k}(f(i, j)) \sum_{l=0}^{m-1} f(i, j)^{\prime} S_{k}\left(f(i, j)^{m-1-l}\right)$,
- $D_{k}\left(g(i)^{m}\right)=D_{k}(g(i)) \sum_{l=0}^{m-1} g(i)^{\prime} S_{k}\left(g(i)^{m-1-l}\right)$,
- $D_{k}\left(h(i)^{m}\right)=D_{k}(h(i)) \sum_{l=0}^{m-1} h(i)^{l} S_{k}\left(h(i)^{m-1-l}\right)$,

We will write in the following for $\alpha_{i, j}, \beta_{i}, \gamma_{i} \in \mathbb{N}$ with $1 \leq i \neq j \leq 2 n$

$$
P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right):=\prod_{1 \leq i \neq j \leq 2 n} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}} .
$$

Lemma

Let $1 \leq i, j, k \leq 2 n, i \neq j$ and m be a positive integer. Then the following holds:

- $D_{k}\left(f(i, j)^{m}\right)=D_{k}(f(i, j)) \sum_{l=0}^{m-1} f(i, j)^{\prime} S_{k}\left(f(i, j)^{m-1-l}\right)$,
- $D_{k}\left(g(i)^{m}\right)=D_{k}(g(i)) \sum_{l=0}^{m-1} g(i)^{\prime} S_{k}\left(g(i)^{m-1-1}\right)$,
- $D_{k}\left(h(i)^{m}\right)=D_{k}(h(i)) \sum_{l=0}^{m-1} h(i)^{\prime} S_{k}\left(h(i)^{m-1-l}\right)$,

We will write in the following for $\alpha_{i, j}, \beta_{i}, \gamma_{i} \in \mathbb{N}$ with

 $1 \leq i \neq j \leq 2 n$$$
P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right):=\prod_{1 \leq i \neq j \leq 2 n} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}} .
$$

Lemma

Let $1 \leq i, j, k \leq 2 n, i \neq j$ and m be a positive integer. Then the following holds:

- $D_{k}\left(f(i, j)^{m}\right)=D_{k}(f(i, j)) \sum_{l=0}^{m-1} f(i, j)^{\prime} S_{k}\left(f(i, j)^{m-1-l}\right)$,
- $D_{k}\left(g(i)^{m}\right)=D_{k}(g(i)) \sum_{l=0}^{m-1} g(i)^{\prime} S_{k}\left(g(i)^{m-1-l}\right)$,
- $D_{k}\left(h(i)^{m}\right)=D_{k}(h(i)) \sum_{l=0}^{m-1} h(i)^{l} S_{k}\left(h(i)^{m-1-l}\right)$,

We will write in the following for $\alpha_{i, j}, \beta_{i}, \gamma_{i} \in \mathbb{N}$ with $1 \leq i \neq j \leq 2 n$

$$
P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right):=\prod_{1 \leq i \neq j \leq 2 n} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}} .
$$

A technical theorem

Theorem (A.)

Let $P=P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right), k$ an integer and $i_{1}, \ldots, i_{k} \in\{1, \ldots, 2 n\}$. Then there exists a polynomial $Q \in \mathbb{Q}(q)\left[y_{1}, \ldots, y_{2 n(2 n+1)}\right]$ of degree at most k such that

$$
\left(D_{i_{1}} \circ \cdots \circ D_{i_{k}}\right)(P)_{\mid z 1^{1}=\ldots=z_{2 n}=1}=Q\left(\left(\alpha_{i, j}\right),\left(\beta_{i}\right),\left(\gamma_{i}\right)\right) .
$$

We proof this by induction on k in the following steps:

- $D_{i_{k}} P=\sum_{s \in S} a_{s} P_{s}$, for S finite, $a_{s} \in\left\{ \pm 1, \pm q, \pm q^{-1}\right\}$ and $P_{s}=P\left(\alpha_{i, j ; s}\left|\beta_{i ; s}\right| \gamma_{i ; s}\right)$ for all $s \in S$.
- a_{s} and P_{s} depend piecewise linear in $\alpha_{i, j}, \beta_{i}, \gamma_{i}$.
- Finally use

$$
D_{i_{1}} \circ \cdots \circ D_{i_{k-1}}\left(\sum_{s \in S} a_{s} P_{s}\right)=\sum_{s \in S} a_{s} D_{i_{1}} \circ \cdots \circ D_{i_{k-1}}\left(P_{s}\right) .
$$

An example

We calculate $D_{1}\left(P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right)\right)$ for $n=1$ explicitly:

$$
D_{1}\left(f(1,2)^{\alpha_{1,2}} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right)
$$

An example

$$
\begin{aligned}
& D_{1}\left(f(1,2)^{\alpha_{1,2}} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right) \\
= & -\sum_{t=1}^{\alpha_{1,2}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}}
\end{aligned}
$$

An example

$$
\begin{aligned}
& D_{1}\left(f(1,2)^{\alpha_{1,2} f} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right) \\
= & -\sum_{t=1}^{\alpha_{1,2}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +\sum_{t=1}^{\alpha_{2,1}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}}
\end{aligned}
$$

An example

$$
\begin{aligned}
& D_{1}\left(f(1,2)^{\alpha_{1,2}} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right) \\
= & -\sum_{t=1}^{\alpha_{1,2}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +\sum_{t=1}^{\alpha_{2,1}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& -q^{-1} \sum_{t=1}^{\beta_{1}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}}
\end{aligned}
$$

An example

$$
\begin{aligned}
& D_{1}\left(f(1,2)^{\alpha_{1,2}} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right) \\
= & -\sum_{t=1}^{\alpha_{1,2}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +\sum_{t=1}^{\alpha_{2,1}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& -q^{-1} \sum_{t=1}^{\beta_{1}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +q^{-1} \sum_{t=1}^{\beta_{2}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{2}}
\end{aligned}
$$

An example

$$
\begin{aligned}
& D_{1}\left(f(1,2)^{\alpha_{1,2}} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right) \\
= & -\sum_{t=1}^{\alpha_{1,2}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +\sum_{t=1}^{\alpha_{2,1}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& -q^{-1} \sum_{t=1}^{\beta_{1}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +q^{-1} \sum_{t=1}^{\beta_{2}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{2}} \\
& +q \sum_{t=1}^{\gamma_{1}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}+\gamma_{2}-t} h(2)^{t-1}
\end{aligned}
$$

An example

$$
\begin{aligned}
= & -\sum_{t=1}^{\alpha_{1,2}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +\sum_{t=1}^{\alpha_{2,1}} f(1,2)^{\alpha_{1,2}+\alpha_{2,1}-t+1} f(2,1)^{t-1} g(1)^{\beta_{2}} g(2)^{\beta_{1}} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& -q^{-1} \sum_{t=1}^{\beta_{1}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{1}} \\
& +q^{-1} \sum_{t=1}^{\beta_{2}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}+\beta_{2}-t} g(2)^{t-1} h(1)^{\gamma_{2}} h(2)^{\gamma_{2}} \\
& +q \sum_{t=1}^{\gamma_{1}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}+\gamma_{2}-t} h(2)^{t-1} \\
& -q \sum_{t=1}^{\gamma_{2}} f(1,2)^{\alpha_{1,2}+1} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}+\gamma_{2}-t} h(2)^{t-1}
\end{aligned}
$$

An example

By setting $z_{1}=z_{2}=z_{3}=z_{4}=1$ we obtain:

$$
\begin{aligned}
& D_{1}\left(f(1,2)^{\alpha_{1,2}} f(2,1)^{\alpha_{2,1}} g(1)^{\beta_{1}} g(2)^{\beta_{2}} h(1)^{\gamma_{1}} h(2)^{\gamma_{2}}\right) \\
= & -\sum_{t=1}^{\alpha_{1,2}} 1+\sum_{t=1}^{\alpha_{2,1}} 1-q^{-1} \sum_{t=1}^{\beta_{1}} 1+q^{-1} \sum_{t=1}^{\beta_{2}} 1+q \sum_{t=1}^{\gamma_{1}} 1-q \sum_{t=1}^{\gamma_{2}} 1 \\
= & -\alpha_{1,2}+\alpha_{2,1}+q^{-1}\left(\beta_{2}-\beta_{1}\right)+q\left(\gamma_{1}-\gamma_{2}\right) .
\end{aligned}
$$

Proof-sketch of the technical theorem

$$
D_{i_{k}} P=D_{i_{k}}\left(\prod_{1 \leq i \neq j \leq 2 n} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}}\right)=
$$

$$
\begin{aligned}
D_{i_{k}} P & =D_{i_{k}}\left(\prod_{\substack{1 \leq i \neq j \leq 2 n}} f(i, j)^{\alpha_{i, j}} \prod_{i=1}^{2 n} g(i)^{\beta_{i}} h(i)^{\gamma_{i}}\right)= \\
& =\sum_{\substack{1 \leq i \neq j \leq 2 n}} \prod_{\substack{1 \leq i^{\prime} \neq j^{\prime} \leq 2 n \\
\left(i^{\prime}<i\right) \vee\left(i^{\prime}=i, j^{\prime}<j\right)}} f\left(i^{\prime}, j^{\prime}\right)^{\alpha_{i^{\prime}, j^{\prime}}} \times D_{k}\left(f(i, j)^{\alpha_{i, j}}\right) \times \\
& \times S_{k}\left(\prod_{\substack{1 \leq i^{\prime} i \neq j^{\prime} \leq 2 n \\
\left(i^{\prime}>i\right) \vee\left(i^{\prime}=i, j^{\prime}>j\right)}} f\left(i^{\prime}, j^{\prime}\right)^{\alpha_{i^{\prime}, j^{\prime}}} \prod_{i^{\prime}=1}^{2 n} g\left(i^{\prime}\right)^{\left.\beta_{i^{\prime}} h\left(i^{\prime}\right)^{\gamma_{i^{\prime}}}\right)+\ldots}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \ldots+\sum_{i=1}^{2 n} \prod_{1 \leq i^{\prime} \neq j^{\prime} \leq 2 n} f\left(i^{\prime}, j^{\prime}\right)^{\alpha_{i^{\prime}, j^{\prime}}} \prod_{i^{\prime}=1}^{i-1} g\left(i^{\prime}\right)^{\beta_{i^{\prime}}} \times D_{k}\left(g(i)^{\beta_{i}}\right) \times \\
& \quad \times S_{k}\left(\prod_{i^{\prime}=i+1}^{2 n} g\left(i^{\prime}\right)^{\beta_{i^{\prime}}} \prod_{i^{\prime}=1}^{2 n} h\left(i^{\prime}\right)^{\gamma_{i^{\prime}}}\right)+ \\
& \\
& +\sum_{i=1}^{2 n} \prod_{1 \leq i^{\prime} \neq j^{\prime} \leq 2 n} f\left(i^{\prime}, j^{\prime}\right)^{\alpha_{i^{\prime}, j^{\prime}}} \prod_{i^{\prime}=1}^{2 n} g\left(i^{\prime}\right)^{\beta_{i^{\prime}}} \prod_{i^{\prime}=1}^{i-1} h\left(i^{\prime}\right)^{\gamma_{i^{\prime}} \times} \times \\
& \quad \times D_{k}\left(h(i)^{\gamma_{i}}\right) \times S_{k}\left(\prod_{i^{\prime}=i+1}^{2 n} h\left(i^{\prime}\right)^{\gamma_{i^{\prime}}}\right) .
\end{aligned}
$$

Proof-sketch of the Main Theorem

Remember

$\Psi_{(\pi)_{m} \pi^{\prime}}$ is a sum of products of the form

$$
D_{i_{1}} \circ \cdots \circ D_{i_{k}}\left(\Psi_{()_{m+n+n^{\prime}}}\right)
$$

- $k \leq|\lambda(\pi)|+\left|\lambda\left(\pi^{\prime}\right)\right|$,
- $i_{j} \in I:=\left\{2, \ldots, n^{\prime}-2, m+n^{\prime}+2, \ldots, m+2 n+n^{\prime}-\right.$ $\left.2,2(m+n)+n^{\prime}+2, \ldots, 2\left(m+n+n^{\prime}\right)\right\}$ for $1 \leq j \leq k$.
$A_{(\pi)_{m \pi^{\prime}}}(m)=\Psi_{(\pi)_{m} \pi^{\prime} \mid z_{1}=\ldots=z_{2\left(m+n+n^{\prime}\right)}=1}$.

$$
\Psi_{()_{m+n+n^{\prime}}}=\prod_{1 \leq i<j \leq m+n+n^{\prime}} f(i, j) f\left(m+n+n^{\prime}+i, m+n+n^{\prime}+j\right)
$$

- The $D_{i_{j}}$ with i_{j} as before act trivially on the variables $z_{n^{\prime}+1}, \ldots, z_{m+n^{\prime}}, z_{m+2 n+n^{\prime}+1}, \ldots, z_{2(m+n)+n^{\prime}}$, hence we can set them equal 1.
- Therefore $\Psi_{()_{m+n+n^{\prime}}}$ is of the form $P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right)$ with:

$$
\Psi_{()_{m+n+n^{\prime}}}=\prod_{1 \leq i<j \leq m+n+n^{\prime}} f(i, j) f\left(m+n+n^{\prime}+i, m+n+n^{\prime}+j\right)
$$

- The $D_{i_{j}}$ with i_{j} as before act trivially on the variables $z_{n^{\prime}+1}, \ldots, z_{m+n^{\prime}}, z_{m+2 n+n^{\prime}+1}, \ldots, z_{2(m+n)+n^{\prime}}$, hence we can set them equal 1 .
- Therefore $\Psi_{()_{m+n+n^{\prime}}}$ is of the form $P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right)$ with:

$$
\Psi_{()_{m+n+n^{\prime}}}=\prod_{1 \leq i<j \leq m+n+n^{\prime}} f(i, j) f\left(m+n+n^{\prime}+i, m+n+n^{\prime}+j\right)
$$

- The $D_{i_{j}}$ with i_{j} as before act trivially on the variables $z_{n^{\prime}+1}, \ldots, z_{m+n^{\prime}}, z_{m+2 n+n^{\prime}+1}, \ldots, z_{2(m+n)+n^{\prime}}$, hence we can set them equal 1.
- Therefore $\Psi_{()_{m+n+n^{\prime}}}$ is of the form $P\left(\alpha_{i, j}\left|\beta_{i}\right| \gamma_{i}\right)$ with:

$$
\begin{aligned}
& \alpha_{i, j}= \begin{cases}1 & i, j \notin I, i<j,\left(j \leq\left(m+n+n^{\prime}\right) \text { or } i>m+n+n^{\prime}\right), \\
0 & \text { otherwise }\end{cases} \\
& \beta_{i}=\left\{\begin{array}{ll}
m & i \in\left\{m+n^{\prime}+1, \ldots, m+n+n^{\prime}, 2(m+n)+n^{\prime}+1,\right. \\
0 & \left.\ldots, 2\left(m+n+n^{\prime}\right)\right\}
\end{array},\right. \\
& \gamma_{i}= \begin{cases}m & i \in\left\{1, \ldots, n^{\prime}, m+n+n^{\prime}+1, \ldots, m+2 n+n^{\prime}\right\} \\
0 & \text { otherwise }\end{cases} \\
& I=\left\{n^{\prime}+1, \ldots, n^{\prime}+m, m+2 n+n^{\prime}+1, \ldots, 2(m+n)+n^{\prime}\right\} .
\end{aligned}
$$

