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Constraining Exotic Interactions

Filip Ficek* and Dmitry Budker*

Beyond-the-standard-model interactions mediated by an exchange of virtual
“new” bosons result in a finite set of possible effective interaction potentials
between standard-model particles such as electrons and nucleons. The
classification of such potentials is discussed and recent experiments
searching for such exotic interactions at spatial scales from sub-nanometers
to tens of thousand kilometers are briefly reviewed.

1. Introduction

Modern physics acknowledges the existence of four fundamental
interactions—strong, weak, electromagnetic, and gravitational.
They vary in strengths and ranges, and for different physical sys-
tems some of themmay be more important than the others (e.g.,
strong interactions inside baryons or gravitational interactions in
the galaxy). In spite of the fact that there is no direct proof of ex-
istence of any other fundamental interaction (although there are
many observations suggesting their existence, as we discussed
in the next section), there is in principle no argument ruling out
such a possibility. Instead, one can only constrain strengths of
such hypothetical interactions using precise experimental mea-
surements.
In this short article, which is intended as a brief introduction

rather than a comprehensive review (see ref. [1] for a review on
results of searches for exotic interactions based on the techniques
of atomic, molecular, and optical physics), we present the basic
ideas underlying searches for hypothetical interactions called “ex-
otic interactions,” as they may be present in extensions of the
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standard model. We begin with a presen-
tation of a nonrelativistic framework used
to deal with fundamental interactions car-
ried by spin-0 and spin-1 bosons at low-
energy scales and then we explore some
of the systems used to give such con-
straints at various scales.

2. Exotic Potentials

At this moment, we know that every fundamental interaction,
except gravity for which a satisfactory quantum theory is not
yet known, is carried by some interacting bosons—photons
for electromagnetic, gluons for strong, and Z0/W± bosons for
weak interactions. We suspect that exotic interactions also would
be carried by some, yet undiscovered bosons. Many modern
physics puzzles, such as the nature of dark matter[2] and dark
energy,[3,4] the strong-CP problem,[5] or the hierarchy problem,[6]

may be explained by beyond standard model theories predict-
ing the existence of such new bosons. The examples include
axions,[7–12] familons,[13,14] majorons,[15,16] new spin-0 or spin-
1 gravitons,[17–20] Kaluza–Klein zero modes in string theory,[21]

paraphotons,[22–24] and new Z′ bosons.[25–27] Despite the differ-
ent nature of all these particles and the reasons the correspond-
ing models were proposed, interactions they carry may be de-
scribed within one, general framework introduced byMoody and
Wilczek[5] and expanded by Dobrescu and Mocioiu.[28] We follow
the lines of ref. [28] in order to introduce this framework.
Let us consider an interaction between two fermion particles

mediated by a light boson with mass m0, as shown in Figure 1.
The particle 1 with initial momentum p1,i interacts with the par-
ticle 2 having initial momentum p2,i . The interaction is carried
by a boson with momentum q and as a result, the two parti-
cles carry out momenta p1, f and p2, f , respectively. Let us con-
sider this event in a center of mass of this system. Then due to
the energy-momentum conservation, all the information about
the kinematics of the collision is contained in the two momenta,
p1,i and p1, f . We are interested in low-energy interactions, as the
higher-order relativistic corrections are negligible at atomic and
larger scales which are our points of interest. Then, the rest mass
dominates the particle energy and we may consider just the spa-
tial parts p1,i and p1, f of the momenta p1, f and p2, f . We con-
struct out of them the mean momentum of one of the particles
P and the difference in initial and final momenta for this particle
q (which are equal in magnitudes to the respective quantities for
the second particle)

P = 1
2
(p1,i + p1, f ) (1)
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Figure 1. A Feynman diagram of two interacting fermions.

q = p1,i − p1, f (2)

If spins of the particles are s1 and s2, respectively, then all the
information about the collision is carried by four vectors: P, q,
s1, and s2. Dobrescu and Mocioiu showed,[28] that any scalar con-
structed from these vectors can be presented as a linear combina-
tion of only 16 base scalars Oi with coefficients depending on P2

and q2. We consider them as interaction potentials written inmo-
mentum space. One of them does not include any of spins, that
is, is algebraically equivalent to 1. Interactions described by this
potential are usually called fifth forces[29] and are often considered
in a context ofmodifications of Newtonian gravity.[30] Interactions
coming from the other 15 potentials are spin-dependent and they
divide into two groups: ones that do not include P, called velocity-
independent or static, and ones that include P, called velocity-
dependent.
Potentials inmomentum space can be easily converted to a po-

sition space. As an example, we may consider a potential labeled
in ref. [28] as O3. In momentum space we may write it as

O3 = 1
m2

e
(s1 · q)(s2 · q) (3)

where the factor containing the electron mass me is introduced
for dimensional reasons. It may be rewritten into position space
by performing a Fourier transform with an appropriate propaga-
tor P

Vi = −
∫

d3q
(2π )3

eiq·rPOi (4)

We are considering the exchange presented in Figure 1 within
a Lorentz invariant quantum field theory, which fixes the form
of the propagator to P = − 1

q2+m2
0
.[28] In principle, other forms

are possible, for example, coming from the exchange of two
bosons instead of one or from Lorentz-symmetry violation. In the
Lorentz-invariant, single-boson-exchange framework, we get an
exotic potential of the form

V3 = − 1
4π

[
s1 · s2

(
1

λr 2
+ 1

r 3
+ 4π

3
δ3(r )

)

−(s1 · r)(s2 · r)
(

1
λ2r 3

+ 3
λr 4

+ 3
r 5

)]
e−r/λ (5)

where r is a vector connecting the interacting particles, r is its
length (distance between the particles), and λ = �/m0c is the
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Compton length of the interaction-mediating boson. We have in-
cluded here a sign correction recently introduced by Daido and
Takahashi.[31]

To obtain a final form of the exotic potential in position space,
we need to give it a proper dimension by inserting an overall con-
stant. Dimensional analysis yields �

3/m2
e c , where � is the reduced

Planck constant and c is the speed of light, as a correct combina-
tion. Additionally, we put a dimensionless coupling constant f 123
which represents the strength of this interaction andmay depend
on interacting particles (hence the index 12 referring to particle
1 and particle 2). The coupling coefficients f 123 (often written as
g 13g

2
3/4π�c) are determined by experimental searches. In the end

we get

V3 = − f 123
�
3

4πm2
e c

[
s1 · s2

(
1

λr 2
+ 1

r 3
+ 4π

3
δ3(r )

)

−(s1 · r)(s2 · r)
(

1
λ2r 3

+ 3
λr 4

+ 3
r 5

)]
e−r/λ

(6)

This potential, usually called a pseudovector dipole–dipole poten-
tial, was for the first time considered by Moody and Wilczek in
ref. [5] and may be associated, for example, with an exchange
of an axion. Another often considered dipole–dipole potential
comes from an exchange of an axial-vector particle and has the
form of

V2 = f 122
�c
π
(s1 · s2) e

−r/λ

r
(7)

The procedure that gave us Equation (5) may be repeated
for the remaining 15 scalars, although one should be cau-
tious when dealing with velocity-dependent potentials. After
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performing the Fourier transformation for these operators, Do-
brescu and Mocioiu[28] kept vectors P as variables instead of
changing them into operators related to gradient. As realized by
M. G. Kozlov,[32] this gives the potentials in some kind of mixed
representation, whichmay be used at the laboratory scale (as con-
sidered in ref. [28]), but is not suitable for atomic scales. As an
example, one may take the momentum space operator

O8 = 1
m2

e
(s1 · P)(s2 · P) (8)

and perform Fourier transformation obtaining[28]

V8 = 1
4πr

(s1 · P)(s2 · P)e−r/λ (9)

In order to get correct position space forms of velocity-dependent
potentials, one needs to perform an additional antisymmetriza-
tion, as described by Ficek et al.[32] Then Equation (9) transforms
to

V8 = − f 128
�
3

4πm2
e c

{
s1 ·

(
m1

m1 + m2
∇2 − m2

m1 + m2
∇1

)

{
s2 ·

(
m1

m1 + m2
∇2 − m2

m1 + m2
∇1

)
, e−r/λr

}}
(10)

where {·, ·} denotes anticommutator. The full list of potentials can
be found in ref. [1].
Let us point out that potentials obtained by the described

method come from very general principles, so it is worth con-
sidering whether all of them have some physical interpretation.
Recently Fadeev et.al.[33] performed an alternative construction of
exotic potentials. One may start from the most general Lorentz-
invariant Lagrangian describing interactions between standard-
model fermions and spin-0 or spin-1 bosons. For example, in a
scalar sector such Lagrangian has the form

Lφ = φψ̄
(
g sψ + iγ5g

p
ψ

)
ψ (11)

whereψ is a fermionic field,φ is a scalar field, γ5 is aDiracmatrix,
and g sψ , g

p
ψ parameterize interaction strengths (the first one ap-

plies to P -even, hence s as scalar, and the second to P -odd interac-
tions, hence p, as pseudoscalar). Similar termsmay bewritten for
massless andmassive spin-1 particles giving six parameters in to-
tal. Investigating the vertices of the Feynman diagram presented
in Figure 1 with this general Lagrangian yields potentials that
can be considered in a nonrelativistic limit. These limits happen
to be linear combinations of the potentials obtained by Dobrescu
and Mocioiu, although not all 16 of them are present. This sug-
gests that some of the Oi scalars have no physical significance.
The additional result coming from this alternative approach is
the fact that not all of the dimensionless coupling constants f ψψ

i
are independent—they can be expressed as combinations of g sψ ,
g p

ψ , and the remaining four parameters mentioned above.
Every exotic potential presented by Dobrescu and Mocioiu[28]

contains exponential factor exp(−r/λ) suppressing the interac-
tion at scales higher than the Compton wavelength λ of the me-
diating boson. This means, that the boson mass m0 determines
the characteristic scale of interaction and, as an effect, investigat-

ing different physical systems may give us constraints on exotic
interactions carried by bosons with different masses. In the next
section, we review some of physical systems yielding constraints
at different mass scales.

3. Methods

In this section, we present several experimental methods used
to obtain constraints on exotic interactions. The common idea
behind them all consists of performing an experiment and then
comparing its results with standard (e.g., QED based) theoreti-
cal predictions in order to find any deviations or at least deter-
mine the uncertainties to which the agreement between theory
and observations can be established. The difference between ex-
perimental results and theoretical predictions gives us a window
where some additional exotic interactions may fit (the narrower
the window, the more stringent the final constraints). By calcu-
lating the influence of hypothetical exotic interactions on the re-
sults of experiments, we may search for them, and either find
something or obtain constraints on the appropriate coupling con-
stants. We show how this procedure works in a particular case in
the next section.
As mentioned at the end of the last section, experiments per-

formed at different scales are affected by forces mediated by
bosons with different masses. Because of this, we need to uti-
lize experiments working at various scales to properly investigate
the exotic interaction parameter space. Also some experimental
setups may be sensitive to different kinds of exotic interactions,
such as spin-dependent or velocity-dependent, while others are
not, which highlights the need for large diversity of investigated
systems.
In the following sections, we discuss four experimental meth-

ods yielding constraints on spin-dependent exotic interactions
at various scales, from nanometers up to thousands of kilome-
ters (or from 1 keV down to 10−12 eV, equivalently). We present
the constraints on coupling constants for axial-vector and pseu-
doscalar dipole–dipole interactions between electrons (| f ee2 | and
| f ee3 |, respectively) where possible. More detailed descriptions
of the results together with limits on other potentials may be
found in the cited references. Apart from the experimental tech-
niques presented below, there is a variety of others, for example,
trapped ions experiments,[34] molecular spectroscopy,[35,36] mea-
surements of the spin precession of atomic gases.[37,38] There
are also new ideas such as, for example, a scanning tunneling
microscopy.[39] A comprehensive review of searches of exotic in-
teractions with atomic and molecular experiments can be found
in ref. [1]. Also, one can find a list of constraints on some coupling
constants at different scales in The Review of Particle Physics.[40]

Let us also mention that the strength of exotic forces is con-
strained not only with earthbound experiments. Such hypothet-
ical interactions would influence many astrophysical processes
and their impact should be visible in astronomical observa-
tions. By comparing the predictions regarding such observables
as red-giant cooling rate[41,42] or strength of neutrino flux from
supernovae[43] with observational evidence, it is possible to put
strong limits on the possible new interactions. However, one has
to keep in mind, that some of these results heavily rely on the
astrophysical models employed.
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3.1. Atomic Spectroscopy

Precision levels achieved by modern atomic spectroscopy
and QED-based theoretical calculations, together with a good
agreement between them, let us obtain stringent constraints on
exotic interactions at the atomic scale. The diversity of exotic
atoms permits us to search for exotic interactions strengths
between various particles. The existing results include limits
on interactions at the atomic scale between two electrons (from
helium[32]), electron and positon (from positronium[34]), electron
and antimuon (from muonium[44,45]), or electron and antiproton
(from antiprotonic helium[46]). Details regarding searches for
exotic interactions vary from system to system, so, as an exam-
ple, in the remaining part of this section we focus on limits on
exotic interactions between electrons coming from helium fine
structure, as described by Ficek et al.[32]

Let us investigate the n = 2 state (where n is the principal
quantum number) of orthohelium. It consists of a metastable
state 23S and a triplet of 23P states. Transition energies between
these states have been precisely measured.[47,48] These frequen-
cies may be compared with QED-based calculations[49,50] (whose
precision is lower than that of experimental data) to reveal that
they agree within the uncertainties. It suggests that possible ex-
otic interactions must fit in these uncertainties. Let us focus on
one of the transitions.Wewant to define a quantity characterising
the level of agreement between theory and experiment taking into
account the uncertainties, called �E from now on. If we denote
by μ the mean difference between its theoretical and experimen-

tal frequencies and also we define σ =
√

σ 2
th + σ 2

exp (where σth and

σexp are theoretical and experimental uncertainties, respectively),
we may introduce �E as a number such that (cf. Equations (A1)
and (A2) of ref. [32] where, apart from the typo in Equation (A2),
an equivalent definition of �E is given)

∫ �E

−�E

1√
2πσ

e−(x−μ)2/2σ 2dx = 0.9 (12)

This number may be calculated for every transition and can be
interpreted as a maximal possible energy shift caused by exotic
interactions for this transition (at 90% acceptance level). Let us
now point out that we can factor out the coupling constant f eei
from every exotic potential Vi getting Vi = f eei Ui , where Ui is
a well-defined operator. We now consider a transition between
states A and B, characterized by electron wavefunctions |ψA〉 and
ψB〉, respectively. Exotic potential Vi shifts energy of the state A
by 〈ψA|Vi |ψA〉 = f eei 〈ψA|Ui |ψA〉, and analogously for the state B.
It means, that the total change in frequency for a transition A↔B
caused by potential Vi is |〈ψA|Vi |ψA〉 − 〈ψB|Vi |ψB〉|. This quan-
tity cannot be larger than �E . Connecting all these information,
we arrive at the final expression

| f eei | ≤ �E
|〈ψA|Ui |ψA〉 − 〈ψB|Ui |ψB〉| (13)

By performing these steps for appropriate transitions within
helium fine structure, one can obtain limits | f ee2 | ≤ 10−9 and
| f ee3 | ≤ 3× 10−8 at the scale of 1 nm (1 keV).[32]

Figure 2. Atomic structure of a nitrogen-vacancy center in diamond. The
gray balls are carbon atoms, the yellow ball is a nitrogen atom, while the
white ball symbolises the vacancy.

3.2. Nitrogen-Vacancy Centers in Diamond

Nitrogen-vacancy (NV) centers are point defects in diamond
structure. These occur when a pair of neighboring carbon atoms
are substituted with a single nitrogen atom and a vacancy
(Figure 2). They have broad applications in quantum informa-
tion, metrology, and nanotechnology.[51] They can also be used to
measure magnetic fields with nanoscale resolution.[52] Because
spin-dependent exotic interactions couple to the matter in a way
similar to a magnetic field, this last property, together with the
possibility of isolation of magnetic noise, suggests that NV cen-
ters may be used to search for exotic interactions.[53,54]

In two recently published articles, Xing Rong and his collab-
orators described how they used a single NV center as a quan-
tum sensor to constrain axion-mediated monopole–dipole in-
teractions between electron and nucleon[53] and vector-mediated
dipole–dipole interactions between electrons.[54] Results obtained
for the latter interaction allowed to obtain a limit for a dimension-
less coupling constant | f ee2 | ≤ 5.7× 10−19 at the scale of 500 μm
(2.5 meV).

3.3. Torsion Balance

In the original paper by Moody and Wilczek,[5] the authors pro-
posed constraining exotic interactions with the use of techniques
of experimental gravity, specifically, precise torsion-balance mea-
surements. Such experiments are based on ideas similar to
the ones behind the famous Cavendish experiment,[55] shown
schematically in Figure 3. Basically, two 0.73 kg lead spheres (in-
side ABCD boxes) were attached to the opposite ends of hori-
zontally suspended, 1.8 m wooden rodm and located 23 cm away
from two 158 kg lead spheresW acting as weak sources of gravita-
tional attraction. The rod with the small balls twists to the angle
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Figure 3. Torsion balance used in the original Cavendish experiment.[55]

where a torque coming from the aforementioned gravitational
force is balanced by the torque exerted by the spring. This sys-
tem, initially used to find Earth’s mean density[56] (which could
be converted to the value of gravitational constant), after some
changesmay search for deviations fromNewton’s inverse-square
law. Such deviations could come from yet undiscovered forces,
rather then being connected to the nature of gravity. They would
be results of spin-independent fifth-forces, as both source and de-
tector in this setup are unpolarized, and such experiments may
yield constraints on their strengths.[30,57–59]

After furthermodifications to the torsion balance, it is also pos-
sible to search for constraints on spin-dependent exotic forces.
Such setup must not only contain polarized test bodies and
sources, but also should be shielded from any external mag-
netic fields. Examples of such apparatus come from the Eöt-Wash
Group at the University of Washington, where they were used to
constrain various types of spin-dependent interactions, including
CP -violating forces,[60] axion mediated forces,[61] and spin–spin
interactions between electrons at various length scales.[62,63] The
most recent results come from a system utilizing a 4 cm wide
ring containing 20 magnetized segments of alternating high and
low spin-density materials.[62] This setup allows for a great reduc-
tion of an influence of external magnetic fields, while keeping
sensitivity to exotic spin-dependent forces thanks to variations in
spin density. The results coming from these experiments yield
constraints on the coupling constants being | f ee2 | ≤ 5.1× 10−40

and | f ee3 | ≤ 1.4× 10−17 at the scale of 40 mm (30 μeV).

3.4. Geoelectrons

Themethods described in the two previous sections rely on exper-
imental setups, where both the “source” of the exotic force and
the “detector” sensitive to this force are situated in a laboratory.
Onemay use another approach, where the “source” is located out-
side the laboratory. As an example of realization of this idea, we
discuss the use of geoelectrons, that is, polarized electrons within
the Earth.

The authors of refs. [64,65] constrained several spin-dependent
and velocity-dependent potentials at planetary scales by compar-
ing results of local Lorentz-invariance searches[66,67] with an elec-
tron spin density map constructed by the authors. With the use
of recent advances in fields such as geophysics, seismology, or
mineral physics, it was possible to model temperature, magnetic
field, and density of unpaired electrons within the Earth, and to
ultimately obtain a complete map of electron spin density. Then,
appropriate integrations over the whole planet volume yielded es-
timates for the possible influences of exotic interactions coming
from geoelectrons. Finally, by comparing these estimates and the
experimental data, it was possible to obtain stringent constraints
on various coupling constants,[64,65] such as | f ee2 | ≤ 5.7× 10−47

at the scale of 10 000 km (1.2× 10−12 eV).

4. Summary and Outlook

In this brief paper, we provided a glimpse of the theory underly-
ing the ongoing searches for exotic interactions and gave several
examples of searches spanning a broad range of spatial scales,
from the atomic subnanometer scale all the way to the planetary
scale of tens of thousand kilometers. Such experiments provide
a powerful way to look for physics beyond the standard model.
At the same time, they constitute an indirect search for possi-
ble components of dark matter and dark energy. There are all
indications that we will see significant improvement in the sen-
sitivity of these methods in the coming years via a combination
of improvements in the sensitivity of the experiments combined
(where necessary) with higher-accuracy theory.
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