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Abstract
This thesis provides a historical overview as well as the solution to the Kakeya needle
problem, a geometric problem that asks for the minimal area of a figure in which a needle
can be rotated continuously. It is proved using so called Besikovitch sets, that this can be
done within an arbitrarily small area. Moreover this thesis introduces the basic notions of
fractal geometry, such as the Minkowski and Hausdorff dimension. It also contains a proof of
the Kakeya conjecture in two dimensions, which states that the dimension of a n-dimensional
Besikovich set is equal to n. Finally it briefly discusses the progress in higher dimensions,
where the conjecture still remains unsolved.
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1 Introduction
Take an (idealized) needle of length one and put it, with the pointy end facing downwards,
inside a box. Now you want to rotate the needle inside the box, without lifting it into the
air, such that its pointy end is showing to the top afterwards. How big must the box be?
This, rather easy looking problem, the Kakeya problem, has kept mathematicians occupied
for quite some time at the beginning of the twentieth century. It lead to new open problems
and provided answers to different problems. Let us have a look at it.

The first possible shape of the box, that comes to mind, is a circle with radius 1
2 . Obviously

you can rotate the needle inside of it, but can we do better? Indeed we can, e.g. take an
equilateral triangle with height one. It has smaller area than the circle and figure 1 shows
how to rotate the needle within. In fact we will see in the next few chapters, that we can
even do much better than that.

In section 2 we will briefly discuss the history of the Kakeya problem. The next two sections,
3 and 4, are reserved for mathematical “machinery” needed to deal with it, especially from
the field of measure theory. We will develop the concept of the Minkowsky dimension and
the Hausdorff dimension. In section 5 we will eventually construct so called Kakeya or
Besikovitch sets and briefly discuss their application. At last we will have a look at the so
called Kakeya conjecture, which is about the dimension of these sets. The two-dimensional
version of this conjecture is solved, and we will discuss a proof. In higher dimensions the
question is still open, there we will briefly discuss progress towards a proof.

Figure 1: Rotating a needle inside an equilateral triangle
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2 History of the Problem
In 1917 Sōichi Kakeya proposed the problem to find the minimal area of a convex set in
which a one dimensional needle can be rotated continuously [Kak17]. This question was
first answered by Julius Pál in 1921 by showing that the set is an equilateral triangle with
height 1, hence the area is 1√

3 [Pál21]. Naturally the question arose, what the answer is, if
the convexity condition was dropped. At first it was believed, that in this case the figure of
minimal area is the inside of a deltoid curve of area π

8 , but in 1928 Abram S. Besicovitch
showed, that the area can be made arbitrarily small. In 1917 he had been working on some
problems concerning Riemann integrals and constructed a set of measure 0, which contained
a rotated copy of the unit interval in every direction. His work had been published in some
Russian journal and had remained unrecognised due to the political instability of Russia
at that time. He republished his work and Pál noticed that his construction also solved
Kakeya’s quenstion [Bes28].

A further question was to understand the size of a so called Besicovitch set, i.e. a subset
of Rn containing a unit line segment in every direction, even in more detail. In 1970 Roy
O. Davies proved, that a Besicovitch set in the plain has to have Hausdorff Dimension 2
[Dav71]. The Kakeya conjecture states, that the generalisation of this to higher dimensions
holds true, i.e. that an n-dimensional Besikovitch set has Hausdorff dimension n. Until
today there has been a lot of work on this, but so far no proof has been given.

Besicovitch sets are sometimes used to provide counterexamples in analysis, especially in
harmonic analysis. Starting with the initial problem on Riemann integrals, there are some
applications of those sets. A remarkable result is the disprove of the Ball multiplier conjec-
ture by Charles Fefferman, published in 1971 [Fef71].
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3 Mathematical Prerequisites
3.1 Measure Theory
In the following sections we will need basic notions and results from measure theory. Here a
short overview over the definitions and theorems needed later will be given. For further de-
tails as well as proofs to the theorems provided in the section below, see Roland Zweimüllers
lecture notes [Zwe19] and Gerald Teschl’s book on real analysis [Tes20].

First we need to define the system of sets, on which a measure can be defined.

Definition 3.1. Let X be a set. A σ-algebra is a subset Σ ⊆ P(X) of the power set of X,
with the following properties:

i) X ∈ Σ.

ii) If A ∈ Σ, then Ac ∈ Σ, where Ac denotes the complement of A in X.

iii) If An ∈ Σ for n ∈ N, then
⋂
n∈NAn ∈ Σ.

A subset H ⊆ P(X) is called a semi-ring, if

i) ∅ ∈ H.

ii) If A,B ∈ H, then A ∩B ∈ H.

iii) If A,B ∈ H, then there are C1, . . . , Cn, such that A \B =
⋃n
k=1 Cn.

One can easily prove that the intersection of σ-algebras forms itself a σ-algebra. This
motivates the following definition:

Definition 3.2. Let E ⊆ P(X). Then we call

Σ(E) =
⋂

E⊆Σ⊆P(X)

Σ,

the σ-algebra generated by E , where the intersection is over all σ-algebras over X, which
contain E .

Let X be a topological space with topology O. Then Σ(O) is called the Borel σ-algebra of
X and its elements are called Borel sets.

Let us now define measures and related concepts.

Definition 3.3. A pre-measure µ : H → [0,∞] is a mapping from a semi ring H into the
extended non-negative reals, that fulfils the following properties:

i) µ(∅) = 0

ii) For disjoint sets Ai ∈ H, where i ∈ N, such that
⋃
i∈NAi ∈ H, µ is σ-additive, i.e.

µ

(⋃
i∈N

Ai

)
=
∞∑
i=0

µ(Ai).

Further, a measure is a pre-measure defined on a σ-algebra and a probability measure P is
a measure, for which P (X) = 1. A measure defined on a σ-algebra, that includes all Borel
sets, is called Borel measure.

An outer measure is a function µ∗ : P(X)→ [0,∞], such that:
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i) µ∗(∅) = 0

ii) If A ⊆ B ⊆ X, then µ∗(A) ≤ µ∗(B).

iii) For Ai ⊆ X for i ∈ N, then

µ∗

(⋃
i∈N

AI

)
≤
∞∑
i=0

µ∗(Ai)

If X is a topological space, µ∗ is called metric if for all A,B ⊆ X with infa∈A,b∈B d(a, b) > 0
we have that µ∗(A ∪B) = µ∗(A) + µ∗(B).

Now we want to be able to extend pre-measures from a semi ring to measures. To this
end we need to define the outer measure generated by a pre-measure and the concept of
measurable sets, with respect to an outer measure.

Definition 3.4. Let µ be a pre-measure on a semi ring H. For A ⊆ X let

µ∗(A) = inf
{ ∞∑
n=0

µ(An)

∣∣∣∣∣{An}n∈N is a countable cover of A with sets from H

}

be the outer measure generated by µ.

For an arbitrary outer measure µ∗ let

Σ(µ∗) = {A ⊆ X|µ∗(B) = µ∗(A ∩B) + µ∗(Ac ∩B) ∀B ⊆ X} ,

the set of µ∗-measurable sets.

One needs to check, that these definitions indeed make sense.

Proposition 3.5. For every pre-measure µ the generated outer measure µ∗ is indeed an
outer measure with µ∗|H = µ. Moreover the set of µ∗-measurable sets form a σ-algebra for
all outer measures µ∗ and µ∗|Σ(µ∗) is a measure.

Now we have everything to formulate two results, which we will need later on. The first one
is the famous extension theorem of Carathéodory.

Theorem 3.6 (Carathéodory’s extension theorem). Let H ⊆ P(X) be a semi ring, µ :
H → [0,∞] a pre-measure and µ∗ the outer measure generated by µ. Then Σ(H) ⊆ Σ(µ∗)
and µ∗|Σ(µ∗) is an extension of µ to Σ(µ∗).

The second one provides a characterisation of the outer measures µ∗, for which all Borel
sets are µ∗-measurable.

Theorem 3.7. The function µ∗ is a metric outer measure if and only if all Borel sets are
µ∗-measurable.

With these theorems we can also introduce the n-dimensional Lebesgue measure Ln. Con-
sider the collection of semi-open cuboids [a1, b1)×, . . . ,×[an, bn) ⊆ Rn. They form a semi
ring and we may define a pre-measure on them by letting Ln ([a1, b1)×, . . . ,×[an, bn)) =
(b1 − a1) · . . . · (bn − an). By Carathéodory’s extension theorem we may extend Ln to a
measure on Σ(Ln∗). As Ln∗ is a metric outer measure, all Borel sets are measurable.
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3.2 Graph theory
Later in the proof of Frostman’s lemma (Lemma 6.3) we will need an important result from
graph theory, the Max-Flow-Min-Cut theorem. It is usually stated in flow networks with a
source and a sink, but it can be formulated for trees as well. The version we need is found
in Bishop’s and Peres’ book [BP17], also as preparation for the proof of Frostman’s lemma.

Definition 3.8. A tree is a graph in which each two vertices are connected by one path. A
rooted tree is a tree with one special vertex, the root.

Let Γ = (V,E) be a rooted tree. We denote by v0 the root of Γ. For a vertex v ∈ V let |v|
be the depth of v, i.e. the distance from v0 to v and let v′ be the unique neighbour of v of
depth |v| − 1.

A capacity function on a Graph Γ = (V,E) is a mapping C : E → [0,∞), which assigns to
each edge a non-negative real number. A legal flow on a rooted tree with capacity function
C is a mapping f : E → [0,∞), such that f(e) ≤ C(e) for all e ∈ E and

f(v′v) =
∑

{w|(v,w)∈E,w 6=v′}

f(vw).

The value of a flow ‖f‖ is defined as

‖f‖ =
∑
|v|=1

f(v0v).

A cut set of a rooted tree is a subset D ⊆ E, such that D intersects every maximal path
from the root.

With all these concepts we can formulate the Max-Flow-Min-Cut Theorem for rooted trees.

Theorem 3.9 (Max-Flow-Min-Cut Theorem). Let Γ be a rooted tree with capacity C. Then
there is a maximal legal flow f in the sense that ‖f‖ ≥ ‖g‖ for all other legal flows g.
Moreover

max
f legal flow

‖f‖ = inf
D cut-set

C(D) = inf
D cut-set

∑
e∈D

C(e).
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4 Fractal Geometry
For establishing the basics of fractal geometry we will follow Sascha Troscheit’s lecture notes
[Tro20] and Christopher J. Bishop’s and Yuval Peres’ book [BP17]. We will introduce two of
the most commonly used concepts of dimensions, namely the Hausdorff and the Minkowski
dimension.

The main idea is, that the Lebesgue measure is not always a suitable concept to characterize
the size of a set. For example take the famous Koch snowflake curve, see figure 2. It is
constructed by taking a equilateral triangle and in each step replacing the middle third of
each line by two sides of an equilateral triangle. Its two dimensional Lebesgue measure is
zero, however, it is a line of infinite length within a compact set. So intuitively it should
neither be one nor two dimensional and we need a finer concept of dimension, which we will
provide here. Note that most of dimension theory extends to metric spaces as well, however
we will stick with Rn here.

Figure 2: The first few iterations of the Koch Snowflake

4.1 Minkowski Dimension
The idea behind the Minkowski dimension or box-counting dimension is to count how many
balls of equal radius r are needed to cover a set. We want this number to be proportional
to r−d, where d is our dimension. This motivates the following definition.

Definition 4.1. Let X ⊆ Rn be a bounded set and let Nr(X) be the minimal number
of balls of radius r needed to cover X. We then define the lower and upper Minkowski
dimension respectively as follows:

dimM (X) = lim inf
r↘0

logNr
− log r and dimM (X) = lim sup

r↘0

logNr
− log r .

If both these quantities are equal to each other, we set

dimM (X) = dimM (X) = dimM (X)

and call them Minkowski dimension of X.

Actually there is a certain degree of freedom, how to define the quantity Nr(X).

Proposition 4.2. Replacing Nr in the definition for the Minkowski dimension by any of
the following quantities, does not change dimM (X):

a) Smallest number of sets of diameter less than r needed to cover X.

b) Smallest number of axis parallel cubes needed to cover X.

c) Number of cubes of a grid with mesh size r that intersect X.
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d) Largest number of disjoint balls of radius r with centres in X.

e) Largest number of points within X, such that they are r-separated, i.e. no two of them
are closer than r to each other.

Proof. Let Mr be any of the quantities from the list. We want to show that there are
constants A,B, such that AMr ≤ Nr ≤ BMr. Then we get

lim inf
r↘0

logMr

− log r = lim inf
r↘0

logMr + logA
− log r = lim inf

r↘0

logAMr

− log r ≤ lim inf
r↘0

logNr
− log r

≤ lim inf
r↘0

logBMr

− log r = lim inf
r↘0

logMr

− log r

for the lower Minkowski dimension and an analogous result for the upper one.

We will only prove that a) is equivalent here, the rest follows in a similar way. Let Mr be
the smallest number of sets of diameter less than r needed to cover X. Each of those sets
can be enclosed in a ball of radius r, which then form a cover of X. Therefore Nr ≤ Mr.
On the other hand, the unit ball in dimension r is compact. Therefore it can be covered by
finitely many balls of diameter 1. Assume this is possible with C such balls. Then each ball
of radius r can be covered by C balls of diameter r, thus Mr ≤ CNr and we are done.

Next we discuss the main properties of the Minkowski dimension, as well as its weaknesses.

Proposition 4.3. Let X,Y ⊆ Rn. The Minkowski dimension has the following properties:

(1) If X ⊆ Y then dimM (X) ≤ dimM (Y ) as well as dimM (X) ≤ dimM (Y ).

(2) 0 ≤ dimM (X) ≤ dimM (X) ≤ n.

(3) The upper Minkowski dimension is finitely stable, i.e.

dimM (X ∪ Y ) = max
{

dimM (X),dimM (Y )
}
.

(4) If X is open, then the Minkowski dimension of X exists and dimM (X) = n.

(5) If X is finite, then its Minkowski dimension exists and we have dimM (X) = 0.

(6) If f : X → Rn is bi-Lipschitz, i.e. there is c > 0, such that

c−1|x− y| ≤ |f(x)− f(y)| ≤ c|x− y|

for all x, y ∈ Rn, then

dimM (f(X)) = dimM (X) and dimM (f(X)) = dimM (X).

Proof.

(1) Any cover with balls of radius smaller than r of Y also coversX. ThusNr(Y ) ≥ Nr(X)
for all r.

(2) As for r ≤ 1 the term logNr
− log r is always positive we get 0 ≤ dimM (X). Because the

limes inferior is always smaller than the limes superior, the next inequality follows.
Finally X has to be contained in some ball BR of radius R, as it is bounded. It is
easy to check, that there is a constant C, such that BR can be covered by Cr−d balls
of radius r for all r. Thus

dimM (X) = lim sup
r↘0

logNr
− log r ≤ lim sup

r↘0

logCr−d

− log r = d
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(3) We may compute:

dimM (X ∪ Y ) = lim sup
r↘0

logNr(X ∪ Y )
− log r ≤ lim sup

r↘0

logNr(X) +Nr(Y )
− log r

≤ lim sup
r↘0

log (2 max{Nr(X), Nr(Y )})
− log r ≤ max

{
dimM (X),dimM (Y )

}
(4) If X is open, then there is an open ball BR contained in X. It is clear that the

maximal number of r-separated points within BR grows like r−n, so there is C, such
that Nr(BR) ≥ Cr−n. Therefore

dimM (X) ≥ dimM (BR) ≥ lim inf
r↘0

logNr(BR)
− log r ≥ lim inf

r↘0

log (Cr−n)
− log r = n

(5) Let N be the number of points in X. Then X can be covered by N balls of radius r
for all r, thus the Minkowski dimension is 0.

(6) First we show, that if |f(x)−f(y)| ≤ c|x−y|, it follows that dimM (f(X)) ≤ dimM (X)
and dimM (f(X)) ≤ dimM (X). To this end we note that for every cover {Ui}i∈I of
F with sets with diameter less than r, also {Ui ∩ X}i∈I is such a cover. Therefore
{f(Ui∩X)}i∈I is a cover of f(X) with sets of diameter smaller than cr. As already seen
in the proof of Proposition 4.2 there is a constant A, such that every ball of diameter
c can be covered of A balls of diameter r. Thus Nr(f(X)) ≤ ANcr(f(X)) ≤ ANr(X)
and as the constant has no effect in the definition of the Minkowski dimension we get
the desired result.

Now note that c−1|x − y| ≤ |f(x) − f(y)| ensures that f is injective. So we may
let F : f(X) → X be its inverse mapping and note that F (f(X)) = X. We have
|F (x) − F (y)| ≤ c|x − y| and the first part of the proof gives us dimM (f(X)) ≥
dimM (X) and dimM (f(X)) ≥ dimM (X).

A major drawback of the Minkowski dimension is that it is finitely stable, but not countably
stable. In fact there are countable sets with positive Minkowski dimension, such as the set{ 1
n |n ∈ N

}
∪ {0}, which has Minkowski dimension 1

2 . Thus there is a need to introduce
another concept of dimensions which overcomes these problems, the Hausdorff dimension.
Its definition, however, is a bit more involved.

4.2 Hausdorff Measure and Dimension
Definition 4.4. Let X ⊆ Rn and α > 0. The α-dimensional Hausdorff content of X is
defined as

Hα∞(X) = inf
{∑
i∈I
|Ui|α

∣∣∣∣∣X ⊆ ⋃
i∈I

Ui

}
,

where the infimum is taken of all families of open sets {Ui}i∈I covering X and |S| denotes
the diameter of a set S. We define the Hausdorff dimension of X as

dimH(X) = inf{α|Hα∞(X) = 0}.

Moreover the α-dimensional ε-Hausdorff content of the set X is defined as

Hαε (X) = inf
{∑

i

|Ui|α
∣∣∣∣∣X ⊆⋃

i

Ui, |Ui| < ε

}
,
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so now the covering sets have diameter less than ε. Finally the Hausdorff measure of X is
defined to be

Hα(X) = lim
ε↘0
Hαε (X).

First we discuss the fundamental properties of the Hausdorff measure.

Proposition 4.5. Let α > 0. The Hausdorff measure Hα : P(Rn) → [0,∞] is a metric
outer measure. Therefore it is a Borel measure.

Proof. It is obvious that Hα(∅) = 0. Let X ⊆ Y ⊆ Rn. Every cover of Y is a cover of X as
well and therefore Hα(X) ≤ Hα(Y ). Now let (Xi)i∈N be a sequence of subsets of Rn. Then

Hα
(⋃
i∈N

Xi

)
≤
∑
i∈N
Hα (Xi) ,

because a union of covers for each Xi forms a cover for the union of the sets Xi. Finally
let X,Y ⊆ Rn, such that D = infx∈X,y∈Y |x − y| > 0. For all ε with ε < D

2 it holds that
Hαε (X ∪ Y ) = Hαε (X) +Hαε (Y ), as no set of diameter less than ε can intersect both X and
Y. Now letting ε↘ 0 gives Hα(X ∪ Y ) = Hα(X) +Hα(Y ). Using theorem 3.7 we get that
every Borel set is measurable, i.e. Hα is a Borel measure.

One can show, that if α ∈ N, then the α-dimensional Hausdorff measure is a constant mul-
tiple of the α-dimensional Lebesgue measure. For a proof see Theorem 1.12 in Falconers
book [Fal85].

We will now show, that for a fixed set the α-dimensional Hausdorff measure is infinite for
all α, up to one critical value, the Hausdorff dimension, and then drops to 0 for all larger
α. At the Hausdorff dimension itself the Hausdorff measure of our set can be anything from
0 to ∞. Moreover it is irrelevant whether we use the Hausdorff content or the Hausdorff
measure to define the Hausdorff dimension.

Proposition 4.6. Let X ⊂ Rn and let α < β. Then the following statements are true.

(1) If Hα(X) <∞ then Hβ(X) = 0.

(2) The α-Hausdorff content of x vanishes if and only if the α-Hausdorff measure van-
ishes, i.e.

Hα∞(X) = 0 ⇔ Hα(X) = 0.

(3) For the Hausdorff dimension we have

dim(X) = inf{α|Hα(X) = 0} = sup{α|Hα(X) =∞} = sup{α|Hα∞(X) =∞}.

Proof.

(1) We have Hβε (X) ≤ εβ−αHαε (X), if we use the same cover and use the estimate |Ui|β ≤
|Ui|αεβ−α for a set Ui. Now letting ε↘ 0 yields the desired result.

(2) As Hα∞(X) ≤ Hα(X) the first implication is trivial. Now assume conversely that
Hα∞(X) = 0. For every ε there is a cover {Ui}i∈I of X, such that

∑
i∈I |Ui|

α ≤ ε.
But this implies that |Ui|α ≤ ε for all i, so |Ui| ≤ ε

1
α . Using this coverings we get

Hα
ε

1
α

(X) ≤ ε. Now lettingε↘ 0 yields Hα(X) = 0.

(3) This is an immediate consequence of (1) and (2).

9



Now we compare the Hausdorff dimension to the Minkowski dimension.

Proposition 4.7. Let X ⊆ Rn be bounded. Then dimH(X) ≤ dimM (X).

Proof. Let α = dimM (X) and ε > 0. By the definition of the lower Minkowski dimension,
there exists a sequence of radii, ri ↘ 0, such that logNri (X)

− log ri ≤ α + ε. Hence Nri(X) ≤
r
−(α+ε)
i . So there exists a cover of X with sets of radius smaller than ri containing at most
r
−(α+ε)
i sets. This gives an upper bound for the (α+ 2ε))-Hausdorff content:

Hα+2ε
∞ (X) ≤ Nrirα+2ε

i ≤ rεi .

As the ri tend to zero, Hα+2ε
∞ (X) = 0 and as this is true for all ε we get dimH(X) ≤ α.

So we have an upper bound by the Minkowski dimension. Note that is often easy to find an
upper bound for the Hausdorff dimension by finding a suitable cover. To find a lower bound
for the Hausdorff dimension, which is normally harder to achieve, the following fundamental
Lemma is usefull. It connects dimension theory to measure theory.

Lemma 4.8 (Mass distribution principle). Let X ⊆ Rn be bounded and C,α > 0. Suppose
there is a non-zero Borel measure µ on X, such that

µ(Br(x)) ≤ Crα

for any ball of any radius r with center x in X. Then

Hα∞(X) ≥ µ(X)
C

.

In particular
dimH(X) ≥ α.

Proof. Let {Ui}i∈I be a finite cover of X. W.l.o.g we may assume that each Ui is bounded,
as X is assumed bounded. Chose xi ∈ Ui for all i and let ri = |Ui|. This ensures that
Bri(xi) ⊇ |Ui|. Thus we get∑

i∈I
|Ui|r ≥

∑
i∈I

µ (Bri(xi))
C

≥
∑
i∈I

µ(Ui)
C
≥ µ(X)

C
.

Thus the α-dimensional Hausdorff content is greater or equal than µ(X)
C , hence positive and

the Hausdorff dimension of X must be greater or equal to α.

Now we have everything to prove basic properties of the Hausdorff dimension, analogous to
the ones of the Minkowski dimension in Lemma 4.3.

Proposition 4.9. Let X,Y, Yi ⊆ Rn for i ∈ N. The Hausdorff dimension has the following
properties:

(1) If X ⊆ Y then dimH(X) ≤ dimH(Y ).

(2) 0 ≤ dimH(X) ≤ n.

(3) The Hausdorff dimension is countably stable, i.e.

dimH

(⋃
i∈N

Yi

)
= sup

i∈N
{dimH (Yi)}.

(4) If X is open and non-empty then dimH(X) = n.
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(5) If X is countable, then dimH(X) = 0.

(6) If f : X → Rn is bi-Lipschitz, then

dimH(f(X)) = dimH(X) .

Proof.

(1) This follows from the fact, that every covering of Y is a covering of X as well.

(2) The lower bound is trivial by the definition. For the upper bound let α > n. We show
that Hα∞(Rn) = 0 and by (1) the result follows. To this end we chose δ > 0 and cover
Rn by hypercubes Qk with side length δ for k ∈ N. Then we divide Qk in 2dk of side
length δ · 2−k and use this as a covering for Rd. The diameter of such a cube is given
by δ
√
d2−k. This yields

Hα∞(Rd) ≤
∑
k∈N

2kd
(
δ · 2−k

√
d
)α

= δαdα/2
∑
k∈N

(
2d−α

)k = Cδα,

where C is independent of δ. As δ was chosen arbitrarily, it follows Hα∞(Rd) = 0 and
taking the infinmum yields dimH(Rd) ≤ d.

(3) By (1) it is clear, that dimH(Yi) ≤ dimH (
⋃
i Yi). Let α > supi dimH(Yi). Then

Hα∞(Yi) = 0 for all i and we can chose a cover {Ui,j}j∈N of Yi, such that
∑
j∈N |Uj |α ≤

ε · 2−i. So {Ui,j}i,j∈N is a cover of
⋃
i Yi and

∑
i,j∈N |Ui,j |α = ε. As ε was chosen

arbitrarily we get Hα∞(
⋃
i Yi) = 0 and the claim follows.

(4) As X is open, it contains an open ball B. We restrict the n-dimensional Lebesgue
measure to B and use the mass distribution principle to get that dimH(B) ≥ n. By
(1) and (2) we may conclude that dimH(X) = n.

(5) The Hausdorff dimension of a single point is 0 and using (3) we get that dimH(X) = 0.

(6) As is the analogous claim for the Minkowski dimension we prove that if |f(x)−f(y)| ≤
c|x − y|, then dimH(f(X) ≤ dimH(X). Let α > dimH(X). Then Hα∞(X) = 0, so
there is a cover {Ui}i∈Iy of X, with

∑
i |Ui|α ≤

ε
cα . But then f(Ui ∩ X) is a cover

of f(X), moreover
∑
i |f(Ui)|α ≤ ε. As ε was arbitrary, we get Hα∞(f(X)) = 0 and

therefore dimH(f(X)) ≤ dimH(X). Using the inverse of f we obtain equality.

So now we got rid of the “flaw” of countable sets with positive dimension, in comparison
to the Minkowski dimension. Moreover we have the powerful tool of measure theory at our
hands when computing the dimension of a set.

To close this chapter we compute the dimension of a well-known fractal.

Example 4.10 (Cantor set). Let A0 = [0, 1] be the unit line segment. Further let A1 =[
0, 1

3
]
∪
[ 2

3 , 1
]
, A2 =

[
0, 1

9
]
∪
[ 2

9 ,
1
3
]
∪
[ 2

3 ,
7
9
]
∪
[ 8

9 , 1
]
and in general let An+1 be the set in

which we have removed the middle third of every interval of An. Finally let

A =
⋂
n∈N

An

be the Cantor set. The first construction steps are illustrated in figure 3.
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Figure 3: The sets A0 to A5 in the construction of the Cantor set

We now want to compute the dimension of A. Let 3−n ≥ r > 3−n−1. Then the 2n+1

Intervals of which An+1 consist, form a cover of A with diameter less than r. Thus we get

dimM (A) = lim sup
r↘0

logNr
− log r ≤ lim sup

n→∞

log 2n+1

− log 3−n = lim sup
n→∞

n+ 1
n

log 2
log 3 = log 2

log 3 .

Next we define a measure µ on A in the following way. We set µ(Ink ∩ A) = 2−n for each
of the 2n intervals Ink of which An consists. Note that the sets Ink ∩A form a semi ring on
A which generates all Borel sets and we can extend µ to a measure on the Borel σ-Algebra.
Now let 3−n−1 < r ≤ 3−n and let Br be a ball of radius r. It can intersect at maximum two
of the Intervals of length 3−n. Thus we get

µ(Br) ≤ 2µ(In) = 2−n+1 ≤ 4 · 3(log 2/ log 3)·(−n−1) ≤ 4rlog 2/ log 3.

By the mass distribution principle and the first computation we now may conclude that

log 2
log 3 ≤ dimH(A) ≤ dimM (A) ≤ dimM (A) ≤ log 2

log 3

and therefore both Minkowski dimensions and the Hausdorf dimension of the Cantor set all
agree and are equal to log 2

log 3 .
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5 Kakeya Sets and their Applications
5.1 Construction of Kakeya and Besikovitch Sets
In this section we want to construct sets of arbitrarily small area, such that you can rotate a
needle within and sets of Lebesgue measure zero, which contain a unit line segment in every
direction. We will follow the construction in Falconer’s book [Fal85].

Definition 5.1. A set X ⊆ R2 is called a Kakeya set, if there are continuous functions
x, y, ω : [0, 1]→ R and k ∈ Z, such that for all t in{

x(t) + s cos(ω(t)), y(t) + s sin(ω(t))
∣∣∣∣s ∈ [−1

2 ,
1
2

]}
⊆ X,

x(0) = x(1), y(0) = y(1) and ω(0) = ω(1) + (2k + 1)π.

Definition 5.2. A set X ⊆ Rn is called Besikovitch set if for all x ∈ Sn−1 there is a y ∈ Rn,
such that

{y + sx|s ∈ [0, 1]} ⊆ X

and if Ln(X) = 0.

These two definitions formalize the concept of “a set, in which one can rotate a needle con-
tinuously” and “a set of zero area which contains a unit line segment in every direction.”
However we will not stick to this formal definition most of the times.

Now we want to show, that there are arbitrarily small Kakeya sets as well as Besikovitch
sets. The sets we are going to construct are called Perron trees and are the result of an
improved construction of Besikovitch sets, compared to the original one from 1921. First we
start with a Lemma.

Lemma 5.3. Let T be a triangle and M be the midpoint of its base line of length 2b. Let
1
2 < α < 1. Split T along the line from M to the opposite vertex of T and slide one of
the resulting triangles along the base line, such that the base lines overlap for a distance of
2(1 − α)b and let S be the resulting figure. Then S consists of a triangle T ′, similar to T
with L2(T ′) = α2L2(T ) and two further triangles. Furthermore

L2(T )− L2(S) = L2(T )(1− α)(3α− 1).

Proof. The construction is illustrated in figure 4. The triangle T ′ is similar to T , as all of the
sides are pairwise parallel. Its base line has length 2αb, hence we have L2(T ′) = α2L2(T ).
Note that L2(T )−L2(S) is the area of the overlap of the two triangles of which S consists.
We observe that the two triangles next to the overlapping area at the bottom form together
a third triangle T ′′, similar to T as well. It’s base length is 2(2α − 1)b. We compute the
area of the overlap:

L2(T )− L2(S) = L2(T ′)− L2(T ′′) = (α2 − (2α− 1)2)L2(T ) = (1− α)(3α− 1)L2(T )

Starting from an equilateral triangle of height 1, where the needle can be rotated by π
3 at

the top vertex, this Lemma allows us to rotate a needle the same angle in a smaller area.
We can let the needle rotate for half of the angle at the top of the first triangle and then
the rest at the top of the second one. There is only the problem that it has to “jump” in
between. We can use this Lemma repeatedly to create a figure of arbitrarily small area in
which the needle may be rotated provided we can take care of the “jumps.”

13



b b 2(1− α)b

T ′

T ′′ T ′′

M

T S

Figure 4: Sliding Triangles

Theorem 5.4. Let T be a triangle and ε > 0. It is possible to divide the base line of T ,
join the dividing points to the opposite vertex of T and translate the resulting triangles along
the base line, such that the resulting figure S has L2(S) < ε. Moreover let U be an open set
containing T . Then this may be done, such that S ⊆ U .

Proof. Let b be half the length of the base line of T . First chose α ∈
( 1

2 , 1
)
and k ∈ N.

Divide the base line into 2k equal parts and join the points of division to the opposite vertex
of T . We label the resulting triangles T 0

1 , T
0
2 , . . . , T

0
2k . Now we slide T 0

2l to the right, such
that the overlap of the base line with T 0

2l−1 has length 2(α − 1)b. So we can apply the
previous lemma to the triangle T 0

2l−1 ∪ T 0
2l. Let T 1

l be the triangle called T ′ in Lemma 5.3.
Doing this with every pair of consecutive triangles, we denote the resulting figure by S1. We
have achieved a total reduction of area equal to L2(T )−L2(S1) = (3α− 1)(1− α)L2(T ) in
this first step. Now assume we have already constructed Srl and T rl for l = 1, . . . , 2k−r. We
slide the Sr2l to the right, such that the base lines of the triangles T r2l−1 and T r2l overlap for
2(1− α) times their base length. This leads to a resulting figure Sr+1

l with a triangle T r+1
l

inside, similar to T r2l−1 ∪ T r2l, with proportionality factor α. The construction is illustrated
in figure 5. As the overlap of Sr2l−1 and Sr2l after the translation is at least as big as the
overlap of the triangles T r2l−1 and T r2l we have

L2(Sr2l−1) + L2(Sr2l)− L2(Sr+1
l ) ≥ (1− α)(3α− 1)L2(T r2l−1 ∪ T r2l).

Summing up these inequalities for all l from 1 to 2k−r−1 and all r from 0 to k − 1 we get

L2(T )− L2(Sk1 ) ≥ (1− α)(3α− 1)(1 + α2 + . . .+ α2k−2)L2(T ) = L2(T ) (3α− 1)(1− α2k)
(1 + α) .

Chose α to be close to one, such that (3α−1)
1+α is sufficiently close to 1 and let k then be large

enough, such that (1 − α2k) is small enough. Then L2(Sk1 ) will be smaller than ε and we
may set S = Sk1 .

Now let U be an open set containing T . There is δ > 0, such that a δ-neighbourhood of
T is contained in U . In the construction above we have moved each of the triangles we
started with for a distance less than the base of the starting triangle. Now we divide the
base line of T in equal parts, such that each part has length smaller than δ. Then we apply
the construction from above to each of the triangles obtained by joining the division points
to the opposite vertex of T . So we have moved each of the starting triangles by a maximum
of δ, thus the resulting figure is still contained in U .

Next we need to take care of the jumps to obtain Kakeya sets by introducing Pál joints.

14



Figure 5: The construction of a Perron tree

Lemma 5.5. Let G1, G2 be two parallel unit line segments and let ε > 0. There is a set J
such that L2(J) < ε and a needle can be moved continuously from G1 to G2 within J .

Proof. Let g1, h1 and g2, h2 be the endpoints of G1 and G2 respectively. Chose x on the line
k defined by G1 and let Jx be the set consisting of the line segment joining h1 and x, the
line segment l joining x and h2 as well as G2 and two rectangular triangles: one with one
edge of length 1 starting at x on k and the hypotenuse on l, the other one with one edge
equal to G2 and the hypotenuse on l as well. The set is visualized in figure 6. If we chose x
sufficiently far apart from h the length h of the third edges of the triangles get smaller than
ε. Thus the area of Jx, which is just the area of the two triangles, gets sufficiently small, i.e.
L2(Jx) < ε. We can move the needle from G1 to G2 by moving it along k, turning it inside
the first triangle, pushing it along l and finally rotate it within the second triangle.

G1

G2

h

h
h2

x g1 h1

g2

k

l

Figure 6: Connecting two parallel unit line segments

Now we have everything we need to prove that a needle can be rotated inside a set with
arbitrarily small measure, hence prove Besikovitch’s original result.

Theorem 5.6. Let ε > 0. There exists a Kakeya set K, such that L2(K) < ε.

15



Proof. We will show, that there is a set L, with L2(L) < ε
3 such that we can rotate a needle

for an angle π
3 . By taking three copies of such sets we obtain the desired set K. Let T

be a equilateral triangle of height one. It is possible to rotate a needle by an angle of π
3

starting at one edge and rotating around the top vertex. Now we apply Theorem 5.4 to
T . We split T into 2k triangles in each of which the needle can be rotated for an angle of
π

3·2k . Two neighbouring triangles have a pair of parallel edges. We rearrange those triangles,
such that the area of the resulting figure S is less than ε

6 . Now we construct for each pair
of consecutive triangles a joint as in Lemma 5.5 of area smaller that ε

3·2k+1 to connect their
parallel edges. Then we take L to be the union of S and all those joints and we get

L2(L) ≤ ε

6 + (2k − 1) ε

3 · 2k+1 <
ε

3 ,

so we are done.

Having solved the original Kakeya Problem we proceed by showing, that Besikovitch sets
exist.
Theorem 5.7. There is a two dimensional Besikovitch set.
Proof. We start again with an equilateral triangle T of unit height to construct a set of
measure zero such that it contains a unit line segment in every direction which encloses an
angle of more than π

3 with the base line of T. Let U0 be an open ball containing T . In
the first step we apply Theorem 5.4 to split T into triangles and rearrange them, such that
the area of the resulting figure S1, constructed in a way to be contained in U0, is smaller
than 1

2 . As S1 is a finite union of triangles we find an open set U1 with S1 ⊆ U1 ⊆ U0 such
that L2 (U1

)
< 1. Assume we have already constructed sets Ur, Sr. We apply Theorem

5.4 to every triangle of Sr such that the resulting figure Sr+1 has area less than 1
2r+1 and is

contained within Ur. Then, as Sr+1 still consists of a finite union of triangles, we can find
Ur+1, such that Sr+1 ⊆ Ur+1 ⊆ Ur and

L2
(
Ur+1

)
<

1
2r .

Now we want to show, that

B =
∞⋂
r=1

Ur

is a Besikovitch set. As B is a subset of sets with arbitrarily small area, we have L2(B) = 0.
Let x ∈ S1 be a unit vector, such that it encloses an angle of more than π

3 with the base
line of T. When rotating the needle at the top of T , the needle points in direction x at some
point. This line segment gets translated when we construct the sets Sr, but in each of the
Sr there is a unit line segment xr parallel to x. As all the Sr are contained in the compact
set U0, there is a subsequence xrk converging to a unit line segment x0. For a fixed r we
have for all q ≥ r, that Sq ⊆ Ur. Hence xq ⊆ Ur and as Ur is compact we get x0 ⊆ Ur for
all r. Thus we get x0 ⊆ B and we have shown that B is a Besikovitch set.

Note that the theorems above proved the existence of Besicovitch sets of Lebesgue-measure
zero as well as the existence of a Kakeya set of arbitrarily small area. However, it is clear
that no Kakeya set of area zero may exist, as rotating a needle inevitably leads to a positive
area covered. For a rigorous proof see Question 1.22.1 in Terence Tao’s collection of blog
entries [Tao09].

From here on it is easy to construct higher dimensional Besicovitch sets. Let d > 2 and
consider B = B2 × [0, 1]d−2 for a two-dimensional Besikovitch set B2. By Fubini’s theorem
we know that Ld(B) = 0. Let x ∈ Sd−1 be a d-dimensional direction and let x2 be the
projection of x onto R2. Then there is a unit line G segment in the direction of x2 in B2.
The hyperplane E = G × [0, 1]d−2 is therefore contained in B and E contains a unit line
segment in the direction of x. Thus B is a Besikovitch set.
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5.2 An application of Besicovitch sets – Fefferman’s Disk Multiplier
Theorem

In 1971 Fefferman provided a disproof of a long-standing conjecture in Fourier analysis using
a slightly modified version of the construction of Besikovitch sets.

Recall that the Fourier transform of a function f is given by

Ff(x) = f̂(y) =
∫
Rn
e−2πix·yf(x)dx

It can be shown that the Fourier transform extends to an isometry of L2(Rn). Its inverse is
given by

f(x) = F−1f̂(x) =
∫
Rn
e2πix·y f̂(y)dy.

Now consider the following class of operators: Let m be a bounded function. We define
T : Lp(Rd)→ Lp(Rd) by

Tf = F−1 (mFf) .

One of the easiest cases occurs, whenm is the characteristic function of some set X. Let now
X be the unit ball B and consider the disk multiplier TB defined by TBf = F−1(χBFf).
We want to investigate, for which values of p this operator is bounded. As mentioned above,
for p = 2 the Fourier transform is an isometry, therefore we get that ‖TB‖ = 1. It was
believed, that there is actually a range of values for p, such that TB is bounded as operator
from Lp to itself. However Fefferman proved the following result:

Theorem 5.8. The operator TB : Lp(Rn)→ Lp(Rn) is unbounded for all n ≥ 2 and p 6= 2.

The proof is a bit involved and not presented here. See Fefferman’s original paper [Fef71]
or chapter 9.3 in [BP17].

17



6 The Kakeya Conjecture
As mentioned above we want to analyse the size of Besikovitch sets even further, by means
of fractal geometry.

Conjecture 6.1. Let B ⊆ Rd be a compact Besikovitch set. Then

dimH(B) = dimM (B) = dimM (B) = d,

i.e. the Minkowski dimension of B exists, is equal to the Hausdorff dimension and is maxi-
mal.

The conjecture remains unproven for d > 2, but there is a proof for d = 2 which will be given
in the following section. Moreover there are already some bounds on the minimal dimension
for higher dimensional Besikovitch sets, some of the results are summed up in the second
part of this chapter.

6.1 The two dimensional Case
Let B ⊆ R2 be a Besikovitch set. Indeed it is enough to prove that dimH(B) = d, as the
Minkowski dimension is bounded from below by the Hausdorff dimension and from above by
2 . We need two Theorems, that are due to John Marstrand, one of Besikovitch’s students.
For one of them there is a fairly straightforward proof, the other one relies on Frostman’s
lemma and capacity theory, which we will discuss here. We follow the arguments of Bishop
and Peres [BP17].

Theorem 6.2 (Marstrand Slicing Theorem). Let E ⊆ R2 be a bounded set. Let Ex =
{y|(x, y) ∈ E} be the vertical slice of E at x and suppose dimH(E) > 1. Then

dimH(Ex) ≤ dimH(E)− 1

for almost all x.

Proof. First we want to prove, that∫
R
Hα−1
ε (Ex)dx ≤ Hα(E)

for all 1 ≤ α ≤ 2. Let ε, δ > 0 and {Aj}j∈J be a cover of E with sets of diameter less than
ε, such that

∑
j |Aj |α < Hαε (E) + δ. For each Aj chose a square Qj , parallel to the axis,

with side length |Aj |, such that Aj ⊆ Qj . Let Rj be the projection of Qj onto the vertical
axis and let

Jx = {j ∈ J |∃y (x, y) ∈ Qj}.

Then {Rj}j∈Jx is a cover of Ex. Hence Hα−1
ε (Ex) ≤

∑
j∈Jx |Rj |

α−1. Now integrating with
respect to x yields∫

R
Hα−1
ε (Ex)dx =

∑
j∈J

∫
{x|j∈Jx}

|Rj |α−1dx =
∑
j∈J
|Rj |α =

∑
j∈J
|Aj |α < Hαε (E) + δ

Now with δ ↘ 0 we get ∫
R
Hα−1
ε (Ex)dx ≤ Hαε (E)

and as the Hausdorff content does not decrease when ε tends to 0, by the monotone conver-
gence theorem we get ∫

R
Hα−1(Ex)dx ≤ Hα(E).
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Now let α > dimH(E). Then we have

0 = Hα(E) ≥
∫
R
Hα−1(Ex)dx,

so the non-negative integrand must vanish almost everywhere.

Next we need to prove a converse statement to the mass distribution principle, Frostman’s
Lemma.

Lemma 6.3 (Frostman’s Lemma). Let α > 0 and E ⊆ Rd, be a compact set with Hα∞(E) >
0. Then there is a positive Borel measure µ on E and a constant A, such that

µ(Br) ≤ Arα

for all balls Br of radius r and
µ(E) ≥ Hα∞(E).

Proof. By rescaling and applying a translation we may assume without loss of generality that
E is contained in the unit cube. We now split the unit cube in 2d cubes of side length 1

2 and
those even further. Then we construct a tree Γ in the following way: The vertices correspond
to those dyadic cubes, which intersect E and each of them is connected to its “parent” cube,
the cube of double side length in which it is contained. We define the following capacity C
on the edges of Γ:

C(v′v) =
(√

d · 2−|v|
)α

.

Let f be a maximal legal flow on Γ, which exists in view of Theorem 3.9.

We now consider the space of infinite paths in Γ starting at the root V0. First we define a
metric d on it: For two paths p, q, let v be the last common vertex and we set d(p, q) = 2−|v|.
Open balls are then given by all paths passing through a given edge. One can show that the
space of infinite paths is compact with respect to this metric (see [BP17], section 3.1). Let
v be a vertex and

Sv = {all paths passing through v′v},
then the collection R of all the Sv form a semi ring. We define a pre-measure µ̃ on it by
setting

µ̃({all paths passing through v′v}) = f(v′v).
This is finitely additive by the property of a flow. Moreover compactness implies that the
set of all paths passing through v′v is compact as well and thus it can be split up in only
finitely many disjoint elements of R. This yields countable additivity. So µ̃ can be extended
by Carathéodory’s extension theorem (Theorem 3.6) to a measure µ on the σ-algebra gen-
erated by R. Now we may interpret µ as a Borel measure on E by setting the measure of a
dyadic cube corresponding to v as µ(v′v) and the dyadic cubes generate all Borel sets. Let
x 6∈ E. Then there is an open neighbourhood of x in the complement of E and a dyadic
cube contained within. This ensures that the support of µ is a subset of E. Now let D be a
dyadic cube associated to the vertex v. Then µ(D) = f(v′v) ≤ C(v′v) = |D|α and every ball
B can be covered by a finite number of dyadic cubes of side length smaller than the radius.
So there exists a constant A, only dependant on the dimension d, such that µ(Br) ≤ Arα

for all balls of radius r.

It remains to prove that µ(E) ≥ Hα∞(E). Note that each cover of dyadic cubes of E corre-
sponds to a cut-set of the tree. Thus we get by the Max-Flow-Min-Cut theorem (Theorem
3.9) that

µ(E) = ‖f‖ = inf
D cut-set

C(D) ≥ Hα∞(E),

where we have used that the capacity of an edge is equal to the area of the corresponding
dyadic cube.
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Now we need to make a detour to capacity theory to establish the second of Marstrand’s
theorems we need.

Definition 6.4. Let µ be a Borel measure on Rd and let α > 0. We define the α-dimensional
energy Eα(µ) of µ by

Eα(µ) =
∫
Rd×Rd

1
|x− y|α

dµ(x)dµ(y)

Moreover for a set E ⊂ Rd we define the α-dimensional capacity Capα(E) as

Capα(E) = 1
infµ Eα(µ) ,

where the infimum is taken over all Borel probability measures µ, which are supported on
E. Furthermore if Eα(µ) =∞ for all such measures µ, we set Capα(E) = 0.

For a given set E we now want to find the critical value α0, such that Capα(E) = 0 for all
α > α0. It turns out, that this value is equal to the Hausdorff dimension of E.

Proposition 6.5. Let E ⊂ Rd be a compact set and suppose α > β. Then the following
statements are true:

(1) If Hα(E) > 0, then Capβ(E) > 0.

(2) If Capα(E) > 0, then Hα(E) =∞.

(3) dimH(E) = inf{α|Capα(E) = 0}.

Proof.

(1) Suppose Hα(E) > 0. Then by Frostman’s lemma (Lemma 6.3), there is a non van-
ishing measure µ, such that µ(B) < C|B|α for all balls. As E is compact, µ is finite
and by rescaling we may assume that µ is a probability measure. Now we choose r
such that |E| < 2r and we fix x ∈ E to compute∫

E

1
|x− y|β

dµ(y) =
r∑

n=−∞

∫
B2n (x)\B2n−1 (x)

1
|x− y|β

dµ(y)

≤
r∑

n=−∞
µ(B2n(x))2β(−n+1)

≤
r∑

n=−∞
C2αn2β(−n+1)

≤ 2βC
r∑

n=−∞
2(α−β)n

≤M <∞,

where M is a constant, independent of x. Thus we may integrate once more and get∫
E×E

1
|x− y|β

dµ(y)dµ(x) ≤ µ(E)M <∞,

which proves (i).

(2) Because Capα(E) > 0, there is a positive Borel measure µ supported on E, such that
Eα(µ) <∞. Let M be large enough, such that

F =
{
x ∈ E

∣∣∣∣∫
E

1
|x− y|α

≤M
}
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has positive measure. This exists, as the α-dimensional energy of µ is finite. Now we
may compute∫

E

1
|x− y|α

dµ(y) ≥
r∑

n=−∞
µ(B2n(x) \B2n−1(x))2−αn

≥ µ(B2r (x)) + (1− 2−α)
r−1∑

n=−∞
µ(B2n(x))2−αn,

where we have used the additivity of µ for disjoint sets. As for all x ∈ F the integral
is finite, we know that the sum on the right hand side of the equation has to be finite
as well. So we get

lim
n→∞

µ(B2−n(x))
2−αn = 0,

and µ(Br(x)) ≤ Crα for all α and some constant C. A variant of the mass distribution
principle ensures that Hα(F ) = ∞ and therefore Hα(E) = ∞. To see this, replace
Hα∞ by Hαδ in the proof of the mass distribution principle and let δ ↘ 0.

(3) This is a direct consequence of (1) and (2). Let α > dimH(E). Then Hα(E) = 0
and because of (2) Capα(E) = 0. If α < dimH(E), let γ = (α + dimH(E))/2.
Because γ < dimH(E) we get that Hγ(E) > 0 and with (1) and α < γ it follows that
Capα(E) > 0.

Now we return to R2. In the following let pθ be the orthogonal projection in the direction
of the angle θ onto a line through the origin.

Theorem 6.6 (Marstrand’s Projection Theorem). Let 0 < α < 1 and E ⊆ R2 compact.
Assume Capα(E) > 0. Then for almost all θ we have that Capα(pθ(E)) > 0. Moreover, if
dimH(E) < 1, then dimH(pθ(E)) = dimH(E) for almost all θ.

Proof. As Capα(E) > 0, there is a measure µ supported on E, such that Eα(µ) < ∞.
We consider the pushforward measures µθ on R defined by µθ(X) = µ(p−1

θ (X)), where we
identify R with the line normal to the direction θ passing through the origin. We want to
show that Eα(µθ) <∞ for almost all θ, which we will achieve by proving that∫ π

0
Eα(µθ)dθ <∞.

We compute by using Fubini’s theorem to swap integrals:∫ π

0
Eα(µθ)dθ =

∫ π

0

∫
R

∫
R

1
|x̂− ŷ|α

dµθ(x̂)dµθ(ŷ)dθ

=
∫ π

0

∫
E

∫
E

1
|pθ(x− y)|α

dµ(x)dµ(y)dθ

=
∫
K

∫
K

1
|x− y|α

∫ π

0

1
|pθ( x−y

|x−y| )|α
dθdµ(x)dµ(y)

Now note, that the inner integral is independent of x and y, as we project a unit vector
in every direction, regardless of the “starting direction” of x−y

|x−y| . Thus it is a constant C
depending only on α and we get∫ π

0
Eα(µθ)dθ = C

∫
K

∫
K

1
|x− y|α

dµ(x)dµ(y) = CEα(µ) <∞

Using Proposition 6.5(3) we get the second result.
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Now we can finally prove the Kakeya conjecture in the two dimensional case.

Theorem 6.7. Let B ⊆ R2 be a compact Besikovitch set. Then dimH(B) = 2.

Proof. Let I be an interval. We consider the set

SI = {(a, b) ⊆ R2|∀x ∈ I (x, b− ax) ∈ B}.

Let p : R2 → R be the projection onto the first coordinate. As B is a Besikovitch set, for
all a ∈ R there has to be an Interval I (without loss of generality with rational endpoints),
such that a is the first coordinate of an element of SI . So

⋃
I p(SI) = R, where the union is

over those Intervals with rational endpoints. As this is a countable union and the Hausdorff
dimension is countable stable, for all ε we get an Iε, such that dimH(p(SIε)) = 1 − ε, and,
because p is Lipschitz, dimH(SIε) > 1− ε. Therefore by the Marstrand projection theorem
(Theorem 6.6), we may conclude, that dimH(pθ(SIε) > 1− ε for almost all θ. Let qθ be the
projection in the direction of lines with slope t = tan θ onto the vertical axis. As the map,
that maps pθ(E) to qθ(E) is bi-Lipschitz, the two sets have the same Hausdorff dimension.
But the set qθ(SIε) is the same as {(b − at|(a, b) ∈ SIε}. So for almost all t we get that
dimH({b − at|(a, b) ∈ SIε}) > 1 − ε. From (a, b) ∈ SIε it follows that (t, b − at) ∈ B for all
t ∈ Iε. So we have

{b− at|(a, b) ∈ SIε} ⊆ {b− at|(t, b− at) ∈ B}

and therefore
dimH({b− at|(t, b− at) ∈ B}) > 1− ε

for almost all t. These are just slices of the set B and the Marstrand slicing theorem
(Theorem 6.2) gives us that dimH > 1 + 1− ε for all ε and therefore dimH(B) ≥ 2. As it is
a subset of R2 we may conclude dimH(B) = 2.

6.2 Progress in higher Dimensions
At the moment, there seem to be two promising approaches, how to tackle the Kakeya conjec-
ture in higher dimensions. One is from a geometric point of view and uses δ-neighbourhoods
of unit line segments, so called δ-tubes and the goal is to bound the area of their intersec-
tions. This leads to the so called bush-argument, published by Jean Bourgain, which proves
that the dimension of a n-dimensional Besikovitch set is at least (n+1)

2 . The other approach
is more abstract, translates the problem to arithmetic and uses combinatorial arguments. It
also yields the (n+1)

2 bound.

Good lower bounds for the Hausdorff dimension of Besikovitch sets found up until now, are
5
2 for n = 3 and 3 for n = 4 by Thomas Wolff as well as (2−

√
2)(n− 4) + 3 by Nets Katz

and Terence Tao, while bounds on the Minkowski dimension are slightly bigger. For more
information, see the article of Katz and Tao [KT00] and the homepage of Izabella Laba
[Lab02]. They both provide a good overview.
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