Algebraicity of Hypergeometric Functions with Arbitrary Parameters joint work with S. Yurkevich (arXiv:2308.12855)

Florian Fürnsinn
University of Vienna
Functional Equations in Limoges (FELIM 2024)
March 26, 2024

universität

wien

Overview

1. Introduction
2. History of the Problem and Interlacing Criteria
3. Algebraicity for Arbitrary Parameters - A Complete Criterion
4. Examples

Definitions

Hypergeometric differential equation:

$$
x\left(\theta+a_{1}\right) \cdots\left(\theta+a_{p}\right) F(x)=\theta\left(\theta+b_{1}-1\right) \cdots\left(\theta+b_{q}-1\right) F(x) \quad\left(\theta=x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)
$$

Definitions

Hypergeometric differential equation:

$$
x\left(\theta+a_{1}\right) \cdots\left(\theta+a_{p}\right) F(x)=\theta\left(\theta+b_{1}-1\right) \cdots\left(\theta+b_{q}-1\right) F(x) \quad\left(\theta=x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)
$$

Solutions: Hypergeometric function:

$$
\left.F(x)={ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array}\right]\right]:=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \cdot \frac{x^{n}}{n!},
$$

where $(a)_{n}:=a(a+1) \cdots(a+n-1)$ denotes the rising factorial.

Examples

- Logarithm:

$$
{ }_{2} F_{1}\left[\begin{array}{c}
1,1 \\
2
\end{array} ; x\right]=-\frac{\log (1-x)}{x}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

Examples

- Logarithm:

$$
{ }_{2} F_{1}\left[\begin{array}{c}
1,1 \\
2
\end{array} ; x\right]=-\frac{\log (1-x)}{x}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

- Catalan numbers:

$$
C_{n}=\binom{2 n}{n} \frac{1}{n+1} \in \mathbb{Z}, \quad \sum_{n \geq 0} C_{n} x^{n}={ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2}, 1 \\
2
\end{array} 4 x\right]
$$

Examples

- Logarithm:

$$
{ }_{2} F_{1}\left[\begin{array}{c}
1,1 \\
2
\end{array} ; x\right]=-\frac{\log (1-x)}{x}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

- Catalan numbers:

$$
C_{n}=\binom{2 n}{n} \frac{1}{n+1} \in \mathbb{Z}, \quad \sum_{n \geq 0} C_{n} x^{n}={ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2}, 1 \\
2
\end{array} 4 x\right]
$$

- Chebychev numbers:

$$
a_{n}=\frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!} \in \mathbb{Z}, \quad \sum_{n \geq 0} a_{n} x^{n}={ }_{8} F_{7}\left[\begin{array}{c}
\left.\frac{1}{30}, \frac{7}{30}, \frac{11}{30}, \frac{13}{30}, \frac{17}{30}, \frac{19}{30}, \frac{23}{30}, \frac{29}{30} ; \frac{30^{30}}{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}} ;\right]
\end{array}\right]
$$

Examples

- Logarithm:

$$
{ }_{2} F_{1}\left[\begin{array}{c}
1,1 \\
2
\end{array} ; x\right]=-\frac{\log (1-x)}{x}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

- Catalan numbers:

$$
C_{n}=\binom{2 n}{n} \frac{1}{n+1} \in \mathbb{Z}, \quad \sum_{n \geq 0} C_{n} x^{n}={ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2}, 1 \\
2
\end{array} 4 x\right]
$$

- Chebychev numbers:

$$
a_{n}=\frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!} \in \mathbb{Z}, \quad \sum_{n \geq 0} a_{n} x^{n}={ }_{8} F_{7}\left[\begin{array}{c}
\frac{1}{30}, \frac{7}{30}, \frac{11}{30}, \frac{13}{30}, \frac{17}{30}, \frac{19}{30}, \frac{23}{30}, \frac{29}{30} \\
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}
\end{array} \frac{30^{30}}{6^{6} 10^{10} 15^{15}} x\right]
$$

- Some other algebraic series, such as

$$
{ }_{3} F_{2}\left[\begin{array}{c}
1 / 2, \sqrt{2}+1,-\sqrt{2}+1 \\
\sqrt{2},-\sqrt{2}
\end{array} ; 4 x\right]=\frac{(7 x-1)(2 x-1)}{(1-4 x)^{5 / 2}}=1+x-6 x^{2}+\cdots \in \mathbb{Z} \llbracket x \rrbracket
$$

Definitions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called algebraic (over $\mathbb{Q}(x)$) if there is $P(x, y) \in \mathbb{Q}[x, y]$, $P(x, y) \neq 0$, such that $P(x, f(x))=0$.

Definitions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called algebraic (over $\mathbb{Q}(x)$) if there is $P(x, y) \in \mathbb{Q}[x, y]$, $P(x, y) \neq 0$, such that $P(x, f(x))=0$.

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called globally bounded if there are $\alpha, \beta \in \mathbb{Z} \backslash\{0\}$, such that $\beta f(\alpha x) \in \mathbb{Z} \llbracket x \rrbracket$ and its convergence radius is nonzero and finite.
In particular, only finitely many prime numbers appear in the denominators of the coefficients.

Definitions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called algebraic (over $\mathbb{Q}(x))$ if there is $P(x, y) \in \mathbb{Q}[x, y]$, $P(x, y) \neq 0$, such that $P(x, f(x))=0$.

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called globally bounded if there are $\alpha, \beta \in \mathbb{Z} \backslash\{0\}$, such that $\beta f(\alpha x) \in \mathbb{Z} \llbracket x \rrbracket$ and its convergence radius is nonzero and finite.
In particular, only finitely many prime numbers appear in the denominators of the coefficients.

Theorem (Eisenstein 1852, Heine 1854)

Any algebraic $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is a polynomial or globally bounded.

Definitions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called differentially finite or D-finite if it satisfies a non-trivial linear ordinary differential equation with coefficients in $\mathbb{Q}[x]$ (ODE).

Definitions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called differentially finite or D-finite if it satisfies a non-trivial linear ordinary differential equation with coefficients in $\mathbb{Q}[x]$ (ODE).

Theorem (Folklore, Abel 1827)

Any algebraic $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is D-finite.

Definitions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is called differentially finite or D-finite if it satisfies a non-trivial linear ordinary differential equation with coefficients in $\mathbb{Q}[x]$ (ODE).

Theorem (Folklore, Abel 1827)

Any algebraic $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is D-finite.
Any hypergeometric function $F(x) \in \mathbb{Q} \llbracket x \rrbracket$ is D-finite as it satisfies the hypergeometric differential equation.
Classical Question (Fuchs, Liouville, ...)
Which D-finite functions are algebraic? Which differential equations have algebraic solutions?

Question

Which hypergeometric functions are algebraic?

Question

Which hypergeometric functions are algebraic?

The hypergeometric function

$$
{ }_{2} F_{1}\left[\begin{array}{c}
1,1 \\
2
\end{array} ; x\right]=-\frac{\log (1-x)}{x}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

clearly is not algebraic. It is not even globally bounded.

Question

Which hypergeometric functions are algebraic?

The hypergeometric function

$$
{ }_{2} F_{1}\left[\begin{array}{c}
1,1 \\
2
\end{array} ; x\right]=-\frac{\log (1-x)}{x}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\ldots \in \mathbb{Q} \llbracket x \rrbracket
$$

clearly is not algebraic. It is not even globally bounded.

The function

$$
{ }_{3} F_{2}\left[\begin{array}{c}
1 / 2, \sqrt{2}+1,-\sqrt{2}+1 \\
\sqrt{2},-\sqrt{2}
\end{array}{ }^{2} x\right]=\frac{(7 x-1)(2 x-1)}{(1-4 x)^{5 / 2}}
$$

clearly is algebraic.

Gaussian Hypergeometric Functions

Schwarz 1873: Classification of all algebraic Gaussian hypergeometric functions, i.e., all $F(x)={ }_{2} F_{1}\left(\left[a_{1}, a_{2}\right],\left[b_{1}\right] ; x\right)$, with rational parameters $a_{1}, a_{2}, b_{1} \in \mathbb{Q}$ by essentially providing a finite list.

Gaussian Hypergeometric Functions

Schwarz 1873: Classification of all algebraic Gaussian hypergeometric functions, i.e., all $F(x)={ }_{2} F_{1}\left(\left[a_{1}, a_{2}\right],\left[b_{1}\right] ; x\right)$, with rational parameters $a_{1}, a_{2}, b_{1} \in \mathbb{Q}$ by essentially providing a finite list.

Landau 1904, 1911 and Errera 1913 exploited Eisenstein's Theorem, leading to an arithmetic criterion for algebraicity of Gaussian hypergeometric functions with rational parameters:

Theorem (Landau, Errera)

Let $F(x)={ }_{2} F_{1}\left(\left[a_{1}, a_{2}\right],\left[b_{1}\right] ; x\right)$ with $a_{1}, a_{2}, b_{1}, a_{1}-b_{1}, a_{2}-b_{1} \notin \mathbb{Z}$. Then $F(x)$ is globally bounded iff it is algebraic and iff for all $1 \leq \lambda \leq N$ coprime to the common denominator N of a_{1}, a_{2}, b_{1} we have

$$
\left\langle\lambda a_{1}\right\rangle<\left\langle\lambda b_{1}\right\rangle<\left\langle\lambda a_{2}\right\rangle \quad \text { or } \quad\left\langle\lambda a_{2}\right\rangle<\left\langle\lambda b_{1}\right\rangle<\left\langle\lambda a_{1}\right\rangle,
$$

where $\langle\cdot\rangle$ denotes the fractional part.

Christol's Interlacing Criterion

Define $\langle\cdot\rangle: \mathbb{R} \rightarrow(0,1]$ as the fractional part, where integers are assigned 1 instead of 0 . Define \preceq on \mathbb{R}^{2} via $a \preceq b$ if $\langle a\rangle\langle\langle b\rangle$ or $\langle a\rangle=\langle b\rangle$ and $a \geq b$.

Theorem (Christol, 1986)

Let

$$
F(x)={ }_{p} F_{p-1}\left[\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{p-1}
\end{array}\right],
$$

with rational parameters, $a_{j}, b_{k} \notin-\mathbb{N}$, denote by N the least common denominator of all parameters, and set $b_{p}=1$. Then $F(x)$ is globally bounded if and only if for all $1 \leq \lambda \leq N$ with $\operatorname{gcd}(\lambda, N)=1$ we have for all $1 \leq k \leq p$ that

$$
\left|\left\{\lambda a_{j} \preceq \lambda b_{k}: 1 \leq j \leq p\right\}\right|-\left|\left\{\lambda b_{j} \preceq \lambda b_{k}: 1 \leq j \leq p\right\}\right| \geq 0 .
$$

Christol's Interlacing Criterion

For $a_{j}-b_{k} \notin \mathbb{Z}$ the criterion can be interpreted graphically:
Draw the sets $\left\{\exp \left(2 \pi i \lambda a_{j}\right)\right\}$ in red and $\left\{\exp \left(2 \pi i \lambda b_{k}\right)\right\}$ in blue on the unit circle for all $1 \leq \lambda \leq N$ with $\operatorname{gcd}(\lambda, N)=1$. Then F is globally bounded iff there are always at least as many red as blue points going counter-clockwise starting after 1 (count with multiplicity).

Christol's Interlacing Criterion

For $a_{j}-b_{k} \notin \mathbb{Z}$ the criterion can be interpreted graphically:
Draw the sets $\left\{\exp \left(2 \pi i \lambda a_{j}\right)\right\}$ in red and $\left\{\exp \left(2 \pi i \lambda b_{k}\right)\right\}$ in blue on the unit circle for all $1 \leq \lambda \leq N$ with $\operatorname{gcd}(\lambda, N)=1$. Then F is globally bounded iff there are always at least as many red as blue points going counter-clockwise starting after 1 (count with multiplicity).

Example

${ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1] ; x)$ is globally bounded, as one can deduce from the pictures below. They correspond to $\lambda=1,2,4,5,7,8$ respectively.

Beukers-Heckman Interlacing Criterion

Theorem (Christol 1986, Beukers-Heckman 1989, Katz 1990)

Let

$$
F(x)={ }_{p} F_{p-1}\left[\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{p-1}
\end{array}\right],
$$

with rational parameters $a_{j}, b_{k} \notin-\mathbb{N}$ such that $a_{j}-b_{k}, a_{j} \notin \mathbb{Z}$, denote by N the least common denominator of all parameters, and set $b_{p}=1$. Then $F(x)$ is algebraic if and only if for all $1 \leq \lambda \leq N$ with $\operatorname{gcd}(\lambda, N)=1$ we have for all $1 \leq k \leq p$ that

$$
\begin{equation*}
\left|\left\{\left\langle\lambda a_{j}\right\rangle \leq\left\langle\lambda b_{k}\right\rangle: 1 \leq j \leq p\right\}\right|-\left|\left\{\left\langle\lambda b_{j}\right\rangle \leq\left\langle\lambda b_{k}\right\rangle: 1 \leq j \leq p\right\}\right|=0 . \tag{IC}
\end{equation*}
$$

In other words, $F(x)$ is algebraic, if and only if the sets $\left\{\exp \left(2 \pi i \lambda a_{j}\right)\right\}$ and $\left\{\exp \left(2 \pi i \lambda b_{k}\right)\right\}$ interlace on the unit circle for all λ.

Beukers-Heckman Interlacing Criterion

Example

$F(x)={ }_{3} F_{2}([1 / 14,3 / 14,11 / 14],[1 / 7,3 / 7] ; x)$ is algebraic:

Beukers-Heckman Interlacing Criterion

Example

 $F(x)={ }_{3} F_{2}([1 / 14,3 / 14,11 / 14],[1 / 7,3 / 7] ; x)$ is algebraic:

Example

$F(x)={ }_{3} F_{2}([1 / 14,3 / 14,11 / 14],[1 / 7,5 / 7] ; x)$ is not algebraic:

Example from Combinatorics: Gessel Excursions

Lattice walks in the quaterplane with step set $\{\rightarrow, \leftarrow, \nearrow, \swarrow\}$: Gessel walks
Consider the generating function

$$
G(x)=\sum_{n \geq 0} g_{n} x^{n}
$$

of excursions of length n, i.e., walks with n steps that start and end at $(0,0)$.

Example from Combinatorics: Gessel Excursions

Lattice walks in the quaterplane with step set $\{\rightarrow, \leftarrow, \nearrow, \swarrow\}$: Gessel walks

Consider the generating function

$$
G(x)=\sum_{n \geq 0} g_{n} x^{n}
$$

of excursions of length n, i.e., walks with n steps that start and end at $(0,0)$.

Theorem (conjectured by Gessel 2001, Kauers-Koutschan-Zeilberger 2009, Bousquet-Mélou 2016, Bostan-Kurkova-Raschel 2017)

$$
G(x)=\sum_{n \geq 0} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(2)_{n}(5 / 3)_{n}} 16^{n} x^{2 n}={ }_{3} F_{2}\left[\begin{array}{c}
\frac{5}{6}, \frac{1}{2}, 1 \\
2, \frac{5}{3}
\end{array} ; 16 x^{2}\right] .
$$

Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

$$
G(x)={ }_{3} F_{2}\left[\begin{array}{c}
\frac{5}{6}, \frac{1}{2}, 1 \\
2, \frac{5}{3}
\end{array} ; 16 x^{2}\right]
$$

algebraic?

Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

$$
G(x)={ }_{3} F_{2}\left[\begin{array}{c}
\frac{5}{6}, \frac{1}{2}, 1 \\
2, \frac{5}{3}
\end{array} ; 16 x^{2}\right]
$$

algebraic?
Direct application of the interlacing criterion is not possible, as $a_{3}=1 \in \mathbb{Z}$.
Trick: use identities for hypergeometric functions:

$$
G(x)=\frac{1}{2 x^{2}}\left({ }_{2} F_{1}\left[\begin{array}{c}
-1 / 2,-1 / 6 \\
2 / 3
\end{array} ; 16 x^{2}\right]-1\right),
$$

which is algebraic by Schwarz' classification.

Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

$$
G(x)={ }_{3} F_{2}\left[\begin{array}{c}
\frac{5}{6}, \frac{1}{2}, 1 \\
2, \frac{5}{3}
\end{array} ; 16 x^{2}\right]
$$

algebraic?
Direct application of the interlacing criterion is not possible, as $a_{3}=1 \in \mathbb{Z}$.
Trick: use identities for hypergeometric functions:

$$
G(x)=\frac{1}{2 x^{2}}\left({ }_{2} F_{1}\left[\begin{array}{c}
-1 / 2,-1 / 6 \\
2 / 3
\end{array} ; 16 x^{2}\right]-1\right),
$$

which is algebraic by Schwarz' classification.
Algebraicity of $G(x)$ was overlooked until Bostan and Kauers proved the algebraicity of the trivariate generating function $Q(x, y, t)$ of Gessel walks ending at $(i, j) \in \mathbb{N}^{2}$ in 2010.

Example from Combinatorics: Gessel Excursions

Is the generating function of Gessel excursions

$$
G(x)={ }_{3} F_{2}\left[\begin{array}{c}
\frac{5}{6}, \frac{1}{2}, 1 \\
2, \frac{5}{3}
\end{array} ; 16 x^{2}\right]
$$

algebraic?
Minimal polynomial of $G(x)$:

$$
\begin{gathered}
27 x^{14} y^{8}+108 x^{12} y^{7}+189 x^{10} y^{6}+189 x^{8} y^{5}-9 x^{6}\left(32 x^{4}+28 x^{2}-13\right) y^{4} \\
-9 x^{4}\left(64 x^{4}+56 x^{2}-5\right) y^{3}-2 x^{2}\left(256 x^{6}-312 x^{4}+156 x^{2}-5\right) y^{2} \\
-\left(32 x^{2}-1\right)\left(4 x^{2}-6 x+1\right)\left(4 x^{2}+6 x+1\right) y-256 x^{6}-576 x^{4}+48 x^{2}-1
\end{gathered}
$$

Irrational Parameters

The function

$$
{ }_{3} F_{2}\left[\begin{array}{c}
1 / 2, \sqrt{2}+1,-\sqrt{2}+1 \\
\sqrt{2},-\sqrt{2}
\end{array} 4^{2}\right]=\frac{(7 x-1)(2 x-1)}{(1-4 x)^{5 / 2}}
$$

is algebraic, although it has irrational parameters. The interlacing criterion is not applicable.

The function

$$
{ }_{3} F_{2}\left[\begin{array}{c}
1 / 2, \sqrt{2}+1,-\sqrt{2}+1 \\
\sqrt{2},-\sqrt{2}
\end{array}{ }^{2} x\right]=\frac{(7 x-1)(2 x-1)}{(1-4 x)^{5 / 2}}
$$

is algebraic, although it has irrational parameters. The interlacing criterion is not applicable.
Recall: The interlacing criterion of Beukers and Heckman treats the case of $a_{j}, b_{k} \in \mathbb{Q} \backslash-\mathbb{N}$ with $a_{j}-b_{k}, a_{j} \notin \mathbb{Z}$.

Aim

An easy to use criterion to account for irrational parameters and integer differences.

Change of Setting

Define

$$
\mathcal{F}\left[\begin{array}{l}
c_{1}, \ldots, c_{r} \\
d_{1}, \ldots, d_{s}
\end{array} ; x\right]:=\sum_{n \geq 0} \frac{\left(c_{1}\right)_{n} \cdots\left(c_{r}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{s}\right)_{n}} x^{n} .
$$

Note:

$$
\begin{aligned}
{ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array}\right] & =\mathcal{F}\left[\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}, 1
\end{array}, x\right] \\
\mathcal{F}\left[\begin{array}{l}
c_{1}, \ldots, c_{r} \\
d_{1}, \ldots, d_{s}
\end{array} ; x\right] & ={ }_{r+1} F_{s}\left[\begin{array}{c}
c_{1}, \ldots, c_{r}, 1 \\
d_{1}, \ldots, d_{s}
\end{array} ; x\right] .
\end{aligned}
$$

Definitions

$$
F(x)=\mathcal{F}\left[\begin{array}{l}
c_{1}, \ldots, c_{r} \\
d_{1}, \ldots, d_{s}
\end{array} ; x\right]:=\sum_{n \geq 0} \frac{\left(c_{1}\right)_{n} \cdots\left(c_{r}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{s}\right)_{n}} x^{n}
$$

$F(x)$ is contracted if $c_{j}-d_{k} \notin \mathbb{N}$. $F(x)$ is reduced if $c_{j}-d_{k} \notin \mathbb{Z}$.
The contraction $F^{c}(x)$ of $F(x)$ is obtained from $F(x)$ by removing pairs of parameters $\left(c_{j}, d_{k}\right)$ with minimal difference $c_{j}-d_{k} \in \mathbb{N}$. It is contracted by definition.

If $F(x)$ is given as ${ }_{p} F_{q}$, convert to \mathcal{F} first.

Definitions

$$
F(x)=\mathcal{F}\left[\begin{array}{l}
c_{1}, \ldots, c_{r} \\
d_{1}, \ldots, d_{s}
\end{array}\right] x:=\sum_{n \geq 0} \frac{\left(c_{1}\right)_{n} \cdots\left(c_{r}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{s}\right)_{n}} x^{n} .
$$

$F(x)$ is contracted if $c_{j}-d_{k} \notin \mathbb{N}$. $F(x)$ is reduced if $c_{j}-d_{k} \notin \mathbb{Z}$.
The contraction $F^{c}(x)$ of $F(x)$ is obtained from $F(x)$ by removing pairs of parameters $\left(c_{j}, d_{k}\right)$ with minimal difference $c_{j}-d_{k} \in \mathbb{N}$. It is contracted by definition.

If $F(x)$ is given as ${ }_{p} F_{q}$, convert to \mathcal{F} first.

Example

$$
{ }_{4} F_{3}\left[\begin{array}{c}
\frac{1}{3}, \frac{1}{2}, 2,4 \\
\frac{3}{2}, 3,1
\end{array} ; x\right]^{c}=\mathcal{F}\left[\begin{array}{l}
\frac{1}{3}, \frac{1}{2}, 2,4 \\
\frac{3}{2}, 3,1,1
\end{array} ; x\right]^{c}=\mathcal{F}\left[\begin{array}{l}
\frac{1}{3}, \frac{1}{2} \\
\frac{3}{2}, 1
\end{array}\right] .
$$

This contraction is not reduced, as $1 / 2-3 / 2 \in \mathbb{Z}$.

The Criterion

Theorem (F.-Yurkevich 2023)

For any hypergeometric function $F(x)={ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; x\right) \in \mathbb{Q} \llbracket x \rrbracket$ the following decision tree answers the question whether it is algebraic over $\mathbb{Q}(x)$.

$\left(\theta+a_{1}\right) F(x)$ is a hypergeometric function with the same parameters as $F(x)$, except for a_{1}, which is increased by 1 . With this one can show that $F(x)$ is algebraic if and only if $F^{c}(x)$ is algebraic.
$\left(\theta+a_{1}\right) F(x)$ is a hypergeometric function with the same parameters as $F(x)$, except for a_{1}, which is increased by 1 . With this one can show that $F(x)$ is algebraic if and only if $F^{c}(x)$ is algebraic.

If $F(x)$ is contracted, its minimal differential equation is the hypergeometric one. If $F(x)$ has irrational parameters, the equation has an irrational local exponent and $F(x)$ cannot be algebraic.

Ideas of the Proof

$\left(\theta+a_{1}\right) F(x)$ is a hypergeometric function with the same parameters as $F(x)$, except for a_{1}, which is increased by 1 . With this one can show that $F(x)$ is algebraic if and only if $F^{c}(x)$ is algebraic.

If $F(x)$ is contracted, its minimal differential equation is the hypergeometric one. If $F(x)$ has irrational parameters, the equation has an irrational local exponent and $F(x)$ cannot be algebraic.

If $F(x)$ is not reduced, define $G(x)$ by removing all pairs of parameters with integer differences. Then the interlacing criterion for global boundedness for $F(x)$ and for algebraicity for $G(x)$ cannot be fulfilled at the same time, contradicting the algebraicity of $F(x)$.

Example 1

$$
f(x)=\mathcal{F}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1+i \sqrt{3}, 1-i \sqrt{3} \\
\frac{1}{7}, \frac{3}{7}, i \sqrt{3},-i \sqrt{3}, 3
\end{array} ; x\right]={ }_{6} F_{5}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1+i \sqrt{3}, 1-i \sqrt{3}, 1 \\
\frac{1}{7}, \frac{3}{7}, i \sqrt{3},-i \sqrt{3}, 3
\end{array}\right] .
$$

Example 1

$$
f(x)=\mathcal{F}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1+i \sqrt{3}, 1-i \sqrt{3} \\
\frac{1}{7}, \frac{3}{7}, i \sqrt{3},-i \sqrt{3}, 3
\end{array} ; x\right]={ }_{6} F_{5}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1+i \sqrt{3}, 1-i \sqrt{3}, 1 \\
\frac{1}{7}, \frac{3}{7}, i \sqrt{3},-i \sqrt{3}, 3
\end{array} ; x\right] .
$$

Contraction has rational parameters and is reduced:

$$
\left.f^{c}(x)=\mathcal{F}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14} \\
\frac{1}{7}, \frac{3}{7}, 3
\end{array}\right] x\right]={ }_{4} F_{3}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1 \\
\frac{1}{7}, \frac{3}{7}, 3
\end{array} ; x\right] .
$$

Example 1

$$
f(x)=\mathcal{F}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1+i \sqrt{3}, 1-i \sqrt{3} \\
\frac{1}{7}, \frac{3}{7}, i \sqrt{3},-i \sqrt{3}, 3
\end{array} ; x\right]={ }_{6} F_{5}\left[\begin{array}{c}
\frac{1}{14}, \frac{3}{14}, \frac{11}{14}, 1+i \sqrt{3}, 1-i \sqrt{3}, 1 \\
\frac{1}{7}, \frac{3}{7}, i \sqrt{3},-i \sqrt{3}, 3
\end{array}\right] .
$$

Contraction has rational parameters and is reduced:

We have already seen that $f^{c}(x)$ is algebraic by the interlacing criterion, thus so is $f(x)$.

Example 2

$$
u_{n}=\frac{3}{2}\binom{4 n}{n} \frac{n+2}{(n+1)(n+3)} .
$$

Generating function:

$$
f(x)={ }_{6} F_{5}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 3,3,1 \\
\frac{1}{3}, \frac{2}{3}, 4,2,2
\end{array} ; \frac{256}{27} x\right]
$$

Contraction:

$$
f^{c}(x)={ }_{4} F_{3}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1 \\
\frac{1}{3}, \frac{2}{3}, 4
\end{array} ; \frac{256}{27} x\right]
$$

Interlacing criterion: $f(x)$ algebraic.

Example 2

$$
u_{n}=\frac{3}{2}\binom{4 n}{n} \frac{n+2}{(n+1)(n+3)}
$$

Generating function:

$$
f(x)={ }_{6} F_{5}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 3,3,1 \\
\frac{1}{3}, \frac{2}{3}, 4,2,2
\end{array} ; \frac{256}{27} x\right]
$$

Contraction:

$$
f^{c}(x)={ }_{4} F_{3}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1 \\
\frac{1}{3}, \frac{2}{3}, 4
\end{array} ; \frac{256}{27} x\right]
$$

Interlacing criterion: $f(x)$ algebraic.

$$
v_{n}=\frac{3}{2}\binom{4 n}{n} \frac{n+2}{(n+1)^{2}} .
$$

Generating function:

$$
g(x)={ }_{6} F_{5}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 3,1,1 \\
\frac{1}{3}, \frac{2}{3}, 2,2,2
\end{array} ; \frac{256}{27} x\right]
$$

Contraction:

$$
g^{c}(x)={ }_{5} F_{4}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1,1 \\
\frac{1}{3}, \frac{2}{3}, 2,2
\end{array} ; \frac{256}{27} x\right]
$$

Not reduced: $g(x)$ not algebraic.

Example 3 - Gessel Revisited

Recall the generating function of Gessel excursions

$$
G(x)={ }_{3} F_{2}\left[\begin{array}{c}
\frac{5}{6}, \frac{1}{2}, 1 \\
2, \frac{5}{3}
\end{array} ; 16 x^{2}\right]=\mathcal{F}\left[\begin{array}{l}
\frac{5}{6}, \frac{1}{2} \\
2, \frac{5}{3}
\end{array}\right] .
$$

$G(x)$ is contracted, reduced, has only rational parameters and satisfies the interlacing criterion:

Thank you for your attention!

