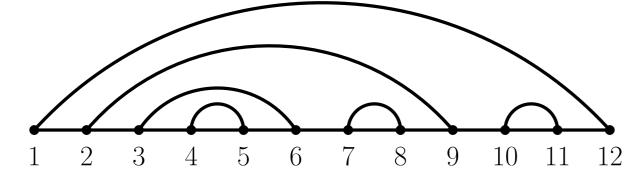
FULLY PACKED LOOP CONFIGURATIONS: POLYNOMIALITY AND NESTED ARCHES Florian Aigner¹

Faculty of Mathematics, University of Vienna, Austria ¹ Supported by the Austrian Science Foundation FWF, START grant Y463.

Noncrossing matchings

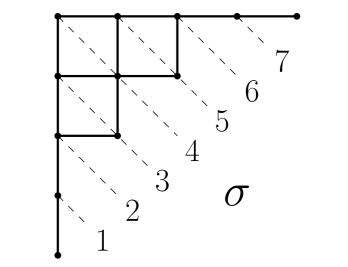
A noncrossing matching consists out of 2*n* aligned points which are connected by *n* noncrossing arches (lying above the points). Example.

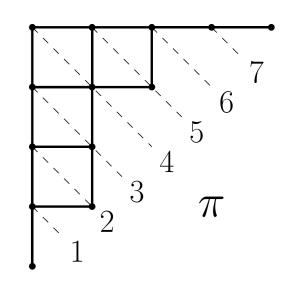


• Denote by $(\pi)_m$ the noncrossing matching π surrounded by mnested arches.

A partial order on noncrossing matchings

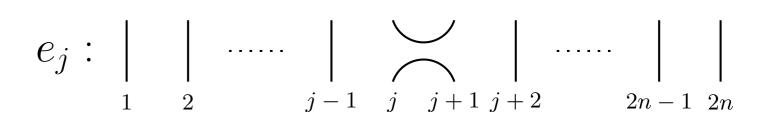
We write $\sigma \nearrow_i \pi$ if $\lambda(\pi)$ is obtained by adding a box to $\lambda(\sigma)$ on the *j*-th diagonal.





Temperley-Lieb operator

The Temperley-Lieb operator e_j is given for $1 \le j \le 2n$ by:



• Write $\pi\sigma$ for the concatenation of π and σ .

• Denote by NC_n the set of noncrossing matchings of size *n*.

From noncrossing matchings to Young diagrams

Noncrossing matchings of size *n* are in bijection to Young diagrams with at most n - i boxes in the *i*-th row. Opening arches correspond to north-steps, closing arches to east-steps. Example.

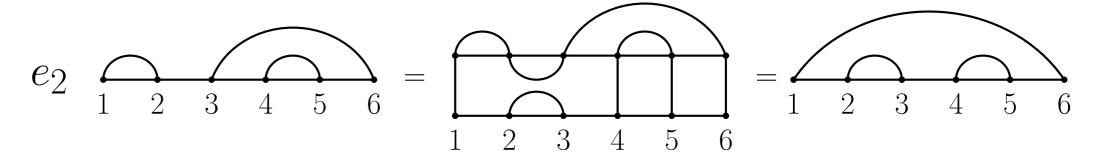
 $\lambda(\pi)$

Fully packed loops

A FPL F of size n is a subgraph of the $n \times n$ grid with n external edges (they have only one vertex) such that:

- F contains all vertices of the $n \times n$ grid and every vertex has degree 2.
- ► F contains every other external edge, beginning with the topmost at the left side.

Example.



Wheel polynomials

A polynomial $p \in \mathbb{Q}(q)[z_1, \ldots, z_{2n}]$ is called wheel polynomial of order *n* if:

- ▶ *p* is homogeneous of degree n(n-1).
- ► $p(z_1, ..., z_{2n})_{|q^4 z_i = q^2 z_j = z_k} = 0$ for all $1 \le i < j < k \le 2n$.

Denote by $W_n[z]$ the $\mathbb{Q}(q)$ -vector space of wheel polynomials.

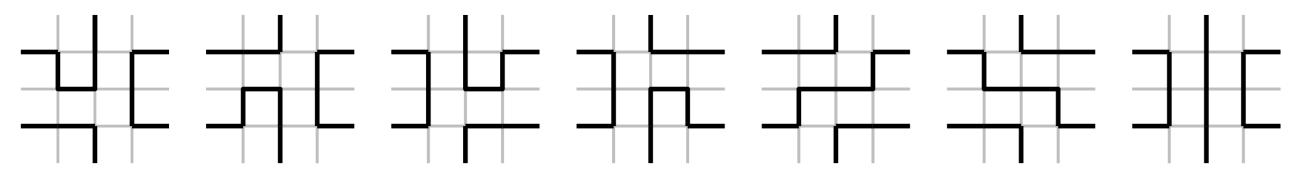
A family of operators

Define for
$$1 \le k \le 2n$$

 $D_k(f) = \frac{qz_k - q^{-1}z_{k+1}}{z_{k+1} - z_k} (f(z_1, \dots, z_{k+1}, z_k, \dots, z_{2n}) - f(z_1, \dots, z_{2n}))$

The vector space $W_n[z]$

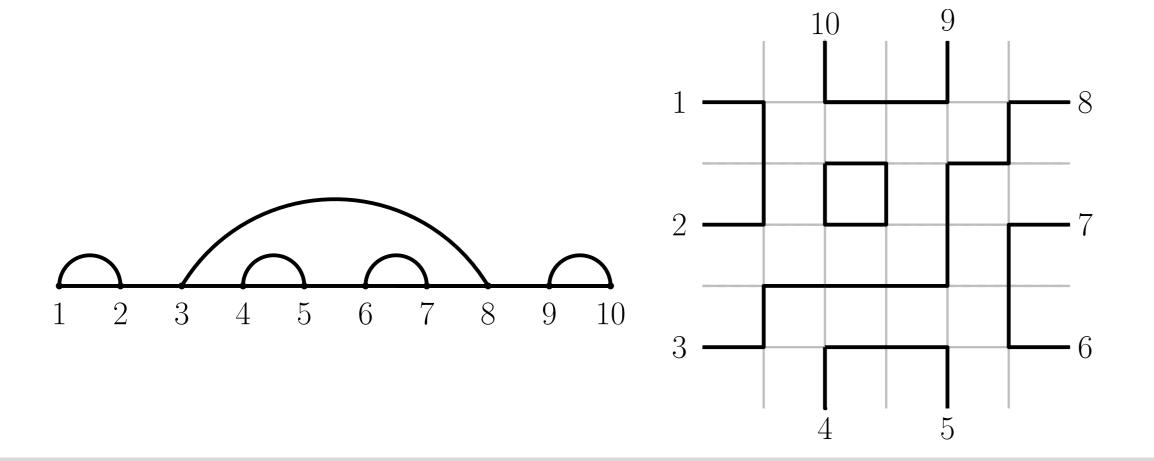
Example(All FPLs of size 3).



The link pattern

We assign to every FPL F a noncrossing matching $\pi(F)$, called its link pattern, by connecting the numbers *i* and *j* in $\pi(F)$ iff they are connected in F.

Example.



Theorem(Zinn-Justin; Cantini, Sportiello) There exists a $\mathbb{Q}(q)$ basis $\{\Psi_{\pi} | \pi \in NC_n\}$ of $W_n[z]$ such that: $\Psi_{()_n} = (q + q^{-1})^{-n(n-1)} \prod_{1 \le i < j \le n} (qz_i - q^{-1}z_j) (qz_{n+i} - q^{-1}z_{n+j}).$ $\Psi_{\pi}(z) = D_{j}(\Psi_{\sigma}) - \sum_{\tau \in e_{i}^{-1}(\sigma) \setminus \{\sigma,\pi\}} \Psi_{\tau}, \text{ if } \sigma \nearrow_{j} \pi.$ • $\Psi_{\pi}(1, \ldots, 1) = A_{\pi}$ for $q = e^{\frac{2\pi i}{3}}$. $\Psi_{\rho^{-1}(\pi)}(z_1,\ldots,z_{2n}) = \Psi_{\pi}(z_2,\ldots,z_{2n},q^6z_1)$

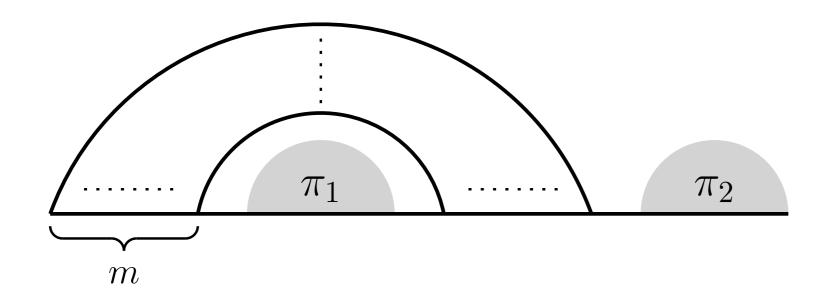
A new family of wheel polynomials

Let π_1, π_2 be noncrossing matchings of size n_1, n_2 . We define D_{π_1, π_2} recursively:

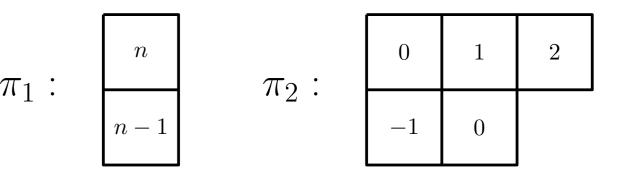
- Write in the boxes of $\lambda(\pi_i)$ the number of the diagonal the boxes lie on, with the top-left box lying on the $(n_1 + n_2)$ -th or 0-th diagonal respectively.
- Read in $\lambda(\pi_i)$ the rows from top to bottom, the boxes from left to right and apply $D_{number in the box}$ on the previous wheel polynomial, starting with $\Psi_{()_n}$. Example.

The main theorem

Theorem(Zuber; Caselli, Krattenthaler, Lass, Nadeau; A.). Let π_1, π_2 be noncrossing matchings of size n_1 or n_2 respectively and let m be an integer. The number of FPLs with link pattern $(\pi_1)_m \pi_2$ is a polynomial in *m* of degree $|\lambda(\pi_1)| + |\lambda(\pi_2)|$ with leading coefficient $\frac{\dim(\lambda(\pi_1))\dim(\lambda(\pi_2))}{|\lambda(\pi_1)|!|\lambda(\pi_2)|!}$



The wheel polynomial D_{π_1,π_2} for π_1 : $\begin{bmatrix} n \\ \pi_2 \end{bmatrix} = \pi_2$: $\begin{bmatrix} 0 \\ \pi_1,\pi_2 \end{bmatrix}$ as in the picture is π_1 : $\begin{bmatrix} n \\ \pi_1 \end{bmatrix} = \pi_2$: $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ π_1, π_2 as in the picture is



 $D_{\pi_1,\pi_2} = (D_0 \circ D_{-1} \circ D_2 \circ D_1 \circ D_0) \circ (D_{n-1} \circ D_n)(\Psi_{()_n}).$ **Theorem**. $\Psi_{\rho^{n_2}(\pi_1\pi_2)}$ is a linear combination of D_{τ_1,τ_2} with $\tau_i \leq \pi_i$ for i = 1, 2 and the coefficient of D_{π_1, π_2} is 1.

A polynomiality theorem

Theorem. Let k be a natural number and $i_1, \ldots, i_k \in \{1, \ldots, \frac{n}{2}\} \cup$ $\{\frac{n}{2}+m,\ldots,\frac{3n}{2}+m\}\cup\{\frac{3n}{2}+2m,\ldots,2(n+m)\},\$ then $(D_{i_1} \circ \ldots \circ D_{i_k}) (\Psi_{()_{n+m}})|_{z_1=\ldots=z_{2(n+m)}=1}$ is a polynomial in m of degree at most k.

The 28th International Conference on Formal Power Series and Algebraic Combinatorics, July 4-July 8 2016, Vancouver, Canada

florian.aigner@univie.ac.at