Fuchs' Theorem, an Exponential Function, and Abel's Problem in Positive Characteristic

joint work with H. Hauser and H. Kawanoue (arXiv:2307.01712 and arXiv:2401.14154)

Florian Fürnsinn
University of Vienna
MATHEXP-Polsys Seminar, Palaiseau
May 17, 2024
universität
wien

Overview

1. Introduction: Local Solution Theory in Characteristic 0
2. Local Solution Theory in Positive Characteristic
3. An Exponential Function in Positive Characteristic
4. Abel's Problem in Positive Characteristic

Definitions

Consider a homogeneous linear ordinary differential equation (ODE) over \mathbb{C}

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

with $a_{i} \in \mathbb{C} \llbracket x \rrbracket$. We can rewrite it in terms of a differential operator as $L y=0$ with $L=a_{n} \partial^{n}+\ldots+a_{1} \partial+a_{0} \in \mathbb{C} \llbracket x \rrbracket[\partial]$.

Definitions

Consider a homogeneous linear ordinary differential equation (ODE) over \mathbb{C}

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

with $a_{i} \in \mathbb{C} \llbracket x \rrbracket$. We can rewrite it in terms of a differential operator as $L y=0$ with $L=a_{n} \partial^{n}+\ldots+a_{1} \partial+a_{0} \in \mathbb{C} \llbracket x \rrbracket[\partial]$.
L has a regular singularity at 0 if $a_{i} / a_{n} \in \mathbb{C}((x))$ has a pole of order at most $n-i$ at 0 .

Definitions

Consider a homogeneous linear ordinary differential equation (ODE) over \mathbb{C}

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

with $a_{i} \in \mathbb{C} \llbracket x \rrbracket$. We can rewrite it in terms of a differential operator as $L y=0$ with $L=a_{n} \partial^{n}+\ldots+a_{1} \partial+a_{0} \in \mathbb{C} \llbracket x \rrbracket[\partial]$.
L has a regular singularity at 0 if $a_{i} / a_{n} \in \mathbb{C}((x))$ has a pole of order at most $n-i$ at 0 . Write $L=\sum_{i=0}^{\infty} \sum_{j=0}^{n} c_{i, j} x^{i} \partial^{j}$ and set $L_{k}=\sum_{i-j=k} c_{i, j} x^{i} \partial^{j}$. The minimal τ with $L_{\tau} \neq 0$ is called the shift of L. From now on, we assume w.l.o.g. $\tau=0$ (multiply L by $x^{-\tau}$).

The operator $L_{0}=\sum c_{i, i} x^{i} \partial^{i}$ is called the initial form of L. It has the same order as L if and only if L is regular singular.

For the initial form L_{0} we have $L_{0}\left(x^{k}\right)=\chi_{L}(k) x^{k}$, where $\chi_{L}(k)$ is the indicial polynomial of L. Its roots ρ_{i} for $i=1, \ldots, k$ of multiplicity m_{i} are the local exponents of L.

A basis of solutions of $L_{0} y=0$ (as \mathbb{C}-vector space) is given by $x^{\rho_{i}} z^{j}$ for $1 \leq i \leq k$ and $0 \leq j \leq m_{i}-1$.

Definitions

For the initial form L_{0} we have $L_{0}\left(x^{k}\right)=\chi_{L}(k) x^{k}$, where $\chi_{L}(k)$ is the indicial polynomial of L. Its roots ρ_{i} for $i=1, \ldots, k$ of multiplicity m_{i} are the local exponents of L.

A basis of solutions of $L_{0} y=0$ (as \mathbb{C}-vector space) is given by $x^{\rho_{i}} z^{j}$ for $1 \leq i \leq k$ and $0 \leq j \leq m_{i}-1$.

Example

The differential operator

$$
L=x^{5} \partial^{5}-2 x^{4} \partial^{4}-2 x^{3} \partial^{3}+16 x^{2} \partial^{2}-16 x \partial-x
$$

is regular singular with shift 0 . Its normal form is $L_{0}=L+x$ and its indicial polynomial is $\chi(s)=s^{2}(s-2)(s-5)^{2}$. The local exponents are $\rho_{1}=0, \rho_{2}=2$ and $\rho_{3}=5$ with $m_{1}=2$, $m_{2}=1$ and $m_{3}=2$.

Fuchs' Theorem - Local Solution Theory

Theorem (Fuchs 1866)

Let $L \in \mathbb{C} \llbracket x \rrbracket[\partial]$ be a regular singular differential operator of order n. Then the equation Ly $=0$ has a basis of $n \mathbb{C}$-linearly independent solutions of the form

$$
f_{i}=x^{\rho}\left(f_{i, 0}+f_{i, 1} \log (x)+\ldots+f_{i, n-1} \log (x)^{n-1}\right)
$$

where $f_{i, j} \in \mathbb{C} \llbracket x \rrbracket$ and ρ ranges over the local exponents (counted with multiplicity).
Fuchs gave a more detailed description on the form of the solution, in particular on the order of $f_{i, j}$ and more precise bounds on the powers of the logarithm appearing.

Fuchs' Theorem - Local Solution Theory

Theorem (Fuchs 1866)

Let $L \in \mathbb{C} \llbracket x \rrbracket[\partial]$ be a regular singular differential operator of order n. Then the equation Ly $=0$ has a basis of $n \mathbb{C}$-linearly independent solutions of the form

$$
f_{i}=x^{\rho}\left(f_{i, 0}+f_{i, 1} \log (x)+\ldots+f_{i, n-1} \log (x)^{n-1}\right)
$$

where $f_{i, j} \in \mathbb{C} \llbracket x \rrbracket$ and ρ ranges over the local exponents (counted with multiplicity).
Fuchs gave a more detailed description on the form of the solution, in particular on the order of $f_{i, j}$ and more precise bounds on the powers of the logarithm appearing.

Example

For $L=\left(2 x^{2}-x^{3}\right)+\left(-4 x^{2}+3 x^{3}\right) \partial+\left(2 x^{2}-3 x^{3}\right) \partial^{2}+x^{3} \partial^{3}$ a basis of solutions of $L y=0$ is given by $e^{x}, e^{x} \log (x)$ and $x e^{x}$.

Motivation

Problem (Abel)

When does $y^{\prime}=a y$ for an algebraic series $a \in \overline{\mathbb{Q}(x)} \cap \mathbb{Q} \llbracket x \rrbracket$ admit an algebraic solution?
Solved 1970 by Risch algorithmically (although not suitable for implementation).

Motivation

Problem (Abel)

When does $y^{\prime}=a y$ for an algebraic series $a \in \overline{\mathbb{Q}(x)} \cap \mathbb{Q} \llbracket x \rrbracket$ admit an algebraic solution?
Solved 1970 by Risch algorithmically (although not suitable for implementation).

Problem (Liouville, Fuchs)

When does

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

with polynomial coefficients $a_{i} \in \mathbb{Q}[x]$ admit a basis of n algebraic solutions?
Solved algorithmically by Singer 1979 by reducing to Risch's algorithm.

Motivation

Grothendieck p-curvature conjecture (1969)

The equation $L y=0 \quad(\star)$ with $L \in \mathbb{Q}[x][\partial]$ having polynomial coefficients admits a basis of n algebraic solutions if and only if its reduction $L_{p} y=0$ modulo p admits a basis of n $\mathbb{F}_{p}\left(\left(x^{p}\right)\right)$-linearly independent solutions in $\mathbb{F}_{p}((x))$ for almost all prime numbers p.

The reduction $(\star)_{p}$ of (\star) modulo p is well-defined for almost all prime numbers, $L_{p} \in \mathbb{F}_{p}[x][\partial]$.

Motivation

Grothendieck p-curvature conjecture (1969)

The equation $L y=0 \quad(\star)$ with $L \in \mathbb{Q}[x][\partial]$ having polynomial coefficients admits a basis of n algebraic solutions if and only if its reduction $L_{p} y=0$ modulo p admits a basis of n $\mathbb{F}_{p}\left(\left(x^{p}\right)\right)$-linearly independent solutions in $\mathbb{F}_{p}((x))$ for almost all prime numbers p.

The reduction $(\star)_{p}$ of (\star) modulo p is well-defined for almost all prime numbers, $L_{p} \in \mathbb{F}_{p}[x][\partial]$. Rewrite $L_{p} y=0$ into a system of n first order ODEs: $Y^{\prime}=A Y$. The p-curvature of L_{p} is the $\mathbb{F}_{p}[x]$-linear map $(\partial-A)^{p}: \mathbb{F}_{p}((x))^{n} \rightarrow \mathbb{F}_{p}((x))^{n}$.

Lemma (Cartier)

Equation $L_{p} y=0$ admits a basis of $n \mathbb{F}_{p}\left(\left(x^{p}\right)\right)$-linearly independent solutions in $\mathbb{F}_{p}((x))$ and if and only if its p-curvature vanishes.

Solution Theory in Characteristic p

Where can solutions of $(\star)_{p}$ be found, if not in $\mathbb{F}_{p} \llbracket x \rrbracket$?

Solution Theory in Characteristic p

Where can solutions of $(\star)_{p}$ be found, if not in $\mathbb{F}_{p} \llbracket x \rrbracket$?
Define $\mathcal{R}_{p}:=\mathbb{F}_{p}\left(z_{1}, z_{2}, \ldots\right)((x))$ with derivation ∂ acting via

$$
\partial x=1, \quad \partial z_{1}=\frac{1}{x}, \quad \partial z_{k}=\frac{1}{x \cdot z_{1} \cdots z_{k-1}}=\frac{\partial z_{k-1}}{z_{k-1}} .
$$

Field of constants: $\mathcal{C}_{p}:=\mathbb{F}_{p}\left(z_{1}^{p}, z_{2}^{p}, \ldots\right)\left(\left(x^{p}\right)\right)$. Solutions of differential equations in \mathcal{R}_{p} form a \mathcal{C}_{p}-vector space of dimension at most n.

Solution Theory in Characteristic p

Where can solutions of $(\star)_{p}$ be found, if not in $\mathbb{F}_{p} \llbracket x \rrbracket$?

Define $\mathcal{R}_{p}:=\mathbb{F}_{p}\left(z_{1}, z_{2}, \ldots\right)((x))$ with derivation ∂ acting via

$$
\partial x=1, \quad \partial z_{1}=\frac{1}{x}, \quad \partial z_{k}=\frac{1}{x \cdot z_{1} \cdots z_{k-1}}=\frac{\partial z_{k-1}}{z_{k-1}} .
$$

Field of constants: $\mathcal{C}_{p}:=\mathbb{F}_{p}\left(z_{1}^{p}, z_{2}^{p}, \ldots\right)\left(\left(x^{p}\right)\right)$. Solutions of differential equations in \mathcal{R}_{p} form a \mathcal{C}_{p}-vector space of dimension at most n.

Note: ∂ reduces degree of a non-constant monomial in x by exactly one.
Parallel to logarithms from characteristic 0:

$$
\log (x)^{\prime}=\frac{1}{x}, \quad \log ^{k}(x)^{\prime}=\frac{1}{x \cdot \log (x) \cdots \log ^{k-1}(x)}
$$

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume $L_{p} y=0$ with polynomial coefficients has nilpotent p-curvature and $n=$ ord $L_{p} \leq p$. Then $L_{p} y=0$ has a basis of $n \mathbb{F}_{p}\left(z_{1}^{p}, x^{p}\right)$-linearly independent solutions in $\mathbb{F}_{p}\left[z_{1}, x\right]$.

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume $L_{p} y=0$ with polynomial coefficients has nilpotent p-curvature and $n=$ ord $L_{p} \leq p$. Then $L_{p} y=0$ has a basis of $n \mathbb{F}_{p}\left(z_{1}^{p}, x^{p}\right)$-linearly independent solutions in $\mathbb{F}_{p}\left[z_{1}, x\right]$.

Theorem (Dwork 1991)

Assume $L_{p} y=0$ has nilpotent p-curvature. Then $L_{p} y=0$ has a basis of n $\mathbb{F}_{p}\left(z_{1}^{p}, z_{2}^{p}, \ldots, x^{p}\right)$-linearly independent solutions in $\mathbb{F}_{p}\left[z_{1}, z_{2}, \ldots, x\right]$.

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume $L_{p} y=0$ with polynomial coefficients has nilpotent p-curvature and $n=$ ord $L_{p} \leq p$. Then $L_{p} y=0$ has a basis of $n \mathbb{F}_{p}\left(z_{1}^{p}, x^{p}\right)$-linearly independent solutions in $\mathbb{F}_{p}\left[z_{1}, x\right]$.

Theorem (Dwork 1991)

Assume $L_{p} y=0$ has nilpotent p-curvature. Then $L_{p} y=0$ has a basis of n $\mathbb{F}_{p}\left(z_{1}^{p}, z_{2}^{p}, \ldots, x^{p}\right)$-linearly independent solutions in $\mathbb{F}_{p}\left[z_{1}, z_{2}, \ldots, x\right]$.

Theorem (F.-Hauser 2023)

Let $L_{p} y=0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_{p}, whose local exponents lie in \mathbb{F}_{p}. Then $L_{p} y=0$ has a basis of n \mathcal{C}_{p}-linearly independent solutions in $\mathcal{R}_{p}=\mathbb{F}_{p}\left(z_{1}, z_{2}, \ldots\right)((x))$.

Solution Theory in Characteristic p

Theorem (F.-Hauser 2023)

Let $L_{p} y=0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_{p}, whose local exponents lie in \mathbb{F}_{p}. Then $L_{p} y=0$ has a basis of n \mathcal{C}_{p}-linearly independent solutions in $\mathcal{R}_{p}=\mathbb{F}_{p}\left(z_{1}, z_{2}, \ldots\right)((x))$.

The field \mathbb{F}_{p} can be replaced by any field \mathbb{k} of characteristic p.
If the local exponents ρ are not in the prime field, but in $\overline{\mathbb{K}}$, we can introduce symbols t^{ρ} with $t^{\rho} \cdot t^{\sigma}=t^{\rho+\sigma}$ and $\partial t^{\rho}=\rho t^{\rho} / x$. Then solutions can be found in $\bigoplus t^{\rho} \mathcal{R}_{p}$ (group algebra).

A detailed description of the degree of the monomials appearing in the series expansion of solutions is possible.

Example: $\log (1-x)$

In characteristic 0 :

$$
y_{1}=-\log (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

satisfies $L y=0$ with $L=x^{2} \partial^{2}-\left(x^{2} \partial+x^{3} \partial^{2}\right)$. The second solution $y_{2}=1$ completes a basis. For all prime numbers p a basis of solutions of $L_{p} y=0$ is given by

$$
y_{1}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{x^{p-1}}{p-1}+x^{p} z_{1} \quad \text { and } \quad y_{2}=1
$$

This is an example for an equation with nilpotent p-curvature for all prime numbers p.

Example: Exponential Function

The exponential differential equation $y^{\prime}=y$ admits a solution $\exp _{p}$ in \mathcal{R}_{p}. For $p=3$ one obtains:

$$
\begin{aligned}
\exp _{3}= & 1+x+2 x^{2}+2 x^{3} z_{1}+x^{4}\left(1+2 z_{1}\right)+x^{5} z_{1}+2 x^{6} z_{1}^{2}+x^{7}\left(1+2 z_{1}+2 z_{1}^{2}\right) \\
& +x^{8}\left(2+z_{1}^{2}\right)+x^{9}\left(2 z_{1}+z_{1}^{3} z_{2}\right)+\ldots
\end{aligned}
$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

One checks for example:

$$
\left.\left(x^{7}\left(1+2 z_{1}+2 z_{1}^{2}\right)\right)^{\prime}=x^{6}\left(1+2 z_{1}+2 z_{1}^{2}\right)\right)+x^{7} \cdot\left(\frac{2}{x}+\frac{z_{1}}{x}\right)=2 x^{6} z_{1}^{2}
$$

Example: Exponential Function

The exponential differential equation $y^{\prime}=y$ admits a solution $\exp _{p}$ in \mathcal{R}_{p}. For $p=3$ one obtains:

$$
\begin{aligned}
\exp _{3}= & 1+x+2 x^{2}+2 x^{3} z_{1}+x^{4}\left(1+2 z_{1}\right)+x^{5} z_{1}+2 x^{6} z_{1}^{2}+x^{7}\left(1+2 z_{1}+2 z_{1}^{2}\right) \\
& +x^{8}\left(2+z_{1}^{2}\right)+x^{9}\left(2 z_{1}+z_{1}^{3} z_{2}\right)+\ldots
\end{aligned}
$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

One checks for example:

$$
\left.\left(x^{7}\left(1+2 z_{1}+2 z_{1}^{2}\right)\right)^{\prime}=x^{6}\left(1+2 z_{1}+2 z_{1}^{2}\right)\right)+x^{7} \cdot\left(\frac{2}{x}+\frac{z_{1}}{x}\right)=2 x^{6} z_{1}^{2}
$$

Observation: Setting $z_{1}=z_{2}=\ldots=0$ in $\exp _{p}$ gives power series in $\mathbb{F}_{p} \llbracket x \rrbracket$. Computer experiments (with A . Bostan) suggest that this series is algebraic over $\mathbb{F}_{p}(x)$.

A Different Approach

Proposition (F.-Hauser-Kawanoue, 2024)
Define $w_{i}:=x^{p^{i}} z_{1}^{p^{i-1}} \cdots z_{i-1}^{p^{1}} z_{i}$. Then $w_{i}^{\left(p^{i}-p^{i-1}+1\right)}=-w_{i-1}^{\prime}$. Thus,

$$
\widetilde{\exp }_{p}:=\sum_{i=0}^{\infty} \sum_{k=1}^{p^{i}-p^{i-1}}(-1)^{i} w_{i}^{(k)}
$$

solves $y^{\prime}=y$.

A Different Approach

Proposition (F.-Hauser-Kawanoue, 2024)

Define $w_{i}:=x^{p^{i}} z_{1}^{p^{i-1}} \cdots z_{i-1}^{p^{1}} z_{i}$. Then $w_{i}^{\left(p^{i}-p^{i-1}+1\right)}=-w_{i-1}^{\prime}$. Thus,

$$
\widetilde{\exp }_{p}:=\sum_{i=0}^{\infty} \sum_{k=1}^{p^{i}-p^{i-1}}(-1)^{i} w_{i}^{(k)}
$$

solves $y^{\prime}=y$.
$\widetilde{\exp }_{p}$ up to order $p^{i}-1$ is given by $\sum_{k=1}^{p^{i}}(-1)^{i} w_{i}^{(k)}$.
$\widetilde{\exp }_{p}$ differs from $\exp _{p}$ by a multiplicative constant in \mathcal{C}_{p}.

Yet Another Different Approach

Proposition (F.-Hauser-Kawanoue, 2024)
Define

$$
\sigma: \mathbb{F}_{p} \llbracket s \rrbracket \rightarrow \mathbb{F}_{p} \llbracket s \rrbracket, s \mapsto s+s^{p}+s^{p^{2}}+\ldots
$$

Define $g_{0}:=\sigma(x)$ and recursively $g_{i}:=\sigma\left(g_{i-1}^{p} z_{i}\right)$. Set

$$
H(t):=\prod_{k=1}^{p-1}\left(1-\frac{t}{k}\right)^{k} \quad \text { and } \quad \widehat{\exp }_{p}:=\prod_{i=0}^{\infty} H\left((-1)^{i} g_{i}\right) .
$$

Then $\widehat{\exp }_{p}$ solves $y^{\prime}=y$.

Yet Another Different Approach

Proposition (F.-Hauser-Kawanoue, 2024)
Define

$$
\sigma: \mathbb{F}_{p} \llbracket s \rrbracket \rightarrow \mathbb{F}_{p} \llbracket s \rrbracket, s \mapsto s+s^{p}+s^{p^{2}}+\ldots
$$

Define $g_{0}:=\sigma(x)$ and recursively $g_{i}:=\sigma\left(g_{i-1}^{p} z_{i}\right)$. Set

$$
H(t):=\prod_{k=1}^{p-1}\left(1-\frac{t}{k}\right)^{k} \quad \text { and } \quad \widehat{\exp }_{p}:=\prod_{i=0}^{\infty} H\left((-1)^{i} g_{i}\right) .
$$

Then $\widehat{\exp }_{p}$ solves $y^{\prime}=y$.

Lemma

$$
\widehat{\exp }_{p}=\widetilde{\exp }_{p}
$$

Algebraicity of Projection

$$
g_{i}:=\sigma\left(g_{i-1}^{p} z_{i}\right), \quad \widehat{\exp }_{p}:=\prod_{i=0}^{\infty} H\left((-1)^{i} g_{i}\right)
$$

σ is algebraic, as $\sigma(s)=\sigma(s)^{p}+s$. Thus, inductively, g_{i} is algebraic over $\mathbb{F}_{p}\left(x, z_{1}, \ldots, z_{i}\right)$. Note: $g_{i} \in 1+z_{i} \cdot \mathbb{F}_{p}\left[z_{1}, \ldots, z_{i}\right] \llbracket x \rrbracket$. Thus, for the projection $\pi_{j}\left(\widehat{\exp }_{p}\right)$ we have

$$
\pi_{j}\left(\widehat{\exp }_{p}\right):=\left.\widehat{\exp }_{p}\right|_{z_{j+1}=z_{j+2}=\ldots=0}=\prod_{i=0}^{j} H\left((-1)^{i} g_{i}\right),
$$

which is algebraic over $\mathbb{F}_{p}\left(x, z_{1}, \ldots, z_{j}\right)$.
In particular: $\left.\widehat{\exp }_{p}\right|_{z_{1}=z_{2}=\ldots=0}$ is algebraic over $\mathbb{F}_{p}(x)$. The same holds true for $\exp _{p}$.

Abel's Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let $L \in \mathbb{F}_{p}[x][\partial]$ be a regular singular differential operator of order n and assume its local exponents lie in the prime field \mathbb{F}_{p}. Does there exist a basis of solutions y_{1}, \ldots, y_{n} in $\mathbb{F}_{p}\left[z_{1}, z_{2}, \ldots\right] \llbracket x \rrbracket$, such that its projections $\pi_{j}\left(y_{k}\right)=\left.y_{k}\right|_{z_{j+1}=z_{j+2}=\ldots=0} \in \mathbb{F}_{p}\left[z_{1}, \ldots, z_{j}\right] \llbracket x \rrbracket$ are algebraic over $\mathbb{F}_{p}\left(x, z_{1}, \ldots, z_{j}\right)$ for all j, k ?

Abel's Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let $L \in \mathbb{F}_{p}[x][\partial]$ be a regular singular differential operator of order n and assume its local exponents lie in the prime field \mathbb{F}_{p}. Does there exist a basis of solutions y_{1}, \ldots, y_{n} in $\mathbb{F}_{p}\left[z_{1}, z_{2}, \ldots\right] \llbracket x \rrbracket$, such that its projections $\pi_{j}\left(y_{k}\right)=\left.y_{k}\right|_{z_{j+1}=z_{j+2}=\ldots=0} \in \mathbb{F}_{p}\left[z_{1}, \ldots, z_{j}\right] \llbracket x \rrbracket$ are algebraic over $\mathbb{F}_{p}\left(x, z_{1}, \ldots, z_{j}\right)$ for all j, k ?

Partial answer:

Theorem (F.-Hauser-Kawanoue, 2024)

Let $y^{\prime}=a y$ be an order one regular singular differential equation with rational or algebraic coefficient $a \in \mathbb{F}_{p}((x))$ and local exponent $\rho \in \mathbb{F}_{p}$. Then there is a solution y such that $\pi_{j}(y)$ is algebraic over $\mathbb{F}_{p}\left(z_{1}, \ldots, z_{j}, x\right)$ for all j.

Ideas of Proof for π_{0}

The p-curvature of $y^{\prime}=a y$ is given by $(\partial-a)^{p} y=a_{p} y$, where $a_{p}=-a^{(p-1)}-a^{p}$.

Ideas of Proof for π_{0}

The p-curvature of $y^{\prime}=a y$ is given by $(\partial-a)^{p} y=a_{p} y$, where $a_{p}=-a^{(p-1)}-a^{p}$.
Solve

$$
a^{(p-1)}+a^{p}+\frac{g}{x^{p}}-\frac{g^{p}}{x^{p}}=0
$$

implicitly to obtain an algebraic series $g \in \mathbb{F}_{p} \llbracket x^{p} \rrbracket$. Then the p-curvature of $y^{\prime}=(a-g / x) y$ vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution q.

Ideas of Proof for π_{0}

The p-curvature of $y^{\prime}=a y$ is given by $(\partial-a)^{p} y=a_{p} y$, where $a_{p}=-a^{(p-1)}-a^{p}$.
Solve

$$
a^{(p-1)}+a^{p}+\frac{g}{x^{p}}-\frac{g^{p}}{x^{p}}=0
$$

implicitly to obtain an algebraic series $g \in \mathbb{F}_{p} \llbracket x^{p} \rrbracket$. Then the p-curvature of $y^{\prime}=(a-g / x) y$ vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution q.

The equation $y^{\prime}=(g / x) y=\left(a-q^{\prime} / q\right) y$ is equivalent to $(q y)^{\prime}=$ aqy. Because $g \in \mathbb{F}_{p} \llbracket x^{p} \rrbracket$, its solutions lie in $\mathbb{F}_{p}\left[z_{1}, z_{2}, \ldots\right] \llbracket x^{p} \rrbracket$ and from this it follows that it has a solution $y_{0} \in 1+z_{1} \mathbb{F}_{p}\left[z_{1}, z_{2}, \ldots\right] \llbracket x^{p} \rrbracket$. Thus $y=q y_{0}$ satisfies $y^{\prime}=a y$ and $\pi_{0}(y)=q$ is algebraic.

Product Representations

Iterating this construction leads to a more precise statement, generalizing the product representation of $\widehat{\exp }_{p}$:

Theorem (F.-Hauser-Kawanoue, 2024)

Let $L=\partial+$ a be a first order regular singular linear differential operator with rational function coefficient $a \in \mathbb{F}_{p}(x)$ (or algebraic coefficient $a \in \mathbb{F}_{p} \llbracket x \rrbracket$) and local exponent $\rho=0$. Then for all $i \in \mathbb{N}$ there exist series $h_{i} \in 1+z_{i} \mathbb{F}_{p}\left[z_{1}, \ldots, z_{i}\right] \llbracket x \rrbracket$, which are algebraic over $\mathbb{F}_{p}\left(z_{1}, z_{2}, \ldots, z_{i}, x\right)$ and $P=\prod_{i=0}^{\infty} h_{i}$ satisfies $L P=0$. In particular, $\pi_{j}(P)=\prod_{i=0}^{j} h_{i}$ is algebraic over $\mathbb{F}_{p}\left(x, z_{1}, \ldots, z_{j}\right)$ for all j.

Further Questions

Does this generalizes to higher order differential equations? Idea: Factorisation of differential operators in $\mathbb{Q}(x)[\partial]$ into linear factors.

Consider a (first order) differential equation $L y=0$ with $L \in \mathbb{Q}[x][\partial]$. Let $y_{p} \in \mathcal{R}_{p}$ be a (basis of) solution(s) of $L_{p} y=0$. Do the Galois groups of $\pi_{j}\left(y_{p}\right)$ relate to the differential Galois group of $L y=0$? Is there a variant of the differential Galois Group in characteristic p ?

Is there a "canonical" basis of solutions of the n-dimensional \mathcal{C}_{p}-vector space of solutions of $L_{p} y=0$?

Can one use Fuchs' Theorem in positive characteristic for computations?

The End

Thank you for your attention!

