Constraints on Spin-Spin Velocity-Dependent Interactions

Wei Ji,1,2,3 Weipeng Li,2 Pavel Fadeev,1,3 Filip Ficek,4 Jianan Qin,1,5 Kai Wei,6,7,8,* Yong-Chun Liu,2,9,10 and Dmitry Budker1,3,10

1Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
2State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
3Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
4Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
5Key Laboratory of Geophysical Exploration Equipment, Ministry of Education of China, Jilin University, Changchun 130012, China
6School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
7Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
8Hangzhou Extremely Weak Magnetic Field Major Science and Technology Infrastructure Research Institute, Hangzhou 310051, China
9Frontier Science Center for Quantum Information, Beijing 100084, China
10Department of Physics, University of California, Berkeley, California 94720-7300, USA

(Received 21 November 2022; revised 14 February 2023; accepted 23 February 2023; published 28 March 2023)

The existence of exotic spin-dependent forces may shine light on new physics beyond the standard model. We utilize two iron shielded SmCo magnets (ISSCs) that have high net electron spin and small magnetic leakage [36]. The sensor is a pair of Rb atoms and operate in the spin-exchange relaxation-free mode [37,38]. The experimental setup is designed to be sensitive to the exotic force, while common-mode noise is effectively subtracted. We set direct limit on proton-electron interaction in the force range from 1 cm to 1 km. Our experiment represents more than 10 orders of magnitude improvement than previous works.

DOI: 10.1103/PhysRevLett.130.133202

The nature of dark matter is one of the most profound mysteries in modern physics. Many new light bosons introduced by theories beyond the standard model are proposed to be dark matter candidates, such as spin-0 bosons including axions and axionlike particles [1–3], spin-1 bosons including dark photons [4,5], and Z' bosons [6,7]. Furthermore, the new bosons may mediate new types of long-range fundamental forces (independent of whether they are constituents of dark matter or not) [8–11].

If we consider the spin, relative position, and velocity of two fermions, the exotic interaction between them can be classified to 16 terms [9,10], and then generally classified into static terms and velocity-dependent terms. A conventional velocity-dependent force in classical physics is the Lorentz force of a moving charged particle.

Many experimental methods have been used to search for exotic forces [12], including experiments with torsional resonators [13–16], nuclear magnetic resonance [17–20], magnetometers based on hot atoms and nitrogen-vacancy center in diamond [21–27], and other high-sensitivity technologies [28–32]. Most of these efforts focus on static interactions, while the velocity-dependent interactions have also been gaining attention in recent years [23–25,27,33,34].

In this experiment, we focus on one term of spin-spin velocity-dependent interaction (SSVDI) proposed by Ref. [9]:

\[
V_8 = \frac{f_8^{12}}{4\pi c} \left(\hat{\sigma}_1 \cdot \mathbf{r} \right) \left(\hat{\sigma}_2 \cdot \mathbf{v} \right) \frac{e^{-\gamma/\lambda}}{r},
\]

where \(f_8^{12}\) is a dimensionless coupling coefficient (the subscript 8 refers to the term \(V_8\) from Ref. [9] and the superscripts 1,2 denote the fermion 1 and fermion 2), \(\hat{\sigma}_1, \hat{\sigma}_2\) are the respective Pauli spin-matrix vectors of the two fermions, \(r\) and \(\mathbf{v}\) are the relative position and velocity between two fermions, \(\lambda = 1/m_0\) is the force range, and \(m_0\) is the mass of the mediator boson. If the mediator of the SSVDI is a spin-1 boson such as \(Z'\), which is a dark matter candidate and may resolve other discrepancies such as that in the anomalous magnetic moment of the muon [6,35], the coupling coefficient can be rewritten as \(f_8^{12} = -g_A g_Z\lambda / 2\) [9,10]. To search for this force, a spin polarized test object is required as the spin source, and an ultrasensitive magnetometer is required as the sensor.

In this experiment, the spin sources are two iron shielded SmCo magnets (ISSSCs) that have high net electron spin and small magnetic leakage [36]. The sensor is a pair of optically pumped magnetometers (OPMs), in which atomic spins are optically polarized and read out, and the magnetic field is determined via its effect on the spins, which, in the simplest case, is Larmor precession. The OPMs use Rb atoms and operate in the spin-exchange relaxation-free mode [37,38]. The experimental setup is designed to be sensitive to the exotic force, while common-mode noise is
reduced. Our experiment sets new limits on exotic SSVDI for electron-proton coupling.

Figure 1 shows a schematic of the experimental setup. Each of the two spin sources ISSC\(_{1,2}\) contains a 40-mm-diameter, 40-mm-long cylindrical SmCo\(_3\) magnet enclosed in three layers of pure iron (15, 5, 5 mm thickness from inside to outside with 5 mm gaps). The magnetization of the SmCo\(_3\) magnets is about 1 T. The magnetic field of the magnet is shielded by the iron layers, and the magnetic leakage outside the iron layers is smaller than 10 \(\mu\)T. However, the net spin of the ISSCs is not canceled, which is mostly due to the fact that the orbital magnetic moment and spin magnetic moments of the 4\(f\) rare earth metal (Sm) and 3\(d\) metals (Co and Fe) are differently oriented, and thus the total magnetic moments are canceled, but the net orbital magnetic moment and spin magnetic moment are not [13,36]. The net electron spin for each ISSC is 1.75(21) \(\times 10^{-24}\) [36]. The ISSCs are connected with titanium-alloy supports and are driven with a motor to rotate clockwise (CW) and counterclockwise (CCW). The motor frequency is controlled with a direct current (dc) power supply.

The OPMs are QuSpin vector-zero-field magnetometers (QZFM Gen-2) [39] placed in the center of a five-layer \(\mu\)-metal magnetic shield. The arrows along the \(\hat{x}\) axis demonstrate the direction of the circularly polarized laser beam in the position of the \(^{87}\text{Rb}\) vapor cell. The \(\hat{x}\) axis is the OPM’s sensitive axis. Because the orientation of two OPMs along \(\hat{x}\) is antiparallel, their responses to the magnetic field have opposite signs. If there is a magnetic field \(B_0\) applied, the responses of the OPMs are \(S_1 = B_0 + N_C + N_1\) and \(S_2 = -B_0 + N_C + N_2\), respectively, where \(N_C\) is the common-mode noise and \(N_1\) and \(N_2\) are other noises. Subtracting the readings of the two sensors can diminish the common noise and yields a signal of \(S_{sub} = (S_1 - S_2)/2 = B_0 + (N_1 - N_2)/2\).

To test the validity of the subtraction procedure, an 8 Hz and 1.5 pT uniform magnetic field is applied along \(\hat{x}\) with a set of Helmholtz coils. The spectrum of the OPM signals and the subtraction result are shown in Fig. 2(a). By taking the difference, the uniform magnetic field is unaffected, the common-mode (for example, electrical or gradient) noise is reduced by as high as a factor of 5, and the 8 Hz target signal is successfully extracted. The noise level around 8 Hz is about 13 \(\text{fT}/\sqrt{\text{Hz}}\).

The SSVDIs will manifest as pseudomagnetic fields that could be sensed by the Rb atoms like the Zeeman effect. The potential can be expressed as \(V_{p;n;p} + V_{p;n;e} + V_{n;n;e} = -\mu \cdot B\), where \(\mu\) is the magnetic moment of the Rb atom, \(B\) is the pseudomagnetic field from the exotic interaction, and \(\zeta_{n,p,e}\) are the neutron, proton, and electron’s fraction of spin polarization in \(^{87}\text{Rb}\) atoms, which could be obtained by the Russell-Saunders \(LS\) coupling and the Schmidt model of nuclear physics.

In this experiment, we search for the coupling between the proton, neutron, and electron spins in the Rb atoms and the electron spins in ISSCs. The pseudomagnetic field sensed by the OPM can be obtained by integrating the exotic interaction from the electron spins over the ISSCs:

\[
B^{p,e,n} = \frac{\hbar}{4\pi\mu c} \iiint \rho(r)(\hat{\sigma}_2 \cdot \nu) \frac{v}{r} e^{-r/\lambda} dr, \quad (2)
\]

where \(B^{p,n,e}\) are the fractions of \(B\) that couple to proton, neutron, and electron, respectively, \(\nu(r) = \omega \times r\) and \(\rho(r)\)
are the velocity and spin density at location \(r \), and \(\omega \) is the angular velocity of the ISSCs. The proton and electron fractions of polarization in \(^8\text{Rb}\) are \(\xi^p = 0.29 \) and \(\xi^e = 0.13 \), respectively, and neutron polarization \(\xi^n \) is assumed to be zero under the basic nuclear shell model. The calculation of the fraction of spin polarization is explained in the Supplemental Material [40], which includes Refs. [41,42].

The benchmark parameter

\[
\text{TABLE I. Experimental parameters and the error budget of } f_8^{\text{p}}.
\]

The position of ISSCs are measured with a proce of encoder pixel. The optical encoder is placed on the spin source position. The signals are monitored with a photo-electronic encoder and the OPMs are taken simultaneously to monitor the spin source positions. The signals are then cut to one-period-long segments.

The two OPMs are driven by a dc motor. The positions of the spin sources are monitored with a photodetector placed on the rotation axle. The signals of the encoder and the OPMs are taken simultaneously and recorded with a data-acquisition device. The motor is tuned to rotate CCW and CW alternatively for every 2 h. The dc motor works in a good stability with frequency of 4.09(1) and 4.11(1) Hz for CW and CCW rotations.

The two OPMs’ signals are subtracted and transformed to frequency domain by fast Fourier transformations (FFT). The 50 Hz power line interference and its 100 and 200 Hz harmonics are removed in the frequency domain. The data were then transformed back to the time domain with inverse FFT.

The signals are then cut to one-period-long segments based on the encoder signal of the spin source rotation. The dc components in each period are removed. The data are noted as \(S_{i,j}^{\text{p}}(t_i) \), where \(i \) represents the \(i \)-th period and \(t_i \) is the time of the \(j \)-th point in this period.

The coupling coefficient \(f_8^{\text{p}} \) can be obtained by a similarity comparison method between the experimental data and simulation results:

\[
f_8^{\text{p}} = k_i \sqrt{\frac{\sum_j |S_i^{\text{p}}(t_j)|^2}{\sum_j |S_i^{\text{sim}}(t_j)|^2}}.
\]

where \(k_i \) is the similarity score to weigh the similarity between \(S_i^{\text{p}} \) and \(S_i^{\text{sim}}(t) \) [43], which is defined as

\[
k_i = \frac{\sum_j S_i^{\text{sim}}(t_j) \cdot S_i^{\text{p}}(t_j)}{\sqrt{\sum_j |S_i^{\text{sim}}(t_j)|^2} \cdot \sqrt{\sum_j |S_i^{\text{p}}(t_j)|^2}}.
\]

The expectation values and standard error for the CW and CCW rotation are \(\langle f_8^{\text{p}} \rangle^+ \) and \(\langle f_8^{\text{p}} \rangle^- \) respectively, and the final coupling coefficient can be obtained by

\[
\langle f_8^{\text{p}} \rangle = \frac{\langle f_8^{\text{p}} \rangle^+ + \langle f_8^{\text{p}} \rangle^-}{2} - \frac{\langle f_8^{\text{p}} \rangle^+ - \langle f_8^{\text{p}} \rangle^-}{2}.
\]

Some systematic bias could be removed by averaging over CW and CCW. The distributions of \(f_8^{\text{p}} \) are shown in Fig. 3.

We first choose a force range \(\lambda = 20 \) m to demonstrate the sensitivity. The parameters of the experiment and their

![FIG. 3. Statistical results of the \(f_8^{\text{p}} \). Each data point represents an average of about one 2.7-h-long dataset. The distribution of \(f_8^{\text{p}} \) for one dataset is shown in the inset. The result is well fitted with a Gaussian distribution (red line) with \(\chi^2 = 1.18 \).](133202-3)
New constraints on the be
a bound on the SSVDI of hydrogen-spectrum analysis used in Ref. [44], we obtained lines) and the literature is shown in Fig. 4. With the same procedure, and the final limits are shown in Fig. 4. The ferromagnetic shielding can suppress the effect of pseudomagnetic field for the electron-electron coupling because the electron spin in the shielding is also affected by the exotic field [47]. We thus do not consider the electron-electron term in this Letter. Results on the couplings between other fermions, such as the coupling between electron-electron [22, 24, 30] neutron-proton [48], and electron-antiproton [49] are not plotted in Fig. 4.

A comparison between our results (black and dashed red lines) and the literature is shown in Fig. 4. With the same hydrogen-spectrum analysis used in Ref. [44], we obtained a bound on the SSVDI of $|f^{ep}_{8}| < 2.0 \times 10^{-11}$ for the range larger than 1 cm (the green line “Fadeev 2022 e-p” in Fig. 4). The ferromagnetic shielding can suppress the effect of pseudomagnetic field for the electron-electron coupling because the electron spin in the shielding is also affected by the exotic field [47]. We thus do not consider the electron-electron term in this Letter. Results on the couplings between other fermions, such as the coupling between electron-electron [22, 24, 30] neutron-proton [48], and electron-antiproton [49] are not plotted in Fig. 4.

The major advance of our experiment is that the ISSC spin sources have much larger numbers of spins compared to those in precision-spectroscopy experiments yielding data for the analyses in Refs. [30, 49] and spin-exchange approaches [48], which are most sensitive to forces with ranges on the atomic to microscopic scale. The other advantage is that the OPMs typically have energy resolution on the order of 10^{-18} eV [41], significantly better than for the spectroscopy used in Refs. [30, 49]. On the other hand, spectroscopy experiments have an advantage over macroscopic once in the short range, because of the exponential decay of the exotic force. Our search covers the range of parameters inaccessible for the geoelectron experiment [24]. Using the same method and data, we also set limits for the electron-proton coupling on the $V_{6+7}, V_{15}, \text{and } V_{16}$ terms of SSVDI [9, 10]. The results are shown in the Supplemental Material [40], which includes Refs. [9, 24, 45, 50].

A major concern in this experiment was magnetic leakage from the ISSCs. With the iron shielding, at a distance of 10 cm away from the ISSC’s surface, its residual magnetic field was measured to be less than 10 µT. The shielding factors for the magnetic shielding of both the ISSCs and OPMs were measured to be greater than 10^6. Considering all the decay and shielding factors, we conservatively expect the magnetic leakage from the ISSCs to the position of the OPMs to be smaller than 0.1 aT, which was insignificant with regards to the error budget.

The stability of the OPM is monitored throughout the experiment. The dc drift of the OPM is less than 2 pT within 2 h. A servo motor has a better frequency precision; however, commercial servo motor’s control systems have electromagnetic coupling with the magnetometer [22]. A dc motor is chosen to diminish this coupling. The experiment can further be improved if a larger size ISSC could be used. The vapor cell can also be replaced with a magnetometer that uses a levitated ferromagnetic sphere and has orders of magnitude better potential magnetic sensitivity [51].

In summary, we utilized a pair of OPMs that can reduce the common noise and have ultrahigh sensitivity to search for exotic spin-dependent physics. Together with the high electron spin density iron shielded SmCo₅ spin source, the new experiment sets new limits on SSVDI, with more than 10 orders of magnitude improvement for the electron-proton coupling.

We thank Dr. Derek F. Jackson Kimball and Dr. Changbo Fu for valuable discussions. This work is supported by Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), the National Natural Science Foundation of China (NSFC) (Grants No. 12275145, No. 92050110, No. 91736106, No. 11674390, and No. 91836302), and the National Key R&D Program of China (Grant No. 2018YFA0306504), the DFG Project No. 390831469: EXC 2118 (PRISMA+ Cluster of Excellence), by the German Federal Ministry of Education and Research (BMBF) within the Quantumenteknologien program (Grant No. 13N15064),
by the QuantERA project LEMAQUME (DFG Project No. 500314265), and by COST Action COSMIC WISpErs CA21106, supported by COST (European Cooperation in Science and Technology).

