1) Arrowed Gelfand-Tsetlin pattern

An arrowed Gelfand-Tsetlin patter (AGT) is a triangular array of integers of the form

together with a decoration of the entries by the symbols $\emptyset, \nwarrow, \nearrow, \nwarrow \nearrow$ such that

$$
\begin{aligned}
a_{i+1, j}=a_{i, j} \text { and } a_{i+1, j} & \text { is decorated by } \nearrow \text { or } \nwarrow, \\
& \Leftrightarrow \\
a_{i+1, j+1}=a_{i . j} \text { and } a_{i+1, j+1} & \text { is decorated by } \nwarrow \text { or } \nwarrow X .
\end{aligned}
$$

Example

The above AGT has weight $-t^{10} u^{4} v^{4} w^{3} x_{1}^{4} x_{2}^{3} x_{3}^{5} x_{4}^{6} x_{5}^{6} x_{6}^{2}$; we marked the special little triangle in red.

2) Weighted enumeration of AGTs

We call the following local configurations special little triangle

The sign $\operatorname{sgn}(A)$ of an AGT A is

$$
(-1)^{\# \text { of special little triangles in } A}
$$

We define the weight of A as
$W(A):=\operatorname{sgn}(A) t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \prod_{i=1}^{n} x_{i}^{i} a_{i, 1}^{i} \sum_{j=1}^{i-1} a_{i-1 . j}+\# \nearrow$ in row $i-\# \nwarrow$ in row i
Theorem([3, Thm 3.2]) Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition and set $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. The weighted enumeration $\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x})$ of all AGTs with bottom row $\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$ is given by

$$
\begin{aligned}
\mathcal{A}_{\lambda}(t, u, v, w ; \mathbf{x})=\prod_{i=1}^{n} & \left(u x_{i}+v x_{i}^{-1}+w+t\right) \\
& \times \prod_{1 \leq i<j \leq n}\left(t \text { id }+u E_{\lambda_{j}}+v E_{\lambda_{i}}^{-1}+w E_{\lambda_{j}} E_{\lambda_{i}}^{-1}\right) s_{\lambda}(\mathbf{x})
\end{aligned}
$$

3) Some special cases

$$
\mathcal{A}_{\lambda}(1,0,0,0 ; \mathbf{x})=s_{\lambda}(\mathbf{x}),
$$

$\mathcal{A}_{(n, n-1, \ldots, 1)}(0,1,1,-1 ; \mathbf{1})=\# n \times n$ ASMs,
$\mathcal{A}_{(2 n, 2 n-2, \ldots, 2)}(0,1,1,-1 ; \mathbf{1})=\#(2 n+1) \times(2 n+1)$ VSASMs,
$\mathcal{A}_{(n-1, n-2, \ldots, 0)}(1,1,1,-1 ; \mathbf{1})=\#$ configurations of the 20 -vertex model.

4A) The main theorem for $w=-1$
Theorem([4, Thm 1]) For positive integers n, m we have $\sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{1})$

$$
=2^{n} \prod_{i=1}^{n} \frac{(m-n+3 i+1)_{i-1}(m-n+i+1)_{i}}{\left(\frac{m-n+i+2}{2}\right)_{i-1}(i)_{i}}
$$

In the case $m=n-1$, which corresponds to having AGTs with bottom row $(0,1, \ldots, n-1)$ the above becomes

$$
2^{\binom{n}{2}} \prod_{i=0}^{n-1} \frac{(4 i+2)!}{(n+2 i+1)!},
$$

which appears in recent work by Di Francesco [1], when divided by 2^{n}.

5A) A signless interpretation for $w=-1$

Proposition([4, Prop 3]) For λ a partition, $\mathcal{A}_{\lambda}(1,1,1,-1 ; \mathbf{1})$ counts the number of Gelfand-Tsetlin patterns with bottom row
$\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$ such that

- only the bottom row can contain three equal entries
- with weight 2^{r} where r is the number of entries which are not equal to their north-east or north-west neighbour.

6) Proof sketch

1. Use a generalisation of a bounded Littlewood identity [2, Cor 1.2] to rewrite the operator formula as a determinant.
2. Guess a LU decomposition for both $w=0$ and $w=-1$.
3. Use Sister Celine's algorithm and creative telescoping to prove the triple sum identity obtained in the LU decomposition.

4B) The main theorem for $w=0$
Theorem([4, Thm 2]) For positive integers n, m we have

$$
\sum_{0 \leq \lambda_{n}<\lambda_{n-1}<\ldots<\lambda_{1} \leq m} \mathcal{A}_{\lambda}(1,1,1,0 ; \mathbf{1})=3\binom{n+1}{2} \prod_{i=1}^{n} \frac{(2 n+m+2-3 i)_{i}}{(i)_{i}}
$$

5B) A signless interpretation for $w=0$
Proposition([4, Prop 4]) For λ a partition, $\mathcal{A}_{\lambda}(1,1,1,0 ; \mathbf{1})$ counts the number of arrowed Gelfand-Tsetlin patterns with bottom row
$\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)$ without the $\bar{\chi}$ decoration such that

- each entry appears at most twice in each row,
- an entry can only 'point' at another entry with a different value,
- for two equal entries in one row, one must be decorated with \nearrow or \nwarrow

7) Literature

[1] P. Di Francesco. Twenty vertex model and domino tilings of the Aztec triangle. Electron. J. Combin., 28(4): Paper No. 4.38, 50, 2021.
[2] I. Fischer. Bounded Littlewood identity related to alternating sign matrices. arXiv: 2301.00175, 2022.
[3] I. Fischer and F. Schreier-Aigner, The relation between alternating sign matrices and descending plane partitions: $n+3$ pairs of equivalent statistics. Adv. Math., 413:108831, 47, 2023.
[4] I. Fischer and F. Schreier-Aigner, (-1)-enumerations of arrowed Gelfand-Tsetlin patterns. arXiv: 2302.04164, 2023.

