Refined enumerations of alternating sign triangles

Florian Aigner ${ }^{1}$
Faculty of Mathematics, University of Vienna, Austria

Supported by the Austrian Science Foundation FWF, START grant Y463.

Alternating sign triangle (AST)

An AST of order n is a configuration of n centred rows where the i-th row, counted from the bottom, has $2 i-1$ elements with entries $-1,0,1$ such that

- the non-zero entries alternate in all rows and columns,
- all row-sums are 1 ,
- the topmost non-zero entry is 1 for all columns.

Example The following is an AST of order 7.

$$
A=\begin{array}{ccccccccccccc}
-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & \\
& & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & & \\
& & & 0 & 0 & 0 & 1 & 0 & 0 & 0 & & &
\end{array}
$$

Theorem (Ayyer, Behrend, Fischer, 2016) The number of AST of order n is given by

$$
\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

i. e. order n ASTs and $n \times n$ ASMs are equinumerous.

Centred Catalan set (CCS)

A centred Catalan set of size n is a n-subset of $\{-(n-1), \ldots, n-1\}$ such that $|S \cap\{-i,-i+1, \ldots, i\}| \geq i+1$ for all $0 \leq i \leq n-1$.

Proposition Label the columns of an AST A of order n from left to right with $-(n-1), \cdots, n-1$. The set $S(A)$ of columns with positive column-sum is a centred Catalan set.

Example $S(A)=\{-4,-2,-1,0,1,4,5\}$, where A is the above AST.
Let S be a centred Catalan set of size n. We define the weight $w(S)$ as the number of ASTs with associated centred Catalan set equal to S.

CCS and Dyck paths

Given a Dyck path D of length $2 n$, we label the steps from left to right by $0,-1,1,-2,2, \ldots,-n$. The set $S(D)$ of labels of the North-East steps is a centred Catalan set. The map $D \mapsto S(D)$ is a bijection between Dyck paths of length $2 n$ and centred Catalan sets of size n.

Example

$$
S(D)=\{-1,0,1,2\}
$$

Concatenating centred Catalan sets

We define for a positive integer I

$$
\mathfrak{s}_{l}(x)= \begin{cases}x+1 & x>0 \\ 0 & x=0 \\ x-1 & x<0\end{cases}
$$

Let S_{1}, S_{2} be two centred Catalan sets of size n_{1} or n_{2} respectively. The concatenation of S_{1} and S_{2} is $\left(S_{1}, S_{2}\right):=S_{1} \cup \mathfrak{s}_{n_{1}-1}\left(S_{2}\right)$. We call a centred Catalan set irreducible iff it can not be written as a non-trivial concatenation.
Example $(\{-2,-1,0,1\},\{-1,0,1,2\})=\{-4,-2,-1,0,1,4,5\}$.

Alternating sign (AS)-trapezoids

An ($n, /$)-AS-trapezoid is a configuration of n centred rows, where the i-th row from bottom has $2(i+I)-1$ elements, with entries $-1,0,1$ such that

- the non-zero entries alternate in all rows and columns,
- all row-sums are 1 ,
- the topmost non-zero entry is 1 for all columns,
- the central $(2 I-1)$ columns have column-sum 0 .

Example The following is a $(3,4)$-AS-trapezoid.

$$
A=\begin{array}{ccccccccccccc}
-3 & -2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & \\
& & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & &
\end{array}
$$

Associating CCSs to AS-trapezoids

We label the non-central columns of an (n, l)-AS-trapezoid A form left to right with $-n, \ldots,-1,1, \cdots, n$. Denote by $S(A)$ the centred Catalan set of size $n+1$ such that $S(A) \backslash\{0\}$ is the set of columns with column-sum equal to 1 . The weight $w_{l}(S)$ is the number of (n, l)-AS-trapezoids with $S(A)=S$.

Example $S(A)=\{-1,0,1,2\}$, where A is the above AS-trapezoid.
Remark ASTs of order $n+1$ and ($n, 1$)-AS-trapezoids are in bijection. This bijection preserves the assignment of centred Catalan sets, i.e., $w(S)=w_{1}(S)$ for every centred Catalan set S.

A splitting theorem

Theorem (A., 2016) Let S_{1}, S_{2} be centred Catalan sets of size n_{1}, n_{2} respectively, then $w_{l}\left(\left(S_{1}, S_{2}\right)\right)=w_{l}\left(S_{1}\right) w_{n_{1}+l-1}\left(S_{2}\right)$.

CCSs and skew-shaped Young diagrams

We assign to an centred Catalan set S a skew shaped Young diagram $Y(S)$. First we construct a pair $(\sigma(S), \mu(S))$ of paths of length $n-1$ where for $1 \leq i \leq n$ the i-th step σ_{i}, μ_{i} is given as in the table to the right. The skew-shaped Young diagram $Y(S)$ is defined as the boxes between the

$$
\begin{array}{c|c|c}
& \sigma_{i} & \mu_{i} \\
\hline\{-i, i\} \subseteq S & \mathrm{E} & \mathrm{~N} \\
-i \in S, i \notin S & \mathrm{~N} & \mathrm{~N} \\
i \in S,-i \notin S & \mathrm{E} & \mathrm{E} \\
-i, i \notin S & \mathrm{~N} & \mathrm{E}
\end{array}
$$

Example

The skew-shaped Young diagram of $\{-4,-2,-1,0,1,4,5\}$ is

A polynomiality theorem for ASTs

Theorem (A., 2016) For a centred Catalan set S the weight $w_{l}(S)$ is a polynomial function in I of degree $|Y(S)|$ with leading coefficient

$$
\frac{2^{|Y(S)|} \#(S Y T \text { of shape } Y(S))}{|Y(S)|!}
$$

Conjecture (A.) Let S be a centred Catalan set and k a positive integer.
Then $\{-k,-k+1, \cdots, k\} \subseteq S$ if and only if

$$
\left.\prod_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}(2 l+1+3 i)_{k-2 i} \right\rvert\, w_{l}(S)
$$

where $(x)_{j}=(x)(x+1) \cdots(x+j-1)$.

