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Abstract
We consider the quasinormal spectrum of scalar and axial perturbations of the
Reissner–Nordström–AdS black hole as the horizon approaches extremal-
ity. By considering a foliation of the black hole by spacelike surfaces which
intersect the future horizon we implement numerical methods which are well
behaved up to and including the extremal limit and which admit initial data
which is nontrivial at the horizon. As extremality is approached we observe a
transition whereby the least damped mode ceases to be oscillatory in time, and
the late time signal changes qualitatively as a consequence.
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1. Introduction

Numerical [1, 2] and observational [3] evidence shows that a black hole spacetime will, in
response to a perturbation, produce radiation at (complex) frequencies which are character-
istic of the black hole. These frequencies are the quasinormal frequencies, and to each such
frequency is associated a quasinormal mode—a solution of a linear equation on the black hole
background, satisfying suitable boundary conditions at any horizons and (if relevant) at null
infinity [4–6].

In recent years, a satisfactory mathematical understanding of the quasinormal modes
of subextremal de Sitter black hole spacetimes has developed, starting with results for
Schwarzschild–de Sitter [7, 8], culminating in a general theory for de Sitter black holes [9]
including the full subextremal range of Kerr–de Sitter black holes [10, 11]. In the subextremal
anti-de Sitter setting, analogous results have been shown [12, 13]. For a thorough overview
see [14], and for an explicit worked example using this approach, see [15].

The majority of the works cited in the previous paragraph impose regularity at the future
horizon(s) in order to characterise the quasinormal modes, an approach which in the physics
literature goes back to Schmidt [16]. It can be shown that time-harmonic solutions to the linear-
ised equations which extend smoothly5 across the future horizons exist only for a discrete set
of complex frequencies, which can be identified with the quasinormal frequencies. Regularity
at the horizon plays the role of ‘in/outgoing’ boundary conditions in more traditional treat-
ments. This approach breaks down when the black hole horizon is extremal or the spacetime
is asymptotically flat. (For the purposes of our discussion, an asymptotically flat end may be
thought of as the extremal limit of a subextremal cosmological horizon, and when we refer to
a subextremal spacetime we implicitly assume that it has no asymptotically flat ends).

The behaviour of the quasinormal spectrum as a spacetime approaches extremality has been
the topic of significant interest in the physics literature [19–26]. In particular, going back at
least to Detweiler [27], two distinct behaviours have been observed for the quasinormal fre-
quencies as the surface gravity, κ approaches zero. Firstly, it appears that a generic feature of
near-extremal spacetimes is the existence of a sequence of ‘zero damped modes’ with damp-
ing rates approximately nκ, n= 1,2,3, . . . , which accumulate at some given frequency in the
limit κ→ 0. On the other hand, in certain regions of the complex frequency plane, the quas-
inormal frequencies are largely unaffected by the extremal limit—the frequencies settle down
to limiting values without accumulating (called ‘damped modes’).

In [28] the second author, together with Gajic, considered the Reissner–Nordström–de
Sitter black hole and showed that in the limit where both horizons become extremal there
is a sector in the complex plane in which, away from the origin, only the damped mode beha-
viour is observed. In [29] Joykutty established the existence of purely damped modes in sev-
eral situations involving a horizon approaching extremality, including that of the Reissner–
Nordström–de Sitter black hole with either horizon becoming extremal (see also [30, 31] for
a closely related result).

In this paper, we aim to study numerically the quasinormal spectrum of the Reissner–
Nordström–anti-de Sitter black hole in the approach to extremality. Our approach is motivated
by that taken in [28, 32], and involves working in coordinates which are regular at the horizon
(see [33] for an alternative approach). We choose a foliation by spacelike surfaces as this most
easily can be adapted to the case of multiple horizons, but a null (or mixed null/spacelike)

5 In fact analytically [17, 18].
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slicing could also be considered and should give similar results. The quasinormal spectrum
of the Reissner–Nordström–anti-de Sitter black hole has been studied in [34], but the para-
meter ranges considered in that paper do not include a neighbourhood of the extremal case.
We extend their results for scalar and axial perturbations all the way to extremality.

We work both in the time and frequency domains, enabling cross-checking of results
between independent computations. In the time domain our choice of slicing permits us to
simulate time evolution up to and including the horizon, without introducing any artificial
boundaries. In the frequency domain we use a modified Leaver method to determine quas-
inormal frequencies (this was demonstrated to correctly locate the quasinormal frequencies in
[32]). In both cases our methods are designed such that there is no degeneration as κ→ 0 and
so that we are able to consider initial data which is non-trivial at the future event horizon.

A particularly interesting feature we observe for both the conformal wave equation and
the perturbations is a threshold in the black hole parameter space at which the qualitative
behaviour of the fields changes. This happens when the surface gravity is sufficiently small
that the slowest decaying purely damped mode becomes the dominant late-time behaviour. On
one side of this threshold the late time behaviour is oscillatory, but closer to extremality the
dominant behaviour becomes pure exponential decay. In the extremal limit, this ever-slower
exponential decay becomes the polynomial decay expected for an extremal black hole [35].

After this brief introduction, in section 2 we briefly consider a scalar toy equation which
can be solved explicitly in terms of special functions in order to verify our numerical methods,
before moving on to study the conformal wave equation and the scalar and axial perturbations
for the Reissner–Nordström–anti-de Sitter black hole as the horizon approaches extremality
in section 3. Our results are summarised in section 4.

2. Explicitly solvable toy-model

We consider the following equation which models the behaviour of a wave exterior to an
extremal AdS black hole (throughout the whole article we use the geometrised unit system
c= G= 1):

−∂2t ψ+ ∂x
(
x2∂xψ

)
+ 2∂t∂xψ+ ∂2θψ+

1
4
ψ = 0. (1)

where (t,x,θ) ∈ [0,T)× [0,1]× S1. The principle part of this operator agrees with that of the
wave operator for the spacetime with metric g given by

g−1 =− ∂

∂t
⊗ ∂

∂t
+
∂

∂t
⊗ ∂

∂x
+
∂

∂x
⊗ ∂

∂t
+ x2

∂

∂x
⊗ ∂

∂x
+

∂

∂θ
⊗ ∂

∂θ
(2)

The causal diagram of this spacetime is shown in figure 1. It enjoys the presence of an extremal
horizon at x= 0, as can be seen from the fact that g(∂t,∂t) behaves like x2 in its vicinity. Let us
point out that the time coordinate variable is chosen in such a way that the surfaces of constant
time t penetrate this horizon and the metric extends smoothly across x= 0.

In this section we investigate solutions to equation (1) satisfying the Dirichlet condition
ψ(t,1,θ) = 0 at x= 1. At x= 0 we do not require a boundary condition, owing to the presence
of the horizon. We assume that initial conditions ψ(0,x,θ) and ∂tψ(0,x,θ) are specified.

According to the prescription of [28, 32], in order to find the quasinormal frequencies of
equation (1) we should seek solutions to the equation of the form

ψ (t,x,θ) = est+imθu(x)
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Figure 1. Causal diagram for the spacetime described by equation (2). The angular
dimension is suppressed.

which satisfy the boundary condition at x= 1 and which have improved regularity (relative
to a generic solution) at x= 0. Here we have made use of the rotational symmetry to restrict
attention to a single angular mode. The function u can be seen to satisfy the following ODE

− d
dx

(
x2

d
dx
u

)
− 2s

d
dx
u+

(
s2 +m2 − 1

4

)
u= 0. (3)

Introducing a function v given by

u(x) = e
s
x

√
s
x
v
( s
x

)
,

the left hand side of equation (3) becomes the modified Bessel equation

z2
d2v
dz2

+ z
dv
dz

−
(
z2 +λ2

)
v= 0,

where z= s
x and λ=

√
s2 +m2. Thus, the general solution of (3) can be written as

u(x) = e
s
x

√
s
x

(
aKλ

( s
x

)
+ bIλ

( s
x

))
, (4)

where a,b ∈ C and Iλ(z),Kλ(z) are the modified Bessel functions of the first and second kind
respectively [36].

In order to discuss the regularity condition that we impose at x= 0, recall that a smooth
function f : (0,1)→ C is (σ,k)−Gevrey regular with σ,k> 0 if there exists a constant C such
that

sup
x∈(0,1)

∣∣∣ f(n) (x)∣∣∣⩽ Cσ−n (n!)k .
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Note that for fixed k, increasing σ imposes a more stringent regularity condition on f.
By a careful analysis of the asymptotic series of the modified Bessel functions using the

approach of [36, section 7.31], together with [37, proposition 8] and [33, equation (A.1)] it is
possible to show that for fixed s with |args|< π:

• e
s
x
√

s
x Kλ

(
s
x

)
is (σ,2)−Gevrey regular for any σ < |s|

• e
s
x
√

s
x Iλ

(
s
x

)
is not (σ,2)−Gevrey regular if

{
σ > 0, |args|⩽ π/2
σ > |s| − |ℑ(s)|, π/2< |args|< π.

In particular, this implies that we should make the choice b= 0 in (4) to single out the more
regular branch of solutions (in theGevrey sense) at x= 0. In order that our solution also satisfies
the boundary condition at x= 1 we require

K√
s2+m2 (s) = 0. (5)

Thus the quasinormal frequencies are precisely the solutions to equation (5). Since Kλ(z) is an
entire, even, function of λ, the branch points at ±im are removable, however, a branch point
at s= 0 will be present in general.

The solutions of equation (5) for various m are given in table 1 and presented in figure 2.
As well as the locations of the quasinormal frequencies, we also obtain an explicit formula for
the corresponding quasinormal modes:

ψ (t,x,θ) = aest+imθ+
s
x

√
s
x
K√

s2+m2

( s
x

)
,

where s is a solution to equation (5) and a is any constant.
The presented results can be confronted with the numerical approach. Equation (1) can be

solved with the use of the pseudospectral scheme [38]. Since at x= 1 we impose the Dirichlet
condition, to control it we employ the Gauss–Radau quadratures [38]. The solutions that we are
looking for are decaying exponentially with time in the quasinormal regime. Hence, to improve
the precision of the scheme one can evolve an auxiliary function ψ̃(t,x,θ) = eαtψ(t,x,θ) with
α> 0 being a suitably chosen constant. The accuracy of this method can be controlled by the
energy

E(t) =
1
2

ˆ 1

0

ˆ 2π

0

[
|∂tψ|2 + x2|∂xψ|2 + |∂θψ|2 −

1
4
|ψ|2

]
dxdθ.

One can use the Hardy inequality to show that it is positive. Due to the absence of term ∂tψ in
equation (1) and the coefficient next to ∂τx being constant, this energy changes in time only
via the leakage through the horizon. This change is given by a simple expression involving
only an integration over the angular variable

E ′ (t) =−
ˆ 2π

0
|∂tψ|2x=0 dθ.

As can be seen in figure 3 for larger values ofm one can easily observe the quasinormal regime.
The quasinormal frequencies obtained via fitting agree with the lowest values from table 1.
Note that the initial data is chosen to be non-zero at the horizon—a key feature of the approach
of [28, 32] is that such initial data is permissible.
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Figure 2. Locations of the lowest solutions to equation (5) in the complex plane. The
dashed line represents the branch cut.

Table 1. Approximate quasinormal frequencies for equation (1).

m= 0
m= 1
m= 2 −1.060± 0.736i
m= 3 −1.167± 1.441i −2.302± 0.371i
m= 4 −1.258± 2.122i −2.382± 1.216i
m= 5 −1.337± 2.798i −2.494± 1.965i −3.624± 0.842i
m= 6 −1.407± 3.473i −2.603± 2.675i −3.709± 1.685i −4.934± 0.382i
m= 7 −1.471± 4.149i −2.705± 3.367i −3.819± 2.457i −4.951± 1.310i
m= 8 −1.529± 4.826i −2.800± 4.053i −3.931± 3.191i −5.038± 2.151i −6.239± 0.869i

An alternative approach to finding the quasinormal modes frequencies for our toy-model is
by the Leaver method [39, 40]. Let us fix some angular number m and again look for solutions
of the form ψ(t,x,θ) = esteimθu(x). Then u satisfies equation (3) and we can expand it into
a Taylor series around x= 1: u(x) =

∑∞
k=0Hk(1− x)k. The coefficients Hk must satisfy the

following recurrence relation

Hk =
1

(k− 1)k

[
2(k− 1)(k− 1+ s)Hk−1 −

(
(k− 2)(k− 1)−

(
s2 +m2 − 1

4

))
Hk−2

]
(6)

for k⩾ 2. Since we impose the Dirichlet condition at x= 1, we need to set H0 = 0. The reg-
ularity condition at x= 0 suggests that Hk should converge to zero as k→∞. It gives us a
quantization condition on s. One can obtain the appropriate values of s using the method of
continued fractions, but in our case it is enough to assume that for some sufficiently large
value of n one hasHn = 0 (in none of the cases considered in this article the continued fraction
method led to significantly faster convergence). It leads to a polynomial, whose zeroes include
approximations to s we seek and many superfluous values. To identify the correct values of s

6
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Figure 3. Plots of solutions to equation (1) for the initial data ψ(0,x,θ) = (1−
x)cosmθ, ψt(0,x,θ) = 0 with various m. The solid lines show functions |ψ(t,0.8, π7 )|
and the dotted lines represent the fitted dominating quasinormal mode.

one can change n and see which roots converge. It is presented in figure 4. From the analytical
solution to the toy model we know that proper quasinormal frequencies have non-zero imagin-
ary part (red dots in the plot). Quasinormal frequencies obtained with this method agree with
the ones resulting from equation (5).

3. Reissner–Nordström–anti-de Sitter (RNAdS) black hole

Now we would like to apply the same methods to study the quasinormal modes in the RNAdS
spacetime. Let us start by investigating the wave operator in this spacetime. Our first step
consists of finding a suitable coordinate system in which it becomes similar to the one from
the toy model.

In spherical coordinates (t,r,θ,ϕ) the line element of the RNAdS spacetime is given by

ds2 =−
(
1− 2M

r
+
Q2

r2
+
r2

ℓ2

)
dt2 +

(
1− 2M

r
+
Q2

r2
+
r2

ℓ2

)−1

dr2 + r2dΩ2, (7)

7
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Figure 4. Log–log plot of absolute values of real parts of solutions to equation Hn = 0
for various values of n, where Hn is given by the recurrence relation (6). Blue dots show
spurious solutions that are purely real, while the red ones have non-trivial imaginary
part and converge to the quasinormal frequencies.

where dΩ2 is a line element on a two-dimensional unit sphere. The values of M and Q are
interpreted as the mass and the charge of the black hole, respectively, while ℓ gives a spe-
cific length-scale connected with the cosmological constant Λ via Λ =−3/ℓ2. In the generic
case this spacetime has two spherical horizons called the Cauchy horizon (of a radius rC)
and the event horizon (of a radius rH). However, if Q= 0, the latter vanishes and we get a
Schwarzschild-anti-de Sitter spacetime. On the other hand, for Q large enough these horizons
coincide, i.e. rH = rC = (3M−

√
9M 2 − 8Q2)/2 and then their position does not depend on

the cosmological constant. This situation is called an extremal case, in contrast to the regular
case in which rC < rH. In the following we want to cover both regular and extremal cases so we
need a framework that will suitably handle both possibilities. For this purpose it is convenient
to introduce the following quantities. Let ρ= r/rH be a new radial variable and tH = t/rH a new
temporal variable. We also define the parameters σ = rC/rH, and λ= r2H/ℓ

2. Then equation (7)
can be written as

ds2 = r2H
[
−f(ρ)dt2H+ f(ρ)−1 dρ2 + ρ2dΩ2

]
(8)

where

f(ρ) = 1− 1+σ

ρ

(
1+

(
1+σ2

)
λ
)
+
σ

ρ2
(
1+

(
1+σ+σ2

)
λ
)
+λρ2.

In this parametrisation σ= 1 gives the extremal case, σ= 0 represents the black hole with no
charge, and λ= 0 is the case with no cosmological constant. One can easily switch between
parameters (M,Q, ℓ) and (rH,σ,λ) using the following relations

2M= (1+σ)
(
1+λ

(
1+σ2

))
rH,

Q2 = σ
(
1+λ

(
1+σ+σ2

))
r2H,

ℓ2 = λ−1r2H.

Let us point out that r2H takes a role of a scale factor in equation (8) so from now on we
assume rH = 1. For other values of rH one needs to perform elementary rescalings to recover
appropriate results (as we do when plotting figure 9 in order to compare our results with [34]).

8
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Next, we introduce a new time coordinate τ defined by dtH = dτ + h ′(ρ)dρ. The function
h here is chosen in such a way that the surfaces of constant τ cross the horizon, the new
coordinate τ behaves like tH as ρ→∞, and the resulting wave operator behaves sufficiently
well near the horizon. The last condition in fact means that the combination f(ρ)h ′(ρ)2 −
f(ρ)−1, being the coefficient next to ∂2τ in the wave operator, does not blow up as ρ→ 1. This
point is a little bit more subtle since wewant to cover both regular (where f behaves like (ρ− 1)
near ρ= 1) and extremal (where this behaviour is quadratic) cases with a single framework. It
turns out that these conditions are satisfied by a function

h(ρ) =
1

(1−σ)(1+λ(3+ 2σ+σ2))
log

(
ρ− 1
ρ

)
− σ2

(1−σ)(1+λ(1+ 2σ+ 3σ2))
log

(
ρ−σ

ρ

)
.

Finally, we compactify the spatial domain by introducing new coordinate x given by

x=
ρ− 1
ρ+ a

, (9)

where a is some fixed nonnegative number and its choice will be discussed later. As a result,
in these new coordinates the spacetime has a horizon at x= 0 and an infinity is compactified
to x= 1, similarly to our toy-model. The metric then is given by

g=−f(ρ) dτ 2 − 2f(ρ)h ′ (ρ)
1+ a

(1− x)2
dτ dx+

(
1
f(ρ)

− f(ρ)h ′ (ρ)
2
)
(1+ a)2

(1− x)4
dx2

+
(1+ ax)2

(1− x)2
dΩ2, (10)

where ρ inside the functions f and h needs to be replaced by ρ= (1+ ax)/(1− x).
For the sake of simplicity let us focus for a moment on the conformally invariant equation

□gψ − 1
6Rgψ = 0 [41]. The wave operator □g resulting from our metric (10) contains a non-

zero ∂τ derivative term. It can be removed by employing the conformal invariance: one can
check that the conformal transformation (g,ψ)→ (Ω2g,Ω−1ψ) with

Ω(x)2 =
(1− x)2

(1+ ax)2 f
(

1+ax
1−x

)
h ′
(

1+ax
1−x

)
leads to □Ω2g with no ∂τ terms. The final step that needs to be done to get a problem sim-
ilar to equation (1) is to fold the spatial derivatives ∂x and ∂2x into a single expression. It can
be achieved by simply dividing the whole equation □Ω2gψ − 1

6RΩ2gψ = 0 by an appropriate
integrating factor:

p(x) =
(1+ ax)2 f

(
1+ax
1−x

)2
h ′
(

1+ax
1−x

)2

1+ a
.

9
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Then, the resulting equation can be written as

aττ (x)∂
2
τψ+ aτx (x)∂τ∂xψ + ∂x (axx (x)∂xψ )+ aω (x)

(
1

sinθ
∂θ (sinθ∂θψ)+

1

sin2 θ
∂2ϕψ

)
+ a0 (x)ψ = 0.

The dependence on the angular dimensions can be factored out with the help of the spherical
harmonics Yl,m eventually leading to

aττ (x)∂
2
τψ+ aτx (x)∂τ∂xψ + ∂x (axx (x)∂xψ )+ [a0 (x)− l(l+ 1)aω (x)]ψ = 0. (11)

The coefficients for general parameters σ and λ are rather complicated so we do not provide
them explicitly. Instead, we note that for every λ> 0 and 0⩽ σ ⩽ 1 we have aττ < 0 and
aτx is a negative constant. In regular cases (σ< 1) the coefficient axx(x) behaves like a linear
function near x= 0, while for extremal charge (σ= 1) this behaviour is quadratic, similarly to
the toy-model (1).

Since the structure of the obtained equation is the same as of the toy-model, we can use the
same numerical schemes to evolve it in time. For equation (11) one can define an energy6

E(t) =
1
2

ˆ 1

0

[
−aττ (∂τψ)

2
+ axx (∂xψ)

2 − a0ψ
2
]
dx.

Thanks to the lack of ∂τψ term and due to aτx being a constant, E is monotone decreasing as
for the toy-model

E ′ (t) =
1
2
aτx (∂τψ)

2
∣∣∣∣
x=0

⩽ 0.

Results of the numerical simulations for various parameters σ are presented in figure 5.
Generically the evolution can be divided into three parts: initial behaviour, quasinormal oscil-
lations (which get more distinctive with larger angular numbers), and a monotone decrease.
However, the last stage exhibits a power-law decay only in the extremal case, as for the toy-
model. For regular black holes the decay is exponential or even absent. To better understand
these differences, we calculate quasinormal frequencies with the Leaver method.

Again, the structure of equation (11) lets us use the methods developed in the previous
chapter also in this case. However, for this approach to be applicable, one needs to carefully
choose the value of a in equation (9). In a generic case f(ρ), when expressed via x, has four
roots: one at x= 0, one real negative root, and two conjugated complex roots. For our method
to converge one needs to choose a in such a way that the three latter zeroes lie outside the circle
|x− 1|= 1 in the complex plane. In general the convergence is faster the further the zeroes are
from this circle.

Figure 6 shows how solutions to Hn = 0 converge for a= 2, l= 0, λ= 1, and various σ.
The blue dots denote real solutions (purely damped modes), while the red ones are complex
solutions (oscillatory modes). For no charge (Schwarzschild-anti-de Sitter spacetime) only
the latter are present. When the charge is non-zero, the purely damped modes appear. As σ
increases, they get closer to zero but their convergence becomes worse. Finally, in the limit of
the extremal black hole we observe similar situation as for the toy model (figure 4): the real
solutions become spurious.

6 We expect it to be bounded from below but since it is used just as a check on numerics, that is not essential.
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Figure 5. Plots of |ψ| at x= 0.8 for the conformally invariant scalar equation with l= 2
and the initial data ψ(0,x) = (1− x), ψτ (0,x) = 0. The background spacetime para-
meters are σ= 0.7 (upper left), σ= 0.8 (upper right), σ= 0.9 (lower left), and σ= 1
(lower right), while λ= 1 in all cases.

Figure 7 shows how real parts of the oscillatory modes and purely damped modes depend
on σ. One can observe that at some point (for λ= 1, l= 2 it is σ≈ 0.7) the real part of the
lowest decaying mode starts dominating over the lowest oscillatory mode. This transition is
reflected in figure 5 by the emergence of the exponential tail. As σ grows further, this tail
decays. Finally, for σ= 1 all the purely damped modes vanish (they converge to zero) and the
tail is described by the power law. This is consistent with the same behaviour that has been
proven for the Reissner–Nordström–de Sitter black hole by Joykutty [29]. Dependence of the
oscillatory modes frequencies on σ is less severe and is presented in figure 8.

The same approach can be employed also to studies of perturbations of the spacetime. In a
typical framework [42] they are described by the generalised eigenproblem

Lψ = Vψ,

where V is the suitable spherically symmetric potential, depending on the type of the perturba-
tions one studies (for its form in case of the RNAdS spacetime see [34], let us emphasize here
that in RNAdS spacetime with Q ̸= 0 the electromagnetic and gravitational perturbations are
mixed and can be resolved to their axial and polar parts), and

L=
d2

dr2∗
+ s2.
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Figure 6. Convergence of real and imaginary parts of oscillatory modes (red) and purely
dampedmodes (blue) for λ= 1, l= 0, and σ= 0 (left), σ= 0.5 (right), or σ= 1 (bottom)
in case of the conformally invariant equation.

By r∗ we denote here the tortoise coordinate that for metric (8) with rH = 1 can be defined by

dρ
dr∗

= f(ρ) .

This eigenproblem can be obtained from the dynamical equation □ψ +Uψ = 0, where □ is
a wave operator for the metric (8) with rH = 1 in (tH,ρ,θ,ϕ) coordinates and

U(ρ) =

[
f ′ (ρ)
ρ

+
l(l+ 1)
ρ2

− V
f(ρ)

]
.
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Figure 7. Variation with σ of the real parts of three smallest oscillatory modes (blue) and
purely damped modes (red) for conformally invariant equation with λ= 1 and l= 2.

Figure 8. Oscillatory quasinormal frequencies for conformally invariant equation in
Reissner–Nordström–anti-de Sitter spacetime with Λ =−1 and various masses M and
charges Q. The dashed lines indicate extremal cases. The solid lines bifurcating from
them have constant mass M and are parametrised by decreasing charge.

The equation □ψ +Uψ = 0 can be easily written in coordinates (τ,x,θ,ϕ). Hence, let us
consider a wave equation with a general potential U:

□gψ +Uψ = 0, (12)

13
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Figure 9. Quasinormal frequencies for perturbations of Reissner–Nordström–anti-de
Sitter spacetime with ℓ= 1 and rH = 5. The solid red line denotes scalar perturbations
with l= 0 while blue dashed lines shows results for axial perturbations with l= 2.

with g denoting metric (10). As we have already pointed out, the wave operator □g contains a
non-zero ∂τ derivative term. Before wewere able to get rid of it using the conformal invariance,
however, for general potential U equation (12) does not possess this feature. Luckily, in 3+ 1
dimensions the wave operator has a useful property that under the conformal transformation
g̃=Ω2g, ψ̃ =Ω−1ψ it behaves like [41]

□g̃ψ̃ =Ω−3□gψ −Ω−4 (□gΩ)ψ.

As a result, we can use the same factorΩ as for the conformally invariant equation to get rid of
the ∂τψ term and the resulting operator will be the same differential operator plus an additional
potential term. It leads us to the equivalent wave equation

□g̃ψ̃+
[
Ω−3 (□gΩ)+Ω−2U

]
ψ̃ = 0. (13)

This equation is no longer regular since Ω−3(□gΩ) behaves like (1− x)−2 near x= 1.
However, it does not pose any problem since we are interested in solutions that satisfy Dirichlet
condition at this end. Assuming that the solution vanishes at x= 1 at least linearly together with
an additional factor coming from the conformal transformation makes sure that the considered
problem is sufficiently regular.

Equation (13) can be studied for the whole range of charges up to the extremal case with
the same methods as discussed before. As an example, in figure 9 we show real and imaginary
parts of the lowest quasinormal frequencies of the scalar (with l= 0) and axial (with l= 2)
perturbations (let us point out that due to a different convention real parts of QNFs obtained
by us correspond to imaginary parts in their approach, and vice versa). These results regard
spacetime with the AdS radius ℓ= 1, and various masses and charges set in such a way that
the event horizon is localised at rH = 5. The plots are parametrised by the ratio of the chargeQ
and the extremal charge Qext = 10

√
19 in this setting (in the extremal caseMext = 255). It lets

us compare the results of our approach with the previous results from [34], where the authors
were considering an analogous problem for Q⩽ 0.55Qext, and we find good agreement in
this range. In particular, our results agree with relevant numerical values provided in tables II
and III of [34]. In the same work, the authors propose approximating quasinormal frequencies
for small charges by a simple polynomial relation. Tables IV and V contain fitted parameters
of these polynomials. They strongly depend on the range of the data used to obtain the fit,
nevertheless, they agree with our results within reasonable limits.
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We expect the same approach to also work for polar perturbations, however, in this case
potentialU in equation (12) introduces additional poles in the complex plane. Then coordinate
x defined in equation (9) is not sufficient to move these additional poles outside of the disk of
convergence required for the Leaver method, independently of the value of a. This feat can be
done by considering more complicated compactifications, however, their proper choice seems
to heavily depend on the values of l, λ, and σ. Due to these technical difficulties we decided
to focus only on scalar and axial perturbations in this article.

4. Conclusions

The main goal of this work was to investigate the behaviour of the quasinormal modes of
Reissner–Nordström–AdS black hole as the horizon approaches extremality. We pursued it by
using spacelike surfaces intersecting the future horizon. At first we tested this approach on
the explicitly solvable toy-model for the waves propagating outside of an extremal black hole.
Then we successfully used it to reproduce and extend previous results regarding scalar and
axial perturbations of RNAdS black holes [34]. Thanks to the appropriate choice of the slicing
we were able to study black holes with any charge, including the extremal case, within a single
framework.We observed several interesting phenomena for strongly charged black holes, such
as a qualitative change of the least damped mode behaviour for some critical charge value or
vanishing of the purely damped modes as black hole becomes extremal.

In section 3we have pointed out some difficulties arising in the case of polar perturbations in
RNAdS spacetime. Overcoming them and comparing the obtained results with previous works
[34] would constitute a pretty straightforward extension of our work. Another potential future
prospect involves employing similar approach to asymptotically flat black hole spacetimes.
Then, by conformal transformation infinity can be identified with an extremal horizon and the
methods analogous to the presented above shall be applicable.
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