

Refined enumerations of alternating sign triangles

Florian Aigner¹

Faculty of Mathematics, University of Vienna, Austria ¹ Supported by the Austrian Science Foundation FWF, START grant Y463.

Alternating sign triangle (AST)

An AST of order *n* is a configuration of *n* centred rows where the *i*-th row, counted from the bottom, has 2i - 1 elements with entries -1, 0, 1such that

- ▶ the non-zero entries alternate in all rows and columns,
- ▶ all row-sums are 1,
- ▶ the topmost non-zero entry is 1 for all columns.

Example The following is an AST of order 7.

Alternating sign (AS)-trapezoids

An (*n*, *I*)-AS-trapezoid is a configuration of *n* centred rows, where the *i*-th row from bottom has 2(i + l) - 1 elements, with entries -1, 0, 1 such that

- ▶ the non-zero entries alternate in all rows and columns,
- ▶ all row-sums are 1,
- ▶ the topmost non-zero entry is 1 for all columns,
- ▶ the central (2I 1) columns have column-sum 0.

Example The following is a (3,4)-AS-trapezoid.

Theorem (Ayyer, Behrend, Fischer, 2016) The number of AST of order *n* is given by

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!},$$

i.e. order *n* ASTs and $n \times n$ ASMs are equinumerous.

Centred Catalan set (CCS)

A centred Catalan set of size n is a n-subset of $\{-(n-1), \ldots, n-1\}$ such that $|S \cap \{-i, -i+1, ..., i\}| \ge i+1$ for all $0 \le i \le n-1$.

Associating CCSs to AS-trapezoids

We label the non-central columns of an (n, l)-AS-trapezoid A form left to right with $-n, \ldots, -1, 1, \cdots, n$. Denote by S(A) the centred Catalan set of size n + 1 such that $S(A) \setminus \{0\}$ is the set of columns with column-sum equal to 1. The weight $w_{l}(S)$ is the number of (n, l)-AS-trapezoids with S(A) = S.

Example $S(A) = \{-1, 0, 1, 2\}$, where A is the above AS-trapezoid.

Remark ASTs of order n + 1 and (n, 1)-AS-trapezoids are in bijection. This bijection preserves the assignment of centred Catalan sets, i.e., $w(S) = w_1(S)$ for every centred Catalan set S.

Proposition Label the columns of an AST A of order n from left to right with $-(n-1), \dots, n-1$. The set S(A) of columns with positive column-sum is a centred Catalan set.

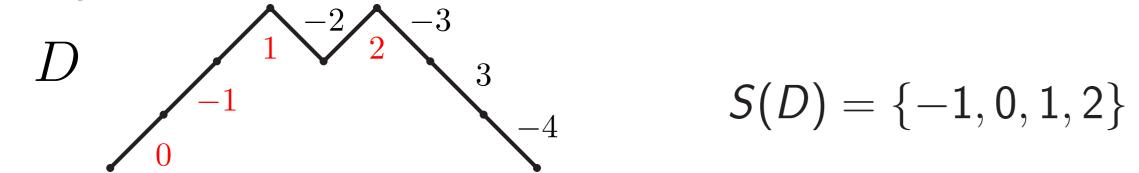
Example $S(A) = \{-4, -2, -1, 0, 1, 4, 5\}$, where A is the above AST.

Let S be a centred Catalan set of size n. We define the weight w(S) as the number of ASTs with associated centred Catalan set equal to S.

CCS and **Dyck** paths

Given a Dyck path D of length 2n, we label the steps from left to right by $0, -1, 1, -2, 2, \ldots, -n$. The set S(D) of labels of the North-East steps is a centred Catalan set. The map $D \mapsto S(D)$ is a bijection between Dyck paths of length 2*n* and centred Catalan sets of size *n*.

Example



A splitting theorem

Theorem (A., 2016) Let S_1, S_2 be centred Catalan sets of size n_1, n_2 respectively, then $w_l((S_1, S_2)) = w_l(S_1)w_{n_1+l-1}(S_2)$.

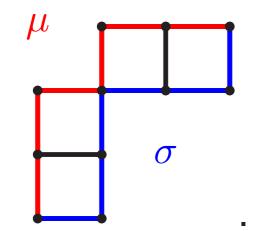
CCSs and skew-shaped Young diagrams

We assign to an centred Catalan set S a skew shaped Young diagram Y(S). First we construct a pair $(\sigma(S), \mu(S))$ of paths of length n-1 where for $1 \leq i \leq n$ the *i*-th step σ_i, μ_i is given as in the table to the right. The skew-shaped Young diagram Y(S) is defined as the boxes between the paths $\sigma(S)$ and $\mu(S)$.

Example

The skew-shaped Young diagram of $\{-4, -2, -1, 0, 1, 4, 5\}$ is

 $\frac{\sigma_i \ \mu_i}{\{-i,i\} \subseteq S \ \mathsf{E} \ \mathsf{N}}$ $-i \in S, i \notin S | \mathbb{N} | \mathbb{N}$ $i \in S, -i \notin S \mid \mathsf{E} \mid \mathsf{E}$ $-i, i \notin S \mid |\mathsf{N}| \in \mathsf{E}$



Concatenating centred Catalan sets

We define for a positive integer *I*

$$\mathfrak{s}_{I}(x) = egin{cases} x+I & x>0, \ 0 & x=0, \ x-I & x<0. \end{cases}$$

Let S_1, S_2 be two centred Catalan sets of size n_1 or n_2 respectively. The concatenation of S_1 and S_2 is $(S_1, S_2) := S_1 \cup \mathfrak{s}_{n_1-1}(S_2)$. We call a centred Catalan set irreducible iff it can not be written as a non-trivial concatenation.

Example
$$(\{-2, -1, 0, 1\}, \{-1, 0, 1, 2\}) = \{-4, -2, -1, 0, 1, 4, 5\}.$$

A polynomiality theorem for ASTs

Theorem (A., 2016) For a centred Catalan set S the weight $w_l(S)$ is a polynomial function in I of degree |Y(S)| with leading coefficient $2^{|Y(S)|} # (SYT \text{ of shape } Y(S))$ |Y(S)|!

Conjecture (A.) Let S be a centred Catalan set and k a positive integer. Then $\{-k, -k+1, \cdots, k\} \subseteq S$ if and only if

$$\left. \prod_{i=0}^{\left\lfloor \frac{k-1}{2} \right\rfloor} (2l+1+3i)_{k-2i} \right| w_l(S),$$

where $(x)_j = (x)(x+1)\cdots(x+j-1).$

The 29th International Conference on Formal Power Series and Algebraic Combinatorics, July 9-July 13 2017, London, United Kingdom