Fuchs' Theorem, an Exponential Function, and Abel's Problem in Positive Characteristic joint work with H. Hauser and H. Kawanoue (arXiv:2307.01712 and arXiv:2401.14154)

Florian Fürnsinn

University of Vienna

MATHEXP-Polsys Seminar, Palaiseau May 17, 2024

Overview

Exponential Function

Abel's Problem

- 1. Introduction: Local Solution Theory in Characteristic 0
- 2. Local Solution Theory in Positive Characteristic
- 3. An Exponential Function in Positive Characteristic
- 4. Abel's Problem in Positive Characteristic

Definitions

Characteristic p

Exponential Function

Abel's Problem

Consider a homogeneous linear ordinary differential equation (ODE) over $\mathbb C$

$$a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0$$
 (*)

with $a_i \in \mathbb{C}[\![x]\!]$. We can rewrite it in terms of a **differential operator** as Ly = 0 with $L = a_n \partial^n + \ldots + a_1 \partial + a_0 \in \mathbb{C}[\![x]\!][\partial]$.

Definitions

Characteristic p

Exponential Function

Abel's Problem

Consider a homogeneous linear ordinary differential equation (ODE) over $\mathbb C$

$$a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0$$
 (*)

with $a_i \in \mathbb{C}[\![x]\!]$. We can rewrite it in terms of a **differential operator** as Ly = 0 with $L = a_n \partial^n + \ldots + a_1 \partial + a_0 \in \mathbb{C}[\![x]\!][\partial]$.

L has a regular singularity at 0 if $a_i/a_n \in \mathbb{C}((x))$ has a pole of order at most n-i at 0.

Definitions

Characteristic p

Exponential Function

Abel's Problem

Consider a homogeneous linear ordinary differential equation (ODE) over $\mathbb C$

$$a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0$$
 (*)

with $a_i \in \mathbb{C}[\![x]\!]$. We can rewrite it in terms of a **differential operator** as Ly = 0 with $L = a_n \partial^n + \ldots + a_1 \partial + a_0 \in \mathbb{C}[\![x]\!][\partial]$.

L has a regular singularity at 0 if $a_i/a_n \in \mathbb{C}((x))$ has a pole of order at most n-i at 0.

Write $L = \sum_{i=0}^{\infty} \sum_{j=0}^{n} c_{i,j} x^{i} \partial^{j}$ and set $L_{k} = \sum_{i-j=k} c_{i,j} x^{i} \partial^{j}$. The minimal τ with $L_{\tau} \neq 0$ is called the shift of L. From now on, we assume w.l.o.g. $\tau = 0$ (multiply L by $x^{-\tau}$).

The operator $L_0 = \sum c_{i,i} x^i \partial^i$ is called the **initial form** of *L*. It has the same order as *L* if and only if *L* is regular singular.

Characteristic	0
000	

Exponential Function

Abel's Problem

Definitions

For the initial form L_0 we have $L_0(x^k) = \chi_L(k)x^k$, where $\chi_L(k)$ is the indicial polynomial of L. Its roots ρ_i for i = 1, ..., k of multiplicity m_i are the local exponents of L.

A basis of solutions of $L_0 y = 0$ (as \mathbb{C} -vector space) is given by $x^{\rho_i} z^j$ for $1 \le i \le k$ and $0 \le j \le m_i - 1$.

Characteristic	0	
000		

Exponential Function

Abel's Problem

Definitions

For the initial form L_0 we have $L_0(x^k) = \chi_L(k)x^k$, where $\chi_L(k)$ is the indicial polynomial of L. Its roots ρ_i for i = 1, ..., k of multiplicity m_i are the local exponents of L.

A basis of solutions of $L_0 y = 0$ (as \mathbb{C} -vector space) is given by $x^{\rho_i} z^j$ for $1 \le i \le k$ and $0 \le j \le m_i - 1$.

Example

The differential operator

$$L = x^5 \partial^5 - 2x^4 \partial^4 - 2x^3 \partial^3 + 16x^2 \partial^2 - 16x \partial - x.$$

is regular singular with shift 0. Its normal form is $L_0 = L + x$ and its indicial polynomial is $\chi(s) = s^2(s-2)(s-5)^2$. The local exponents are $\rho_1 = 0$, $\rho_2 = 2$ and $\rho_3 = 5$ with $m_1 = 2$, $m_2 = 1$ and $m_3 = 2$.

Abel's Problem

Fuchs' Theorem – Local Solution Theory

Theorem (Fuchs 1866)

Let $L \in \mathbb{C}[\![x]\!][\partial]$ be a regular singular differential operator of order n. Then the equation Ly = 0 has a basis of $n \mathbb{C}$ -linearly independent solutions of the form

$$f_i = x^{
ho} \left(f_{i,0} + f_{i,1} \log(x) + \ldots + f_{i,n-1} \log(x)^{n-1} \right),$$

where $f_{i,j} \in \mathbb{C}[x]$ and ρ ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order of $f_{i,j}$ and more precise bounds on the powers of the logarithm appearing.

Abel's Problem

Fuchs' Theorem – Local Solution Theory

Theorem (Fuchs 1866)

Let $L \in \mathbb{C}[\![x]\!][\partial]$ be a regular singular differential operator of order n. Then the equation Ly = 0 has a basis of $n \mathbb{C}$ -linearly independent solutions of the form

$$f_i = x^{
ho} \left(f_{i,0} + f_{i,1} \log(x) + \ldots + f_{i,n-1} \log(x)^{n-1}
ight),$$

where $f_{i,j} \in \mathbb{C}[x]$ and ρ ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order of $f_{i,j}$ and more precise bounds on the powers of the logarithm appearing.

Example

For $L = (2x^2 - x^3) + (-4x^2 + 3x^3)\partial + (2x^2 - 3x^3)\partial^2 + x^3\partial^3$ a basis of solutions of Ly = 0 is given by e^x , $e^x \log(x)$ and xe^x .

Motivation

Problem (Abel)

When does y' = ay for an algebraic series $a \in \overline{\mathbb{Q}(x)} \cap \mathbb{Q}[x]$ admit an algebraic solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).

Motivation

Problem (Abel)

When does y' = ay for an algebraic series $a \in \overline{\mathbb{Q}(x)} \cap \mathbb{Q}[x]$ admit an algebraic solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).

Problem (Liouville, Fuchs)

When does

$$a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0$$

(*)

with polynomial coefficients $a_i \in \mathbb{Q}[x]$ admit a basis of *n* algebraic solutions?

Solved algorithmically by Singer 1979 by reducing to Risch's algorithm.

Characteristic *p*

Exponential Function

Abel's Problem

Motivation

Grothendieck *p*-curvature conjecture (1969)

The equation Ly = 0 (*) with $L \in \mathbb{Q}[x][\partial]$ having polynomial coefficients admits a basis of n algebraic solutions if and only if its reduction $L_p y = 0$ modulo p admits a basis of n $\mathbb{F}_p((x^p))$ -linearly independent solutions in $\mathbb{F}_p((x))$ for almost all prime numbers p.

The reduction $(\star)_p$ of (\star) modulo p is well-defined for almost all prime numbers, $L_p \in \mathbb{F}_p[x][\partial]$.

Motivation

Characteristic *p* 0●0000

Exponential Function

Abel's Problem

Grothendieck *p*-curvature conjecture (1969)

The equation Ly = 0 (*) with $L \in \mathbb{Q}[x][\partial]$ having polynomial coefficients admits a basis of n algebraic solutions if and only if its reduction $L_p y = 0$ modulo p admits a basis of n $\mathbb{F}_p((x^p))$ -linearly independent solutions in $\mathbb{F}_p((x))$ for almost all prime numbers p.

The reduction $(\star)_p$ of (\star) modulo p is well-defined for almost all prime numbers, $L_p \in \mathbb{F}_p[x][\partial]$. Rewrite $L_p y = 0$ into a system of n first order ODEs: Y' = AY. The *p*-curvature of L_p is the $\mathbb{F}_p[x]$ -linear map $(\partial - A)^p : \mathbb{F}_p((x))^n \to \mathbb{F}_p((x))^n$.

Lemma (Cartier)

Equation $L_p y = 0$ admits a basis of $n \mathbb{F}_p((x^p))$ -linearly independent solutions in $\mathbb{F}_p((x))$ and if and only if its *p*-curvature vanishes.

Characteristic p

Exponential Function

Abel's Problem

Solution Theory in Characteristic *p*

Where can solutions of $(\star)_{\rho}$ be found, if not in $\mathbb{F}_{\rho}[\![x]\!]$?

Characteristic p

Exponential Function

Abel's Problem

Solution Theory in Characteristic *p*

Where can solutions of $(\star)_p$ be found, if not in $\mathbb{F}_p[\![x]\!]$?

Define $\mathcal{R}_p := \mathbb{F}_p(z_1, z_2, \ldots)((x))$ with derivation ∂ acting via

$$\partial x = 1, \quad \partial z_1 = rac{1}{x}, \quad \partial z_k = rac{1}{x \cdot z_1 \cdots z_{k-1}} = rac{\partial z_{k-1}}{z_{k-1}}.$$

Field of **constants**: $C_p := \mathbb{F}_p(z_1^p, z_2^p, \ldots)((x^p))$. Solutions of differential equations in \mathcal{R}_p form a \mathcal{C}_p -vector space of dimension at most n.

Characteristic p

Exponential Function

Abel's Problem

Solution Theory in Characteristic *p*

Where can solutions of $(\star)_p$ be found, if not in $\mathbb{F}_p[\![x]\!]$?

Define $\mathcal{R}_p := \mathbb{F}_p(z_1, z_2, \ldots)((x))$ with derivation ∂ acting via

$$\partial x = 1, \quad \partial z_1 = rac{1}{x}, \quad \partial z_k = rac{1}{x \cdot z_1 \cdots z_{k-1}} = rac{\partial z_{k-1}}{z_{k-1}}.$$

Field of **constants**: $C_p := \mathbb{F}_p(z_1^p, z_2^p, \ldots)((x^p))$. Solutions of differential equations in \mathcal{R}_p form a \mathcal{C}_p -vector space of dimension at most n.

Note: ∂ reduces degree of a non-constant monomial in x by exactly one.

Parallel to logarithms from characteristic 0:

$$\log(x)' = \frac{1}{x}, \quad \log^k(x)' = \frac{1}{x \cdot \log(x) \cdots \log^{k-1}(x)}$$

Exponential Function

Abel's Problem

Solution Theory in Characteristic *p*

Theorem (Honda 1981)

Assume $L_p y = 0$ with polynomial coefficients has nilpotent p-curvature and $n = \text{ord } L_p \leq p$. Then $L_p y = 0$ has a basis of $n \mathbb{F}_p(z_1^p, x^p)$ -linearly independent solutions in $\mathbb{F}_p[z_1, x]$.

Exponential Function

Abel's Problem

Solution Theory in Characteristic *p*

Theorem (Honda 1981)

Assume $L_p y = 0$ with polynomial coefficients has nilpotent p-curvature and $n = \text{ord } L_p \leq p$. Then $L_p y = 0$ has a basis of $n \mathbb{F}_p(z_1^p, x^p)$ -linearly independent solutions in $\mathbb{F}_p[z_1, x]$.

Theorem (Dwork 1991)

Assume $L_p y = 0$ has nilpotent p-curvature. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p, z_2^p, \dots, x^p)$ -linearly independent solutions in $\mathbb{F}_p[z_1, z_2, \dots, x]$.

Exponential Function

Abel's Problem

Solution Theory in Characteristic *p*

Theorem (Honda 1981)

Assume $L_p y = 0$ with polynomial coefficients has nilpotent p-curvature and $n = \text{ord } L_p \leq p$. Then $L_p y = 0$ has a basis of $n \mathbb{F}_p(z_1^p, x^p)$ -linearly independent solutions in $\mathbb{F}_p[z_1, x]$.

Theorem (Dwork 1991)

Assume $L_p y = 0$ has nilpotent p-curvature. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p, z_2^p, \dots, x^p)$ -linearly independent solutions in $\mathbb{F}_p[z_1, z_2, \dots, x]$.

Theorem (F.–Hauser 2023)

Let $L_p y = 0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_p , whose local exponents lie in \mathbb{F}_p . Then $L_p y = 0$ has a basis of n C_p -linearly independent solutions in $\mathcal{R}_p = \mathbb{F}_p(z_1, z_2, ...)((x))$.

Abel's Problem

Solution Theory in Characteristic *p*

Theorem (F.–Hauser 2023)

Let $L_p y = 0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_p , whose local exponents lie in \mathbb{F}_p . Then $L_p y = 0$ has a basis of n C_p -linearly independent solutions in $\mathcal{R}_p = \mathbb{F}_p(z_1, z_2, ...)((x))$.

The field \mathbb{F}_p can be replaced by any field \mathbb{k} of characteristic p.

If the local exponents ρ are not in the prime field, but in \overline{k} , we can introduce symbols t^{ρ} with $t^{\rho} \cdot t^{\sigma} = t^{\rho+\sigma}$ and $\partial t^{\rho} = \rho t^{\rho}/x$. Then solutions can be found in $\bigoplus t^{\rho} \mathcal{R}_{\rho}$ (group algebra).

A detailed description of the degree of the monomials appearing in the series expansion of solutions is possible.

Characteristic p

Exponential Function

Abel's Problem

Example: $\log(1-x)$

In characteristic 0:

$$y_1 = -\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \in \mathbb{Q}[\![x]\!]$$

satisfies Ly = 0 with $L = x^2 \partial^2 - (x^2 \partial + x^3 \partial^2)$. The second solution $y_2 = 1$ completes a basis.

For all prime numbers p a basis of solutions of $L_p y = 0$ is given by

$$y_1 = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{p-1}}{p-1} + x^p z_1$$
 and $y_2 = 1$.

This is an example for an equation with nilpotent *p*-curvature for all prime numbers *p*.

Abel's Problem

Example: Exponential Function

The exponential differential equation y' = y admits a solution \exp_p in \mathcal{R}_p . For p = 3 one obtains:

$$\begin{aligned} \exp_3 &= 1 + x + 2x^2 + 2x^3z_1 + x^4(1+2z_1) + x^5z_1 + 2x^6z_1^2 + x^7(1+2z_1+2z_1^2) \\ &+ x^8(2+z_1^2) + x^9(2z_1+z_1^3z_2) + \dots \end{aligned}$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

One checks for example:

$$(x^{7}(1+2z_{1}+2z_{1}^{2}))' = x^{6}(1+2z_{1}+2z_{1}^{2})) + x^{7} \cdot \left(\frac{2}{x}+\frac{z_{1}}{x}\right) = 2x^{6}z_{1}^{2}$$

Example: Exponential Function

The exponential differential equation y' = y admits a solution \exp_p in \mathcal{R}_p . For p = 3 one obtains:

$$\begin{aligned} \exp_3 &= 1 + x + 2x^2 + 2x^3z_1 + x^4(1+2z_1) + x^5z_1 + 2x^6z_1^2 + x^7(1+2z_1+2z_1^2) \\ &+ x^8(2+z_1^2) + x^9(2z_1+z_1^3z_2) + \dots \end{aligned}$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

One checks for example:

$$(x^{7}(1+2z_{1}+2z_{1}^{2}))'=x^{6}(1+2z_{1}+2z_{1}^{2}))+x^{7}\cdot\left(\frac{2}{x}+\frac{z_{1}}{x}\right)=2x^{6}z_{1}^{2}$$

Observation: Setting $z_1 = z_2 = \ldots = 0$ in \exp_p gives power series in $\mathbb{F}_p[\![x]\!]$. Computer experiments (with A. Bostan) suggest that this series is algebraic over $\mathbb{F}_p(x)$.

Exponential Function

Abel's Problem

A Different Approach

Proposition (F.-Hauser-Kawanoue, 2024)

Define
$$w_i := x^{p^i} z_1^{p^{i-1}} \cdots z_{i-1}^{p^1} z_i$$
. Then $w_i^{(p^i - p^{i-1} + 1)} = -w_{i-1}'$. Thus,

$$\widetilde{\exp}_p := \sum_{i=0}^{\infty} \sum_{k=1}^{p^i - p^{i-1}} (-1)^i w_i^{(k)}$$

solves y' = y.

Exponential Function $\circ \bullet \circ$

Abel's Problem

A Different Approach

Proposition (F.-Hauser-Kawanoue, 2024)

Define
$$w_i := x^{p^i} z_1^{p^{i-1}} \cdots z_{i-1}^{p^1} z_i$$
. Then $w_i^{(p^i - p^{i-1} + 1)} = -w_{i-1}'$. Thus,

$$\widetilde{\exp}_p := \sum_{i=0}^{\infty} \sum_{k=1}^{p^i - p^{i-1}} (-1)^i w_i^{(k)}$$

solves y' = y.

 $\widetilde{\exp}_{p}$ up to order $p^{i} - 1$ is given by $\sum_{k=1}^{p^{i}} (-1)^{i} w_{i}^{(k)}$.

 $\widetilde{\exp}_p$ differs from \exp_p by a multiplicative constant in \mathcal{C}_p .

Abel's Problem

Yet Another Different Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define

$$\sigma: \mathbb{F}_{p}[\![s]\!] \to \mathbb{F}_{p}[\![s]\!], s \mapsto s + s^{p} + s^{p^{2}} + \dots$$

Define $g_0 \coloneqq \sigma(x)$ and recursively $g_i \coloneqq \sigma(g_{i-1}^p z_i)$. Set

$$H(t) \coloneqq \prod_{k=1}^{p-1} \left(1 - rac{t}{k}
ight)^k$$
 and $\widehat{\exp}_p \coloneqq \prod_{i=0}^{\infty} H\left((-1)^i g_i\right)^k$

Then $\widehat{\exp}_p$ solves y' = y.

Abel's Problem

Yet Another Different Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define

$$\sigma: \mathbb{F}_{p}[\![s]\!] \to \mathbb{F}_{p}[\![s]\!], s \mapsto s + s^{p} + s^{p^{2}} + \dots$$

Define $g_0 \coloneqq \sigma(x)$ and recursively $g_i \coloneqq \sigma(g_{i-1}^p z_i)$. Set

$$H(t) \coloneqq \prod_{k=1}^{p-1} \left(1 - rac{t}{k}
ight)^k$$
 and $\widehat{\exp}_p \coloneqq \prod_{i=0}^{\infty} H\left((-1)^i g_i\right)^k$

Then $\widehat{\exp}_p$ solves y' = y.

Lemma

$$\widehat{\exp}_p = \widetilde{\exp}_p.$$

Characteristic

Exponential Function

Abel's Problem

Algebraicity of Projection

$$g_i := \sigma(g_{i-1}^p z_i), \qquad \widehat{\exp}_p := \prod_{i=0}^\infty H\left((-1)^i g_i\right).$$

 σ is algebraic, as $\sigma(s) = \sigma(s)^p + s$. Thus, inductively, g_i is algebraic over $\mathbb{F}_p(x, z_1, \dots, z_i)$.

Note: $g_i \in 1 + z_i \cdot \mathbb{F}_p[z_1, \ldots, z_i][x]$. Thus, for the **projection** $\pi_j(\widehat{\exp}_p)$ we have

$$\pi_j(\widehat{\exp}_p) := \widehat{\exp}_p|_{z_{j+1}=z_{j+2}=\ldots=0} = \prod_{i=0}^j H\left((-1)^i g_i\right),$$

which is algebraic over $\mathbb{F}_{p}(x, z_{1}, \ldots, z_{j})$.

In particular: $\widehat{\exp}_p|_{z_1=z_2=...=0}$ is algebraic over $\mathbb{F}_p(x)$. The same holds true for \exp_p .

 $\underset{000}{\text{Exponential Function}}$

Abel's Problem

Abel's Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let $L \in \mathbb{F}_p[x][\partial]$ be a regular singular differential operator of order n and assume its local exponents lie in the prime field \mathbb{F}_p . Does there exist a basis of solutions y_1, \ldots, y_n in $\mathbb{F}_p[z_1, z_2, \ldots][x]$, such that its projections $\pi_j(y_k) = y_k|_{z_{j+1}=z_{j+2}=\ldots=0} \in \mathbb{F}_p[z_1, \ldots, z_j][x]$ are algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_j)$ for all j, k?

 $\underset{000}{\text{Exponential Function}}$

Abel's Problem

Abel's Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let $L \in \mathbb{F}_p[x][\partial]$ be a regular singular differential operator of order n and assume its local exponents lie in the prime field \mathbb{F}_p . Does there exist a basis of solutions y_1, \ldots, y_n in $\mathbb{F}_p[z_1, z_2, \ldots][x]$, such that its projections $\pi_j(y_k) = y_k|_{z_{j+1}=z_{j+2}=\ldots=0} \in \mathbb{F}_p[z_1, \ldots, z_j][x]$ are algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_j)$ for all j, k?

Partial answer:

Theorem (F.–Hauser–Kawanoue, 2024)

Let y' = ay be an order one regular singular differential equation with rational or algebraic coefficient $a \in \mathbb{F}_p((x))$ and local exponent $\rho \in \mathbb{F}_p$. Then there is a solution y such that $\pi_j(y)$ is algebraic over $\mathbb{F}_p(z_1, \ldots, z_j, x)$ for all j.

Characteristic µ 000000 Exponential Function

Abel's Problem

Ideas of Proof for π_0

The *p*-curvature of y' = ay is given by $(\partial - a)^p y = a_p y$, where $a_p = -a^{(p-1)} - a^p$.

Characteristic µ 000000 Exponential Function

Abel's Problem

Ideas of Proof for π_0

The *p*-curvature of y' = ay is given by $(\partial - a)^p y = a_p y$, where $a_p = -a^{(p-1)} - a^p$.

Solve

$$a^{(p-1)} + a^p + rac{g}{x^p} - rac{g^p}{x^p} = 0$$

implicitly to obtain an algebraic series $g \in \mathbb{F}_p[\![x^p]\!]$. Then the *p*-curvature of y' = (a - g/x)y vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution *q*.

Abel's Problem

Ideas of Proof for π_0

The *p*-curvature of y' = ay is given by $(\partial - a)^p y = a_p y$, where $a_p = -a^{(p-1)} - a^p$.

Solve

$$a^{(p-1)} + a^p + \frac{g}{x^p} - \frac{g^p}{x^p} = 0$$

implicitly to obtain an algebraic series $g \in \mathbb{F}_p[\![x^p]\!]$. Then the *p*-curvature of y' = (a - g/x)y vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution *q*.

The equation y' = (g/x)y = (a - q'/q)y is equivalent to (qy)' = aqy. Because $g \in \mathbb{F}_p[\![x^p]\!]$, its solutions lie in $\mathbb{F}_p[z_1, z_2, \ldots][\![x^p]\!]$ and from this it follows that it has a solution $y_0 \in 1 + z_1 \mathbb{F}_p[z_1, z_2, \ldots][\![x^p]\!]$. Thus $y = qy_0$ satisfies y' = ay and $\pi_0(y) = q$ is algebraic.

Abel's Problem 000●00

Product Representations

Iterating this construction leads to a more precise statement, generalizing the product representation of $\widehat{\exp}_{\rho}$:

Theorem (F.–Hauser–Kawanoue, 2024)

Let $L = \partial + a$ be a first order regular singular linear differential operator with rational function coefficient $a \in \mathbb{F}_p(x)$ (or algebraic coefficient $a \in \mathbb{F}_p[\![x]\!]$) and local exponent $\rho = 0$. Then for all $i \in \mathbb{N}$ there exist series $h_i \in 1 + z_i \mathbb{F}_p[z_1, \ldots, z_i][\![x]\!]$, which are algebraic over $\mathbb{F}_p(z_1, z_2, \ldots, z_i, x)$ and $P = \prod_{i=0}^{\infty} h_i$ satisfies LP = 0. In particular, $\pi_j(P) = \prod_{i=0}^j h_i$ is algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_j)$ for all j. Further Questions

Exponential Function

Does this generalizes to higher order differential equations? Idea: Factorisation of differential operators in $\overline{\mathbb{Q}(x)}[\partial]$ into linear factors.

Consider a (first order) differential equation Ly = 0 with $L \in \mathbb{Q}[x][\partial]$. Let $y_p \in \mathcal{R}_p$ be a (basis of) solution(s) of $L_py = 0$. Do the Galois groups of $\pi_j(y_p)$ relate to the differential Galois group of Ly = 0? Is there a variant of the differential Galois Group in characteristic p?

Is there a "canonical" basis of solutions of the *n*-dimensional C_p -vector space of solutions of $L_p y = 0$?

Can one use Fuchs' Theorem in positive characteristic for computations?

The End

Characteristic p 000000 Exponential Function

Abel's Problem

Thank you for your attention!