POLYNOMIALITY PHENOMENON FOR FPLS AND AST-TRAPEZOIDS Florian Aigner¹

Faculty of Mathematics, University of Vienna, Austria ¹ Supported by the Austrian Science Foundation FWF, START grant Y463.

Noncrossing matchings

A noncrossing matching of size *n* consists of 2*n* aligned points which are connected by *n* noncrossing arches (lying above the points). We denote *n* nested arches by $()_n$ and *n* small arches by $()^n$.

Centred catalan Sets

A centred Catalan set of size *n* is a *n*-subset of $\{-(n-1), \ldots, n-1\}$ such that $|S \cap \{-i, -i+1, \ldots, i\}| \ge i+1$ for all $0 \le i \le n-1$. We define for a positive integer I

Niversität Wien

$$(x) = \begin{cases} x+l & x > 0, \\ 0 & x = 0, \\ x-l & x < 0. \end{cases}$$

We assign to every noncrossing matching π of size *n* a centred Catalan set $S(\pi)$, where $S(\pi)$ contains 0, an integer $1 \le i \le n-1$ iff 2i+1is a left-endpoint of an arc and an integer $-n+1 \le i \le -1$ iff -2i is a left-endpoint of an arc. We write $S \mapsto \pi(S)$ for the inverse map.

$$\Leftrightarrow$$
 $S(\pi) = \{-8, -6, -5, -2, -1, 0, 2, 4, 6\}$

\$/(

Fully packed loops

A FPL F of size n is a subgraph of the $n \times n$ grid with n external edges (they have only one incident vertex) satisfying the following. All vertices of the $n \times n$ grid have degree 2 in F.

► An FPL F contains every other external edge, beginning with the topmost at the left side.

Example (all FPLs of size 3).

AST-trapezoids

An (n, l)-AST-trapezoid is a configuration $(a_{i,j})_{1 \le i \le n, i \le j \le 2(n+l)-i}$ with entries -1, 0, 1 satisfying the following.

- The non-zero entries alternate in all rows and columns.
- ► All rowsums are 1.
- ► The topmost non-zero entry is 1 for all columns.
- For the central (2I 1) columns have columnsum 0. **Example** (all (2, 1)-AST-trapezoids).

1 0 0 1 0 0 1 0 0 0 0 1 $0 \ 0 \ 1$ 0 0 1 1 - 1 1

FPLs and AST-trapezoids

AST-trapezoids are a generalisation of alternating sign triangles which have been introduced by Ayyer, Behrend and Fischer. **Theorem**(Ayyer, Behrend, Fischer; 2016). FPLs of size *n* and (n - 1, 1)-AST-trapezoids are equinumerous.

The link pattern

We assign to every FPL F a noncrossing matching $\pi(F)$, called its link pattern, by connecting the numbers i and j in $\pi(F)$ iff they are connected in F. Denote by A_{π} the number of FPLs F with $\pi(F) = \pi$. Example.

A polynomiality theorem for FPLs

Theorem(Zuber; Caselli, Krattenthaler, Lass, Nadeau; A.). Let π_1, π_2 be noncrossing matchings of size n_1 or n_2 respectively and let

Associating CCSs to AST-trapezoids

We label the columns of an (n, l)-AST-trapezoid A form left to right with $-(n + l - 1), \ldots, n + l - 1$. Denote by S(A) the centred Catalan set of size *n* such that $\mathfrak{s}_{I}(S(A))$ is the set of columns with columnsum 1. Write $w_i(S)$ for the number of (n, I)-AST-trapezoids with S(A) = S. Example.

A splitting theorem

Theorem(A.). Let S_1, S_2 be centred Catalan sets of size n_1, n_2 respectively, then $w_l(S_1 \cup s_{n_1-1}(S_2)) = w_l(S_1)w_{n_1+l-1}(S_2)$.

m be an integer. Then the number $A_{(\pi_1)_m\pi_2}$ is a polynomial function in *m*.

A polynomiality theorem for ASTs

Theorem(A.). For a centred Catalan set S the number $w_l(S)$ is a polynomial function in *I*.

An analogy between the two theorems

Let S_1 , S_2 be two centred Catalan sets of size n_1 or n_2 respectively and set

 $S(m) = \{1, 2, \ldots, m\} \cup \mathfrak{s}_m(S_1) \cup \{m + n_1, \ldots, 2m + n_1\} \cup \mathfrak{s}_{2m+n_1}(S_2).$

Then $w_1(S(m))$ is a polynomial in m where the associated noncrossing matching of S(m) is depictured on the right.

