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Semistandard Young tableaux

Definition
Let A be a partition. A semistandard Young tableau (SSYT) T of shape
A is a filling of the cells of A with positive integers such that

o the rows are weakly increasing from left to right,

@ the columns are strictly increasing from bottom to top (French
notation).

Denote by SSYT(A) the set of SSYTs of shape A.

N
w
IS
N

Example.
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Semistandard Young tableaux

Definition
Let A be a partition. A semistandard Young tableau (SSYT) T of shape
A is a filling of the cells of A with positive integers such that

o the rows are weakly increasing from left to right,

@ the columns are strictly increasing from bottom to top (French
notation).

Denote by SSYT(A) the set of SSYTs of shape A.

415
Example. 213|4|4 (2,2,3,3,1)
1[1/2]3]3]

The content of an SSYT T is (u1, 2, . . .) where y; is the number of
entries i in T; denote by x” = [, x/"".
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Schur polynomials

Definition
Let A be a partition. The Schur polynomial sy(x) is defined as the sum
>
TESSYT(N)

Theorem (Cauchy identity)

For two sequences of indeterminates x = (x1, X, ...) and'y = (y1,¥2,...),
we have

]'._,[ 1 —1x,-yj - ZS)‘(X)SA(Y)-

A
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Schur polynomials

Definition
Let A be a partition. The Schur polynomial sy(x) is defined as the sum
>
TESSYT(N)

Theorem (Cauchy identity)

For two sequences of indeterminates x = (x1, X, ...) and'y = (y1,¥2,...),
we have

Z H xiy;) 4 = Hl—xyj _Zs)\(x sa(y

A=(ajj) iJ A

In this talk we are interested in the squarefree part, i.e., the coefficient of
X1 XnY1 " Yn-
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Young's lattice

For two partitions A, u we write
o 1 C X if the Young diagram of p is contained in that of A,
@ <A if Acovers p, ie., p CXand |A| = |u|+ 1.

We define the up operator U and down operator D on the Q-vector
space generated by all partitions as

Ux=> v, DA=) p.

v>A TN

Example. U(E) :Hﬂjjt%, D(E) =H5.
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Young's lattice

For two partitions A, u we write
o 1 C X if the Young diagram of p is contained in that of A,
@ <A if Acovers p, ie., p CXand |A| = |u|+ 1.

We define the up operator U and down operator D on the Q-vector
space generated by all partitions as

Ux=> v, DA=) p.

v>A TN

Example. U(EH) :BHTLE} D(Hﬂ) =H5.

Theorem

The two operator satisfy the commutation relation

DU — UD = I.
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Bijective proof of the commutation relation

The commutation relation DU = UD + | is equivalent to

Florian Aigner

{v > A} = {p <A} U{A},
{v > A p} = Hr <A p}l,

row
F)\

VA,
YA # p.

col
F)\
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Local growth rules

Let Fy : {p < A} U{A} — {v > A} is a bijection; in our case Fy = F°".
The local growth rules are an assignment of a partition to the bottom
right corner of a square according to one of the four cases

A A pNA P
for A\ #£ p
A A A pUA
A A H A
X for p < A
A FA(A) A Fa(1)
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Local growth rules

Let Fy : {p < A} U{A} — {v > A} is a bijection; in our case Fy = F°".
The local growth rules are an assignment of a partition to the bottom
right corner of a square according to one of the four cases

/

_

A
[
A

« l\ -
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pﬂ/\LP

D D for X #p

A——pUA
UP

I
D]
A

v

_—

A
]Dforp<)\

T’FA(M)
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local

growth rules.

Florian Aigner
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

— 00— 0
]

0
|

0
X
0

|

0

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and

associate permutations to the vertices recursively following the local

growth rules.

— 00— 0 — 0
CoXx |

I @ I I
X

I (Z) I I

1]
|

1]
|

1]
X
1]
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

b — 0 — 0
X
P — 0 —O—
b

P 0 —
X

0 O
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

— 0 — 0 — 0
X |
— 9 —0O—0O
X

0
|
O
|
O
X |

0
|
0
|
0
|

— O

0
|
0
|
0
|
0

Florian Aigner qRSt: Robinson-Schensted for Macdonald polynomials



Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

X
X

0 —
|
0 —
|
0 —
X |

P — 0 — 0
o |
P — 0 — O
. |
o0 — mm
X |
p — O
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

X

0 — 0 — 0 — 0
o x
o — 0 —0— O
L x
»— 0 — 0O —[O
Cx L
o — 0O —H
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local
growth rules.

— 0
|
— 0
X
—
X

o — 0 —
o
0 — 0 —
|
0 — 0 —
X
o — o0 —H—H

D]45454®
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Fomin growth diagram

We consider a permutation matrix as an n x n grid of squares and
associate permutations to the vertices recursively following the local

growth rules.

0 —
|
p—
|
0 —
|
0 —
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X

o
|
o
|
o
|
]

[D4D4D4®

— 0
|
— 0
X
—

|
—t

P

The ith partition along the right
(bottom) boundary give the shape
of the subtableau of P (Q) with

entries at most /.

In our example we obtain

2

20

1

(P,Q)=<f

;)
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Macdonald Polynomials

We define Macdonald polynomials by

Prxia.t)= Y. or(gtx,

TESSYT(A)

QA(X; q, t) = Z @T(‘], t)xTv

TeSSYT(N)
where 1), ¢ are certain rational functions in g, t.

Theorem (Macdonald)

Let x = (x1,X2,...) and 'y = (y1, y2...) be two sets of variables. Then

HH L= bayat = 3P 0. 06 )

1—x
ij>1k=0 ’qu

Again we are interested in the squarefree part, i.e., the coefficient of
Xl"'Xn)/l"'}/n-
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Macdonald Polynomials

We define Macdonald polynomials by

Pxa,t)= > vr(gox,

TESSYT(A)

Axat)= > er(gx,

TESSYT(N)
where 1), ¢ are certain rational functions in g, t.

Theorem (Macdonald)

Let x = (x1,X2,...) andy = (y1, y2...) be two sets of variables. Then

ai,j—

Z H(lej)a,, H W Z'D}\ X, q, )Q)\(y q, )

A=(aj ;) i,j=>1

Again we are interested in the squarefree part, i.e., the coefficient of
X1 X1 Yn-
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The coefficient of x;xy1y» of the Cauchy identity

Florian

weight of A A (P,Q) vr(q, t)eal(q, t)
1-t2 (10 (1-t)°(1-¢°)
i (1) 222 g
(1-t? (0 1 1-9a-¢)
(1—q)? (1 0) ’ (1-q)(1—qt)
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The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined “recursively”:
Z/JT(‘% t) = HwT“)/T(i—l)(qa t)a QDT(q7 t) = H QPT(")/T“_U(q? t)a

where T() is the shape of the subtableau of an SSYT T of entries at
most i. The 1, ¢ are again rational functions in g, t.

We define the (g, t)-up and down operator as

Uq,t)\ = Z 1/111/)\((7’ t)V, Dq,t>\ = Z <P>\/u(C77 t)M
v>A H<A
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The Ups and Downs of Macdonald polynomials

The Macdonald weights are defined “recursively”:
¥r(g,t) = mem-n(q, t), er(q,t) = H<p7-(i)/7-<f—1)(q, t),
where T() is the shape of the subtableau of an SSYT T of entries at
most i. The 1, ¢ are again rational functions in g, t.
We define the (g, t)-up and down operator as
Ug A = Z '(/}u/)\(qa t)u, Dg,tA = Z (PA/u(qv t)ﬂ-

v>A n<<X
Theorem

The (q, t)-up and down operator satisfy the commutation relation

1-g
Dq,tUq,t — Uq,tDg,e = thl'
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An equivalent formulation

The commutation relation

1—
Dq,tU gt = Uq,th,t + 9

—
1—t"’

is equivalent to the two equations

Z %//)\ q, )Spu/p q,t Z 30)\/;1, q, )wp/u(q7 )7

v>Ap LA, p
1-¢q
D W@, t)euaa; t) = 1+ > enul@ s t),
v>A [P
for all A # p.
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Probabilistic bijections

Let X, Y be two sets equipped with weight functions w : X — k,
wW:Y — k, where k is a field. A probabilistic bijection from (X, w) to
(Y,w) is a pair of maps P, P : X X Y — k such that

ZP(Xv)/):l Vx € X,
yeyYy
> Plxy)=1 Vyevy,
xeX
w(X)P(x,y) = @(y)P(x,y) Vx e X,y €Y.

We usually write P(x — y) := P(x,y) and P(x < y) := P(x, y).
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Probabilistic bijections

Florian Aigner

Let X, Y be two sets equipped with weight functions w : X — k,
wW:Y — k, where k is a field. A probabilistic bijection from (X, w) to
(Y,w) is a pair of maps P, P : X X Y — k such that

ZP(X—U’):l Vx € X,
yey
Zf(xey)zl Vy ey,
xeX
W(X)P(x = y) =w(y)P(x + y) Vxe X,yeY.

We usually write P(x — y) := P(x,y) and P(x < y) := P(x, y).

qRSt: Robinson-Schensted for Macdonald polynomials



Probabilistic bijections

Let X, Y be two sets equipped with weight functions w : X — k,
wW:Y — k, where k is a field. A probabilistic bijection from (X, w) to
(Y,w) is a pair of maps P, P : X X Y — k such that

ZP(X—H’):l Vx € X,
yey
Zf(xey)zl Vy ey,
xeX
W(X)P(x = y) =w(y)P(x + y) Vxe X,yeY.

We usually write P(x — y) := P(x,y) and P(x < y) := P(x, y).
Lemma
If P, P is a probabilistic bijection from (X,w) to (Y,w), then

Y owl) =) wly).

xeX yeyYy
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The weighted sets

We regard the sets { < A} U {A} and {v > A} with weights

(=1 B2

w = _ .
H@A/u(qa t)%/“(q, t) otherwise,

_ 1—gq

w(l/) = it’g[}l,/A(q, t)(p,//k((% t).

Hence, we need to show Z w(p) = Zw(u).
L or p=A v>A

We prove this by finding a probabilistic bijection Py, P, from
({p< AU {A}w) to ({v > A}, @).
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A few more notations

Denote by
@ (hi,..., hy) the horizontal segment lengths on the boundary of A,
@ (v1,...,Vvy) the vertical segment lengths on the boundary of A.
hy
Let
xXi:=h +...4+ h;,
Iz
h3 Yi=wv1+...+v.
V3 hy Define for 0 < r,s < d
o \(*%) by adding a box to A in
Vo row ys + 1,
hy o A(=7) by deleting a box of X in
[ [ |w row ;.
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The probabilities

Write p, s := Px (A7) — A(+9)) and P,s =P (AP« AF9)). Then

d d
H(qu trs — g¥i—1 t}/i) (qu_ltys+1 —gti! t}/i)
i=1 — i=1
Po,s = d ) Pos = d ’
[T(g=tys — gxity) [T(gs—1ty=t1 — gxityi)
2 2
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The probabilities

Write p, s := P (A = A+9)) and B, , := Py (A = AF9)). Then

a

(qu tys — qX, 1 ty,)

d
(qu—l prstl g1 ty,-)

_i=1 — _i=1
pO,S - d ) pO’s - d b
[T(g%tys — gxityi) I1 (qxs—ltys+1 — gty
i=0 i=0
i#s i#s
and for r > 0,
H g 1414y —1 — gty f[ getys — @it
gstys — giityi xr—1+1lgyr—1 _ gXi—1¢yi’
t gt Pl 1Tt g1t
I;és i;ér
B d gt — gty qu—l sl g1t
Prs= g1ty tl — gxityi H Q1Y — gLty
0
;'is l;ér

Florian Aigner
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Our main Theorem

Theorem (A.-Frieden)

The pair Py, P are a probabilistic bijection from ({u < A} U {\},w) to
({v>A}0).
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Our main Theorem

Theorem (A.-Frieden)

The pair Py, P are a probabilistic bijection from ({u < A} U {\},w) to
{v > A}, w).

The probabilities Py, P are defined such that
w (A(*”) Py (A(*” - /\(+S>) - (AHS)) Py (A(*” “ /\(+S)) ,
holds for all 0 < r,s < d. Therefore, it suffices to prove
d
3Py ()\(") = A(+s)) —1 v0<r<d,
s=0
d

P, (AH) “ WS)) —1 Y0<s<d.
r=0
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About the proof

We present the proof for Zio Pr(A = A+%)) = 1. By definition we have

=

d dJ (qu tYs — qu—l t}/i)
i=1
S P =3
s=0 s=0 H (qxs tys — g% t}’r‘)
7
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About the proof

We present the proof for Z‘:ZO Pr(A = A+%)) = 1. By definition we have

=

d dJ (qu tYs — qu—lt)/i)
i=1
S P =3
s=0 s=0 H (qxs tys — g% t}’r‘)
7

Let us write a; = g¥t¥ and b; = ¢*—'t” in the above expression.
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About the proof

We present the proof for Z‘:ZO Pr(A = A+%)) = 1. By definition we have

d

d d [l(as — bi)
YA At ="

s=0 s=0 H(as — a,')
pore

Let us write a; = g¥t¥ and b; = ¢*—'t” in the above expression.
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About the proof

We present the proof for Z‘:ZO Pr(A = A+%)) = 1. By definition we have

d

d d [l(as — bi)
YA At ="

s=0 s=0 H(as — a,')
pore

Let us write a; = g¥t¥ and b; = ¢*—'t” in the above expression.

The right hand side is actually the leading coefficient of the polynomial

(in x)
)| ()| 7

s=0 i=1 i=0
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About the proof

We present the proof for Z‘:ZO Pr(A — A+%)) = 1. By definition we have

d
d d [l(as — bi)
YA At ="
s=0 s=0 H(as — a,')
22

Let us write a; = g¥t¥ and b; = ¢*—'t” in the above expression.

The right hand side is actually the leading coefficient of the polynomial

(in x)
> Il 601 =5 =TI -0,

s=0 i=1 i=0 i=1

and hence equal to 1.
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The probabilistic local growth rules

Let A # p be partitions and v > A > . We assign a partition to the
bottom right corner of a square according to one of the four cases and
their corresponding probabilities.

A A pOA P A A H A
X

A A A pUA A v A v

1 1 Pr(A = v) Pl — v)

For the gRSt algorithm we use the probabilistic local growth rules instead
of the deterministic ones.

Theorem (A.-Frieden)

The gRSt algorithm allows a probabilistic bijection proof of the
square-free part of the Cauchy identity.
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Inverting g and t

The Macdonald polynomials are invariant under inverting g and t,
Pa(x;g Lt ) = Pa(xig,1),  @Q(xg hth) = Qa(xq,1).
The weights w,@ are also invariant, the probabilities Py, P however not!

Define new probabilities

/
Ps = PA\ (1)

Theorem (A.-Frieden)

The maps P, PKOI are probabilistic bijections. The induced RS
algorithm spec:alises for q,t — O to the column insertion version of
Robinson-Schensted.
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Specialisations of gRSt

gRSt

Macdonald polynomials
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Specialisations of gRSt

gRSt

q—+5///

t-RS
(row insertion)

Macdonald polynomials
Hall-Littlewood polynomials
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Specialisations of gRSt

gRSt

o

t-RS a-RS

(row insertion) (row insertion)
Borodin-Petrov’ 16

Matveev-Petrov '17

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials

Florian Aigner
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Specialisations of gRSt

gRSt
q e% . / \t—> 00, q— gt
+RS g-RS g-RS
(row insertion) (row insertion) (column insertion)
Borodin-Petrov’ 16 O’Connell-Pei'13
Matveev-Petrov '17 Pei'14

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
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Specialisations of gRSt

gRSt
q%% t/ \t_>ooq—>ql N‘%oo,t%tl
+RS g-RS g-RS t-RS
(row insertion) (row insertion) (column insertion) (column insertion)
Borodin-Petrov’ 16 O’Connell-Pei'13 Bufetov-Petrov'15
Matveev-Petrov '17 Pei'14 Bufetov-Matveev'18

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
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Specialisations of gRSt

gRSt
q%% t/ \t_>ooq—>ql N‘%oo,t%tl
+RS g-RS g-RS t-RS
(row insertion) (row insertion) (column insertion) (column insertion)
Borodin-Petrov’ 16 O’Connell-Pei'13 Bufetov-Petrov'15
Matveev-Petrov '17 Pei'14 Bufetov-Matveev'18

VA

(row insertion)

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials
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Specialisations of gRSt

gRSt
q%% t/ \t_>ooq—>ql N‘%oo,t%tl

+RS g-RS g-RS t-RS
(row insertion) (row insertion) (column insertion) (column insertion)
Borodin-Petrov’ 16 O’Connell-Pei’'13 Bufetov-Petrov'15
Matveev-Petrov '17 Pei'14 Bufetov-Matveev'18

\ / qg—0 t—0

(row insertion) RS (column insertion)

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials
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Specialisations of gRSt

gRSt
q%% / t— 00,q— g ! Nlaoo,t—ml

RS g-RS t-RS
(row insertion) (row msertlon (column insertion) (column insertion)
Borodin-Petrov’ 16 O’Connell-Pei’'13 Bufetov-Petrov'15
Matveev-Petrov '17 Pei'14 Bufetov-Matveev'18

g-Plancherel measure
(for o = id) g—0 50
(row insertion) RS (column insertion)

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials
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Specialisations of gRSt

t-RS
(row insertion)

Florian Aigner

gRSt

q—+§///
g-RS
(row insertion)

Borodin-Petrov'16
Matveev-Petrov '17

qg—0

t — 00,9 — q71
g-RS

(column insertion)

O’Connell-Pei'13

q=

Pei'14
g-Plancherel measure
(for o = id) g—0
g — oo
q—1

e

0
RS (row insertion)

Macdonald polynomials
Hall-Littlewood polynomials
q Whittaker polynomials
Schur polynomials

Plancherel measure
(for all o)

qRSt: Robinson-Schensted for Macdonald polynomials

q—>oo,t’—>t’71

t-RS
(column insertion)
Bufetov-Petrov'15
Bufetov-Matveev'18

RS (column insertion)



exterior (g, t)-Hook walks |

@ Start with a cell ¢ = (x,y) “far away”, i.e., x > A1,y > A
@ Choose ¢’ € army(c) U leg,(¢) with

1) (1 — g . .
qa(c)—l% if ¢/ = (x—1i,y) € army(c)
P(c = c') =
. 11—t
-1 if ¢/ = (x,y —Jj) € leg,(c).

1— g2

© Repeat until we reach an exterior corner of \.

leg,(c)

Florian Aigner qRSt: Robinson-Sct d for Macdonald pol:




exterior (g, t)-Hook walks |

@ Start with a cell ¢ = (x,y) “far away”, i.e., x > A1,y > A
@ Choose ¢’ € army(c) U leg,(¢) with

1) (1 — g . .
qa(c)—l% if ¢/ = (x—1i,y) € army(c)
P(c = c') =
. 11—t
-1 if ¢/ = (x,y —Jj) € leg,(c).

1— g2

© Repeat until we reach an exterior corner of \.

leg,(c)
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exterior (g, t)-Hook walks |

@ Start with a cell ¢ = (x,y) “far away”, i.e., x > A1,y > A
@ Choose ¢’ € army(c) U leg,(¢) with

191~ q)

ac)—i =\~ )
q 1— q?O 10

if ¢/ =(x—1i,y) €army(c)
P(c = c') =
1-t

Jj-1_ = -
e

if ¢ =(x,y —J) € legy(c).

© Repeat until we reach an exterior corner of \.
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exterior (g, t)-Hook walks |

@ Start with a cell ¢ = (x,y) “far away”, i.e., x > A1,y > A
@ Choose ¢’ € army(c) U leg,(¢) with

191~ q)

ac)—i =\~ )
q 1— q?O 10

if ¢/ =(x—1i,y) €army(c)
P(c = c') =
1-t

Jj-1_ = -
e

if ¢ =(x,y —J) € legy(c).

© Repeat until we reach an exterior corner of \.
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exterior (g, t)-Hook walks |
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exterior (q, t)-Hook walks I

These walks are similar to the (g, t)-walks of Garsia and Haiman which
generalise Greene—Nijenhuis—Wilf hook walks.

Let P(v|c) be the probability that the exterior (g, t)-Hook walk ends at
the exterior corner corresponding to v > A.

Theorem (A.-Frieden)
Let c = (x,y) with x > A1,y > )|, then

P(v|c) = Px(A — v).
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