POLYNOMIALITY PHENOMENON FOR FPLS AND AST-TRAPEZOIDS
 Florian Aigner ${ }^{1}$
 Faculty of Mathematics, University of Vienna, Austria

niversität
wien

Noncrossing matchings

A noncrossing matching of size n consists of $2 n$ aligned points which are connected by n noncrossing arches (lying above the points). We denote n nested arches by ()$_{n}$ and n small arches by ()n.

Centred catalan Sets

A centred Catalan set of size n is a n-subset of $\{-(n-1), \ldots, n-1\}$ such that $|S \cap\{-i,-i+1, \ldots, i\}| \geq i+1$ for all $0 \leq i \leq n-1$. We define for a positive integer l

$$
\mathfrak{s}_{1}(x)= \begin{cases}x+1 & x>0 \\ 0 & x=0 \\ x-1 & x<0\end{cases}
$$

A bijection between noncrossing matchings of size n and centred Catalan sets of size n
We assign to every noncrossing matching π of size n a centred Catalan set $S(\pi)$, where $S(\pi)$ contains 0 , an integer $1 \leq i \leq n-1$ iff $2 i+1$ is a left-endpoint of an arc and an integer $-n+1 \leq i \leq-1$ iff $-2 i$ is a left-endpoint of an arc. We write $S \mapsto \pi(S)$ for the inverse map.

Fully packed loops

A FPL F of size n is a subgraph of the $n \times n$ grid with n external edges (they have only one incident vertex) satisfying the following.

- All vertices of the $n \times n$ grid have degree 2 in F.
- An FPL F contains every other external edge, beginning with the topmost at the left side.
Example (all FPLs of size 3).

AST-trapezoids

An ($n, /$)-AST-trapezoid is a configuration $\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2(n+l)-i}$ with entries $-1,0,1$ satisfying the following.

- The non-zero entries alternate in all rows and columns.
- All rowsums are 1.
- The topmost non-zero entry is 1 for all columns.
- The central $(2 /-1)$ columns have columnsum 0 .

Example (all (2, 1)-AST-trapezoids).
1000000000110

FPLs and AST-trapezoids

AST-trapezoids are a generalisation of alternating sign triangles which have been introduced by Ayyer, Behrend and Fischer.
Theorem(Ayyer, Behrend, Fischer; 2016). FPLs of size n and ($n-1,1$)-AST-trapezoids are equinumerous.

The link pattern

We assign to every FPL F a noncrossing matching $\pi(F)$, called its link pattern, by connecting the numbers i and j in $\pi(F)$ iff they are connected in F. Denote by A_{π} the number of FPLs F with $\pi(F)=\pi$. Example.

A polynomiality theorem for FPLs

Theorem(Zuber; Caselli, Krattenthaler, Lass, Nadeau; A.). Let π_{1}, π_{2} be noncrossing matchings of size n_{1} or n_{2} respectively and let m be an integer. Then the number $A_{\left(\pi_{1}\right)_{m} \pi_{2}}$ is a polynomial function in m.

Associating CCSs to AST-trapezoids

We label the columns of an (n, l)-AST-trapezoid A form left to right with $-(n+I-1), \ldots, n+I-1$. Denote by $S(A)$ the centred Catalan set of size n such that $\mathfrak{s}_{/}(S(A))$ is the set of columns with columnsum 1. Write $w_{l}(S)$ for the number of (n, l)-AST-trapezoids with $S(A)=S$.
Example.

$$
\begin{array}{rrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \\
& 1 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
& 1 & 0 & -1 & 0 & 1 & & & \\
& & &
\end{array}
$$

A splitting theorem

Theorem(A.). Let S_{1}, S_{2} be centred Catalan sets of size n_{1}, n_{2} respectively, then $w_{l}\left(S_{1} \cup s_{n_{1}-1}\left(S_{2}\right)\right)=w_{l}\left(S_{1}\right) w_{n_{1}+l-1}\left(S_{2}\right)$.

A polynomiality theorem for ASTs

Theorem(A.). For a centred Catalan set S the number $w_{l}(S)$ is a polynomial function in 1 .

An analogy between the two theorems

Let S_{1}, S_{2} be two centred Catalan sets of size n_{1} or n_{2} respectively and set

$$
S(m)=\{1,2, \ldots, m\} \cup \mathfrak{s}_{m}\left(S_{1}\right) \cup\left\{m+n_{1}, \ldots, 2 m+n_{1}\right\} \cup \mathfrak{s}_{2 m+n_{1}}\left(S_{2}\right) .
$$

Then $w_{1}(S(m))$ is a polynomial in m where the associated noncrossing matching of $S(m)$ is

