
 

Planar domain walls in black hole spacetimes
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We investigate the behavior of low-mass, planar domain walls in the so-called ϕ4 model of the scalar
field on the Schwarzschild and Kerr backgrounds. We focus on a transit of a domain wall through a black
hole and solve numerically the equations of motion for a range of parameters of the domain wall and the
black hole. We observe a behavior resembling an occurrence of ringing modes. Perturbations of domain
walls vanish during latter evolution, suggesting their stability against a passage through the black hole.
The results obtained for Kerr and Reissner-Nordström black holes are also compared.
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I. INTRODUCTION

Topological defects are present in particle physics and
many cosmological models [1]. In the cosmological con-
text, several authors suggested that they could be respon-
sible for creating the large scale structure [2,3], driving the
inflation [4,5], or acting as a dark matter or the dark energy
[6–11]. In this paper, we investigate defects occurring in
models with a disconnected vacuum manifold—domain
walls. In particular, we study a passage of a planar domain
wall through a Kerr black hole.
Possible topologies of domain walls in a neighborhood

of a black hole were studied by Frolov et al. [12]. Solutions
representing static domain walls near black holes were
investigated for the Schwarzschild [13,14], Reissner-
Nordström [15], and Schwarzschild–anti-de Sitter [16]
spacetimes. An evolutionary scenario was considered by
Flachi et al., who studied an escape of a domain wall from
the vicinity of a higher-dimensional Schwarzschild black
hole [17]. Here, we focus on the whole process of a transit
of a scalar field domain wall through a black hole.
From the technical point of view, we study the dynamics

of a nonlinear scalar field in the Kerr geometry. This
touches upon the stability of the Kerr spacetime [18,19]—
probably one of the most important open problems in
mathematical general relativity [20–22]. On the other hand,
because in our analysis the Kerr background is fixed, our
results are rather relevant to the understanding of the
stability of domain walls. Our work was also motivated
by the current interest in the experimental detection of
domain walls, using both astrophysical observations
[23,24] and Earth-bound experiments [25–27]. In the
context of this research, it is interesting to learn how
domain walls behave near astrophysical objects.

In the following sections, we report results of simulations
of a transit of a domain wall through a black hole in an
axially symmetric setting. We investigate the impact of the
spin of the black hole on such a process. We show that, in
spite of a formation of an additional structure resembling
ringing modes, the domain wall is stable under its transit
through the black hole—it returns to its initial shape. We
also compare results obtained for transits through Kerr and
Reissner-Nordström black holes.
Throughout this paper, we consider four-dimensional

metrics with the signature (−, þ, þ, þ). We use natural
units (c ¼ G ¼ 1). Spacetime and spatial coordinates are
labeled with greek (μ; ν;…) and latin (i; j;…) indices,
respectively. We also use standard Einstein summation
convention. The time coordinate is labeled with t or
index 0.

II. DOMAIN WALLS IN THE MINKOWSKI
SPACETIME

Consider a real scalar field in a dþ 1-dimensional flat
Minkowski spacetime with a Lagrangian density,

L ¼ −
1

2
∂μϕ∂μϕ − VðϕÞ: ð1Þ

The corresponding equation of motion (the Euler-Lagrange
equation) reads

□ϕ − V 0ðϕÞ ¼ 0; ð2Þ

where □ ¼ ∂μ∂μ is the d’Alembert operator. The energy
density (the T00 component of the energy-density tensor
Tμν) can be written as

T00 ¼
1

2
ð∂tϕÞ2 þ

1

2

Xd
i¼1

ð∂iϕÞ2 þ VðϕÞ: ð3Þ*filip.ficek@uj.edu.pl
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The total energy of the field configuration can be obtained
by integrating T00 over the t ¼ const hypersurface.
In this paper, we work with the so-called ϕ4 model

defined by the field potential VðϕÞ of the form

VðϕÞ ¼ λ

4
ðϕ2 − η2Þ2; ð4Þ

where λ and η are constant [28,29]. We will refer to λ and η
as the coupling constant and the vacuum expectation value,
respectively.
It is handbook knowledge that the above definition leads

to an occurrence of the spontaneous symmetry breaking.
The Lagrangian density L with the potential given by
Eq. (4) has the Z2 symmetry (ϕ → −ϕ) and two distinct
ground states: ϕ≡ η and ϕ≡ −η. This Z2 symmetry is
broken by the choice of a particular ground state (ϕ≡ η or
ϕ≡ −η). It is also well known that the model of the scalar
field with the potential (4) admits domains and domain
walls. Consider x1 and x2—two distinct points in space
such that at some instant of time t one has ϕðt;x1Þ ¼ η
and ϕðt;x2Þ ¼ −η. At both these points, the field attains a
minimum of the potential. From the continuity of ϕ,
somewhere between these two points, we must have
ϕ ¼ 0, i.e., the field attains its local maximum of potential.
The set of points x such that ϕðt;xÞ ¼ 0 together with its
neighborhood is called a domain wall. The regions where
ϕðt;xÞ ≈ η and ϕðt;xÞ ≈ −η are understood as distinct
domains.
Consider a 1þ 1-dimensional spacetime with coordi-

nates ðt; zÞ and the scalar field ϕ with potential (4). The
equation of motion has the form

−∂2
tϕþ ∂2

zϕ ¼ λϕ3 − λη2ϕ: ð5Þ
An example of a nontrivial, static solution of this equation
with the boundary conditions limz→−∞ϕðzÞ ¼ −η and
limz→þ∞ϕðzÞ ¼ η is the so-called kink [28,29],

ϕðzÞ ¼ η tanh

 
η

ffiffiffi
λ

2

r
ðz − z0Þ

!
: ð6Þ

Here, z0 is a constant. Nonstatic solutions can be obtained
by applying a Lorentz boost to Eq. (6). One gets

ϕðt; zÞ ¼ η tanh

 
η

ffiffiffi
λ

2

r
z − z0 − vtffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

!
; ð7Þ

where v is the boost velocity. It can be easily checked that
(7) satisfies Eq. (5). The total energy of this solution is
finite. It reads

Ekink ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p 4

3

ffiffiffi
λ

2

r
η3: ð8Þ

The 1þ 1-dimensional solution can be trivially gener-
alized to dþ 1 dimensions as

ϕðt; x1; x2;…; xdÞ ¼ η tanh

 
η

ffiffiffi
λ

2

r
x1 − z0 − vtffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

!
: ð9Þ

The above class of solutions is known as planar domain
walls.
In the following, we will assume d ¼ 3 and work in

spherical coordinates ðr; θ;φÞ. Accordingly, it is instructive
to express Eq. (9) in spherical coordinates; this expression
will also serve as initial data in our simulations. Choosing
the axis of the system ðr; θ;φÞ to be aligned with the z axis,
we get

ϕðt; r; θ;φÞ ¼ η tanh

 
η

ffiffiffi
λ

2

r
ðr cos θ − z0 − vtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

!
: ð10Þ

The time derivative of the field is given by

∂tϕðt; r; θ;φÞ ¼ −
ffiffiffi
λ

2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p η2v

cosh2
�
η
ffiffi
λ
2

q
r cos θ−z0−vtffiffiffiffiffiffiffiffi

1−v2
p

� :
ð11Þ

The corresponding geometry is illustrated in Fig. 1.

III. SCALAR FIELDS IN THE KERR SPACETIME

There is no uniqueway to postulate the equation ofmotion
for the scalar field in a curved spacetime. In this paper, we
assume the minimal coupling. Since we only deal with
spacetimes characterized by the vanishing scalar curvature
(vacuum or electrovacuum), the assumed minimal coupling
also coincides with another common choice—the conformal
coupling [30,31].
The Lagrangian density of the minimally coupled scalar

field has the form

L ¼ −
1

2
∇μϕ∇μϕ − VðϕÞ; ð12Þ

FIG. 1. A planar domain wall in spherical coordinates. The
origin of the coordinate system is denoted as O; z0 is the initial
location of the domain wall with respect to the origin. The dashed
and dotted plots show the value of the field and the energy density
of the field along the z axis, respectively.
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where∇μ denotes the covariant derivative. The correspond-
ing equation of motion reads

∇μ∇μϕ − V0ðϕÞ ¼ 0; ð13Þ

and the energy-momentum tensor of the scalar field can be
written as [30]

Tμν ¼ ∇μϕ∇νϕ − gμν

�
1

2
∇σϕ∇σϕþ VðϕÞ

�
: ð14Þ

The above energy-momentum tensor satisfies the dom-
inant energy condition. For any future directed timelike
vector Xν, the vector field Yμ ¼ −Tμ

νXν is future directed
and timelike or null. To show this, it suffices to choose a
locally inertial frame and perform appropriate Lorentz
transformations so that (locally) Xν ¼ ð1; 0; 0; 0Þ. Then,

Yμ ¼ −Tμ
0

¼ −∂μϕ∂0ϕþ δμ0

�
−
1

2
ð∂0ϕÞ2þ

1

2
∂iϕ∂iϕþ VðϕÞ

�
:

ð15Þ

We see that Y0 ≥ 0 for non-negative potentials VðϕÞ.
Moreover, rewriting the Lagrangian density given by
Eq. (12) in a locally inertial frame, we obtain

YμYμ ¼ ð∂0ϕÞ2∂μϕ∂μϕþ 2ð∂0ϕÞ2L − L2

¼ −2ð∂0ϕÞ2VðϕÞ − L2 ≤ 0: ð16Þ

The dominant energy condition assures that the energy flow
of matter is always slower than the speed of light [30].
In this paper, we consider the Kerr metric written in the

Kerr-Schild coordinates ðt; r; θ;φÞ. The line element reads

ds2 ¼ −
�
1 −

2mr
Σ

�
dt2 þ 4mr

Σ
dtdr −

4amrsin2θ
Σ

dtdφ

þ
�
1þ 2mr

Σ

�
dr2 − 2asin2θ

�
1þ 2mr

Σ

�
drdφ

þ Σdθ2 þ sin2θ

�
Σþ a2

�
1þ 2mr

Σ

�
sin2θ

�
dφ2;

ð17Þ

where

Σ ¼ r2 þ a2cos2θ; ð18Þ

and the ranges of the variables are given by

t ∈ ð−∞;þ∞Þ; r ∈ ð0;∞Þ; θ ∈ ð0; πÞ;
φ ∈ ð0; 2πÞ: ð19Þ

The parameters m and a are interpreted as the mass of the
black hole and the angular momentum (spin) parameter,
respectively. The advantage of using the Kerr-Schild
coordinates is that they are regular at the horizons
(r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
). The physical singularity at r ¼ 0,

θ ¼ π=2 is still present [30].
The energy density of the scalar field is defined as

ρ ¼ Tμνnμnν, where nμ is a normalized timelike vector
orthogonal to the hypersurfaces of constant time. We get,
for metric (17),

nμ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2mr
Σ

r
;−

2mr

Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mr

Σ

q ; 0; 0

!
; ð20Þ

and

ρ ¼ 1

Σ

�
1

2
ðΣþ 2mrÞð∂tϕÞ2 − 2mr∂tϕ∂rϕ

þ 1

2

�
a2sin2θ þ Σ2 þ 4m2r2

Σþ 2mr

�
ð∂rϕÞ2 þ

1

2
ð∂θϕÞ2

þa∂rϕ∂φϕþ 1

2sin2θ
ð∂φϕÞ2

�
þ VðϕÞ: ð21Þ

Of course, ρ ≥ 0, since the energy-momentum tensor
satisfies the dominant energy condition.
The d’Alembert operator written in Kerr-Schild coor-

dinates reads

□ϕ ¼ 1

Σ

�
−ðΣþ 2mrÞ∂2

tϕþ 2m∂tϕþ 4mr∂t∂rϕ

þ∂rðΔ∂rϕÞ þ
1

sin θ
∂θðsin θ∂θϕÞ þ 2a∂r∂φϕ

þ 1

sin2θ
∂φ∂φϕ

�
; ð22Þ

where □ ¼ ∇μ∇μ and

Δ ¼ r2 − 2mrþ a2: ð23Þ

In the following, we assume the axial symmetry.
Equations (22), (13), and (4) yield the equation of motion

∂2
tϕ ¼ 1

Σþ 2mr

�
2m∂tϕþ 4mr∂t∂rϕþ ∂rðΔ∂rϕÞ

þ 1

sin θ
∂θðsin θ∂θϕÞ þ Σλη2ϕ − Σλϕ3

�
: ð24Þ

The equations of characteristics of Eq. (24) in the radial
direction can be found as
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r0ðtÞ¼ 1

r2þ2mrþa2cos2θ
ð−2mr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þa4cos2θþa2r2ð1þ cos2θÞþ2ma2rsin2θ

q
Þ:

ð25Þ
The corresponding equation in the angular direction can be
written as

θ0ðtÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2mrþ a2 cos2 θ

p : ð26Þ

One of expressions (25) is always negative (it refers to the
ingoing characteristic); the other one (referring to the
outgoing characteristic) is positive for r > rþ or r < r−
and negative for r− < r < rþ. It is a direct consequence of
the causal structure of Eq. (24). We will use this fact in the
numerical implementation of our simulations. Analogous
expressions corresponding to the angular characteristics
(26) have positive and negative values.

IV. NUMERICAL SCHEME

We solve Eq. (24) using a variant of the so-called method
of lines. Our numerical grid spans the region R− ≤ r ≤ Rþ,
0 ≤ θ ≤ π, whereR− andRþ denote the locations of the inner
and outer edges of the grid, respectively. This is illustrated in
Fig. 2. The choice of Rþ is arbitrary as long as it is much
larger than the radius of the horizon. For the inner boundary,
we choose R− ¼ m so that rþ > R− > r−. As a result, we
do not need to impose any boundary conditions at r ¼ R−.
We will return to this point later in this section. The
parameters of grids used in the simulations are presented
inTable I. Set I was our default set of parameters used inmost
simulations,while Set IIwas used to produce the plots shown
in this paper.Ourgrids are equidistant in both directions r and
θ. We also set m ¼ 1 in all our simulations.
Equation (24) is first transformed into a system of first-

order-in-time partial differential equations

∂tuð1Þ ¼ uð2Þ; ð27aÞ

∂tuð2Þ ¼
1

Σþ 2mr

�
2muð2Þ þ 4mr∂ruð2Þ þ ∂rðΔ∂ruð1ÞÞ

þ 1

sin θ
∂θðsin θ∂θuð1ÞÞ þ Σλη2uð1Þ − Σλu3ð1Þ

�
;

ð27bÞ

where uð1Þ ≔ ϕ, uð2Þ ≔ ∂tϕ. These equations are discre-
tized in the spatial directions ðr; θÞ, taking into account

zBH

R– R+

FIG. 2. The shape of the numerical domain.

TABLE I. Parameters of grids used in the simulations. Set I was
the default set of parameters. Set II was used to prepare the plots
included in this paper.

Set I Set II

Inner boundary R− 1.0 1.0
Outer boundary Rþ 20.0 40.0
Number of radial zones 600 1200
Number of axial zones 400 800

FIG. 3. An illustration of the radial discretization scheme used
to ensure the proper causal behavior of solutions. The rows depict
appropriate stencils used to compute numerical derivatives at
points denoted by a cross. They correspond to Eqs. (28)–(30) in
the text.

TABLE II. Parameters of the simulations.

Initial velocity v 0.5 0.6 0.7 0.8 0.9 0.93 0.95 0.97 0.99 0.995 0.999
Black hole spin parameter a 0 0 0 0 0 0 0 0 0 0 0

Initial velocity v 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Black hole spin parameter a 0.5 0.6 0.7 0.8 0.9 0.93 0.95 0.97 0.99 0.995 0.999
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FIG. 4. Successive steps of the evolution of the domain wall with the initial velocity v ¼ 0.9 near the Schwarzschild black hole of
mass m ¼ 1. Dark shades denote regions with higher energy density (21).
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their causal structure. We use five-point finite difference
formulas. The discretization in the radial direction requires
an explanation. Let ui;j ¼ uðri; θjÞ denote the value of a
function u in the node of the grid labeled by indices ði; jÞ.
For ri ≫ rþ, we use standard, centered five-point formulas,

∂rui;j ¼
−uiþ2;j þ 8uiþ1;j − 8ui−1;j þ ui−2;j

12Δr
þOðΔr4Þ;

ð28aÞ

∂2
rui;j ¼

−uiþ2;j þ 16uiþ1;j − 30ui;j þ 16ui−1;j − uiþ2;j

12Δr2

þOðΔr4Þ; ð28bÞ

where Δr is the radial distance between two grid nodes.
Near and below the horizon, we use the following asym-
metric five-point formulas:

∂rui;j ¼
uiþ3;j − 6uiþ2;j þ 18uiþ1;j − 10ui;j − 3ui−1;j

12Δr
þOðΔr4Þ; ð29aÞ

∂2
rui;j ¼

−uiþ3;j þ 4uiþ2;j þ 6uiþ1;j − 20ui;j þ 11ui−1;j
12Δr2

þOðΔr3Þ; ð29bÞ

∂rui;j ¼
−3uiþ4;j þ 16uiþ3;j − 36uiþ2;j þ 48uiþ1;j − 25ui;j

12Δr
þOðΔr4Þ; ð30aÞ

∂2
rui;j¼

11uiþ4;j−56uiþ3;jþ114uiþ2;j−104uiþ1;jþ35ui;j
12Δr2

þOðΔr3Þ: ð30bÞ
Figure 3 demonstrates the way in which these formulas
are used. In practice, no value of the field from the black
hole region influences the values outside the horizon.
Also, no boundary condition is necessary at r ¼ R−.
The discretization in the angular direction is straightfor-
ward; we use centered finite difference formulas.
Discretized Eq. (27) are solved using the Crank-Nicolson

method [32,33]. We use this method iteratively [34], as
described in Appendix A.
For the initial data, we choose a planar domain wall

perpendicular to the z axis (the symmetry axis of the
spacetime), located at a large distance from the black hole
and moving with the velocity v (see Fig. 1). Since the Kerr
metric is asymptotically flat, we expect that at large
distances the solution describing a planar domain wall
should resemble the analytic solution characteristic for the
Minkowski spacetime, given by Eqs. (10) and (11).
Consequently, we assume as initial data the expressions

ϕðt; r; θÞjt¼0 ¼ η tanh

 
η

ffiffiffi
λ

2

r
ðr cos θ − z0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

!
; ð31aÞ

∂tϕðt; r; θÞjt¼0 ¼ −η2v
ffiffiffi
λ

2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

×
1

cosh2
�
η
ffiffi
λ
2

q
r cos θ−z0ffiffiffiffiffiffiffiffi

1−v2
p

� : ð31bÞ

FIG. 5. Successive steps of the evolution of domain walls with the initial velocities v ¼ 0.9 (upper halves) and v ¼ 0.5 (lower halves)
near the Schwarzschild black hole of mass m ¼ 1. White and black regions refer to the field in one of two domains.
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Analytic expressions (10) and (11) are also used to provide
the outer boundary conditions at r ¼ Rþ. In explicit terms,
we set

ϕðt; r; θÞjr¼Rþ ¼ η tanh
�
η

ffiffiffi
λ

2

r
ðRþ cos θ − z0 − vtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
:

ð32Þ
At the z axis, which is also a boundary of the numerical
domain, we impose standard regularity (von Neumann)
conditions:

∂θϕðt; r; θÞjθ¼0 ¼ ∂θϕðt; r; θÞjθ¼π ¼ 0: ð33Þ

We tested our numerical scheme by simulating the
evolution of a domain wall in the Minkowski spacetime.
In this case, we imposed the inner boundary conditions (at
r ¼ R−) in the exact form

ϕðt;r;θÞjr¼R−
¼ η tanh

�
η

ffiffiffi
λ

2

r
ðR− cosθ− z0−vtÞffiffiffiffiffiffiffiffiffiffiffiffi

1−v2
p

�
: ð34Þ

The obtained numerical solutions agree with the exact
formula (10).

V. RESULTS

With the exception of tests in the Minkowski spacetime,
we assume m ¼ 1; i.e., all distances are expressed in the

FIG. 6. Successive steps of the evolution of the domain wall with the initial velocity v ¼ 0.9 near the Schwarzschild black hole of
massm ¼ 1 (upper halves) and the Kerr black hole with massm ¼ 1 and angular momentum a ¼ 0.999 (lower halves). White and black
regions refer to the field in one of two domains.
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units of m (of course, this also affects the system of units
used for the field variables).
We set η ¼ 0.1 and λ ¼ 100 in all our simulations. It is

shown in Appendix B that this choice ensures that the local
energy of the domain wall is much less than the energy
associated with the black hole.
Our simulations are limited to velocities v > 1=2. There

are two reasons for that. The first one is that domain walls
seem to be repulsed by the black hole, and this effect is
more pronounced for smaller initial velocities v. We show
in Appendix C that a domain wall that is initially at rest
drifts away from the black hole. This repulsion seems to
be a physical effect rather than a property of the used
coordinate system. For simplicity, we use standard Boyer-
Lindquist coordinates in Appendix C. The second reason is
that smaller values of v would require much larger
numerical domains, in order to minimize the spurious
influence of the outer boundary conditions. Parameters v
and a (the spin parameter of the black hole) used in our
simulations are collected in Table II.
An example of the evolution of a domain wall on the

Schwarzschild background is shown in Fig. 4, in which we
plot the field energy density. Figure 4(a) shows the initial
data—a domain wall with the initial velocity v ¼ 0.9
located at the distance z0 ¼ 10 from the black hole. The
domain wall moves almost undisturbed [Fig. 4(b)] until it
passes through the black hole [Fig. 4(c)]. This results in an
excitation of the field [Fig. 4(d)] followed by a creation of a
separate domain [Fig. 4(e)] and another domain wall, which
finally encompasses the black hole [Figs. 4(f), 4(g), and
4(h)]. This new domain wall is reflected when it reaches the
opposite axis of symmetry; we observe a kind of ringing
[Figs. 4(i) and 4(j)]. The similar structure has been
observed in higher-dimensional brane dilaton–black hole
systems [35]. The long-time structure of these ringings can
be observed in Fig. 7.
Simulations of the domain wall evolution near the

Schwarzschild black hole have been repeated for a range

of initial velocities presented in Table II. The comparison of
exemplary results is presented in Fig. 5. The initial setup is
shown in Fig. 5(a)—we observe that faster domain walls
appear more compact due to the Lorentz contraction. In
Fig. 5(b), we present two domain walls at distinct instances
of time referring to a similar state of their evolution. The
additional ringing structure and the distortion of the domain
wall caused by the transition through the black hole are
much weaker in the case with the lower initial velocity v.
This observation is also confirmed by the investigation of
other cases with the parameters collected in Table II—
domain walls moving initially with larger velocities are
perturbed more strongly during the transit through the
black hole.
We have repeated simulations with the initial velocity

v ¼ 0.9 for a range of values of the black hole angular
momentum presented in Table II. Qualitatively, the results
were very similar to the ones obtained for the Schwarzschild
case. The only differences were relatively small changes in
the energydensity of the field (increases up to one-thirdwhen
comparing cases with a ¼ 0.999 and a ¼ 0) and the tempo
of the evolution near the horizon (cf. Fig. 6).
We have also performed long-time simulations, in order

to check the stability of domain walls after their passage
through a black hole (results are shown in Fig. 7). It appears
that, even though the domain wall is initially distorted by
the black hole, it eventually returns to its planar shape.
Also, the ringing modes created during the transit dissipate.

VI. COMPARISON WITH THE
REISSNER-NORDSTRÖM SPACETIME

It is common to consider the Reissner-Nordström
solution as a toy model for the more complicated
Kerr geometry [36–39]. Both spacetimes share similar
horizon [40] and causal [41] structures, the former being
simpler to deal with due to the spherical symmetry.
The Reissner-Nordström solution can be written in the

FIG. 7. Changes in the shape of the domain wall with the initial velocity v ¼ 0.9 during the transit through the Schwarzschild black
hole of mass m ¼ 1. White and black regions refer to the field in one of two domains.
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Kerr-Schild-type coordinates [42], in this context usually
called Eddington-Finkelstein–type coordinates,

ds2RN ¼ −
�
1 −

2m
r

þQ2

r2

�
dt2 þ 2

�
2m
r

−
Q2

r2

�
dtdr

þ
�
1þ 2m

r
−
Q2

r2

�
dr2 þ r2dθ2 þ r2sin2θdφ2;

ð35Þ
where Q is a charge of the black hole. The horizons in this
spacetime occur for the radii r satisfying the condition

r2 − 2mrþQ2 ¼ 0; ð36Þ

which may be easily compared to the Kerr horizons which
correspond to the roots of Eq. (23). The d’Alembert
operator with respect to metric (35) can be written as

□RNϕ ¼ 1

r2

�
−ðr2 þ 2mr −Q2Þ∂2

tϕþ 2m∂tϕ

þð4mr − 2Q2Þ∂t∂rϕþ∂rððr2 − 2mrþQ2Þ∂rϕÞ

þ 1

sin θ
∂θðsin θ∂θϕÞ þ

1

sin2θ
∂φ∂φϕ

�
: ð37Þ

The energy density of the field is given by

FIG. 8. Successive steps of the evolution of the domain wall with the initial velocity v ¼ 0.9 near the Kerr black hole with the mass
m ¼ 1 and the angular momentum a ¼ 0.999 (upper halves) and the Reissner-Nordström black hole with the massm ¼ 1 and the charge
Q ¼ 0.999 (lower halves). White and black regions refer to the field in one of two domains.
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ρ ¼ 1

2

�
1þ 2m

r
−
Q2

r2

�
ð∂tϕÞ2 þ

1

2

1þ ð2mr − Q2

r2 Þ
2

1þ 2m
r − Q2

r2

ð∂rϕÞ2

−
�
2m
r

−
Q2

r2

�
∂tϕ∂rϕþ 1

2r2
ð∂θϕÞ2

þ 1

2r2sin2θ
ð∂θφÞ2 þ VðϕÞ; ð38Þ

which is well defined above the inner horizon. We get the
equation of motion in the Reissner-Nordström spacetime
by putting the wave operator (37) into Eq. (13).
In the following, we compare the transits of domain

walls through the Kerr and Reissner-Nordström black
holes. We have performed simulations for Reissner-
Nordström geometries with m ¼ 1 and values of charge
Q equal to the values of spin a in Table II. The differences
between transit through a charged black hole and a
spinning black hole are rather quantitative than qualita-
tive. The main discrepancy lies in the tempo of evolution
in the near-horizon area. As can be seen in Fig. 8, the
evolution for the Reissner-Nordström black hole is
accelerated in comparison to the evolution obtained for
the Kerr geometry. This effect is similar to the one
observed in the comparison of transits through
Schwarzschild and Kerr black holes (Fig. 6) but seems
to be stronger. Apart from the observed time shift, the
shapes of the observed field configurations and the values
of the energy density are similar in these two cases.

VII. SUMMARY

We investigated the behavior of a low-mass domain wall
in the so-called ϕ4 scalar field model, after a transit
through a Schwarzschild, Kerr, or Reissner-Nordström
black hole. The results show that such an event not only
distorts the initially planar domain wall, but also creates
an additional structure resembling ringing modes in the
scalar field. During the latter evolution, the domain wall
returns to its initial shape, and the ringing structure
dissipates. This suggests that domain walls are stable
against passages through black holes. We believe that
the numerical evidence supporting the stability of domain
walls in the above scenario constitutes the main scientific
result of this paper. Another quite surprising fact is that the
evolution of a domain wall during the passage through a
black hole does not depend qualitatively on the black
hole’s spin, at least in cases in which the rotation axis is
perpendicular to the domain wall.
The amplitude of the observed perturbations of the

domain wall grows with the increase of its initial velocity.
The angular momentum of the black hole has a similar, but
weaker impact—spinning black holes disturb the domain
wall slightly more strongly than the static ones. Charged
black holes affect the domain walls in a manner similar to
the spinning ones, except for the accelerated evolution near

the black hole in the former case. This fact agrees with the
practice of using the Reissner-Nordström geometry as a
model for the Kerr spacetime—the results are qualitatively
very similar.
The results presented here show several directions in

which investigations of this topic could be conducted
further. The most obvious generalization consists of
performing similar simulations for the Kerr spacetime
in the three-dimensional setting, without the restriction to
the axisymmetry. The other possibility is to consider other
scalar field potentials, especially the ones with a richer
ground-state manifold, such as the sine-Gordon model or
models with higher-degree polynomial self-interactions
[43,44]. One could also focus on the ringing modes
appearing during the transit of the domain wall through
the black hole and investigate them in a more systematic
way. It is especially interesting to find out if they are the
quasinormal modes or if they arise due to the nonlinearity
of the model. We hope to study these issues in future
work.
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APPENDIX A: ITERATIVE
CRANK-NICOLSON METHOD

The Crank-Nicolson method is an implicit scheme of
solving initial value problems for sets of N ordinary
differential equations of the form

du
dt

¼ FðuÞ; uðt ¼ t0Þ ¼ u0: ðA1Þ

Here, u: ½t0;∞Þ → RN is a vector of unknowns, and
F: RN → RN is a given function. The time t and the
independent variable u are discretized as tn ¼ t0 þ nΔt,
un ¼ uðtnÞ, n ¼ 0; 1;…. The method itself is defined by
the relation

unþ1 ¼ un þ Δt
2
½Fðunþ1Þ þ FðunÞ�: ðA2Þ

The so-called iterative Crank-Nicolson scheme is a way of
dealing with the implicit term Fðunþ1Þ. Equations (A2) are
replaced with
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~unþ1
0 ¼ un;

~unþ1
1 ¼ un þ Δt

2
½Fð ~unþ1

0 Þ þ FðunÞ�;

~unþ1
2 ¼ un þ Δt

2
½Fð ~unþ1

1 Þ þ FðunÞ�;

..

.

~unþ1
k ¼ un þ Δt

2
½Fð ~unþ1

k−1 Þ þ FðunÞ�;

unþ1 ¼ un þ Δt
2
½Fð ~unþ1

k Þ þ FðunÞ�; ðA3Þ

wherewe have introduced auxiliary variables ~unþ1
0 ;…; ~unþ1

k .
It turns out that already two iterations provide sufficient
accuracy [34]. That leads to the formula

unþ1 ¼ un þ Δt
2

�
Fðun þ Δt

2
½Fðun þ FðunÞΔtÞ

þFðunÞ�Þ þ FðunÞ
�
: ðA4Þ

The scheme given by (A4) belongs in fact to the class of
explicit Runge-Kutta methods and can be written in a more
common form

unþ1 ¼ un þ Δt
�
1

2
k1 þ

1

2
k3

�
; ðA5Þ

where

k1 ¼ FðunÞ;
k2 ¼ Fðun þ Δtk1Þ;

k3 ¼ F

�
un þ Δt

�
1

2
k1 þ

1

2
k2

��
: ðA6Þ

APPENDIX B: PARAMETERS OF
DOMAIN WALLS

Since in this work we only consider the evolution of
domain walls on fixed Schwarzschild, Kerr, or Reissner-
Nordström backgrounds, the consistency of the model
demands ensuring that a rough estimate of the energy of
the domain wall contained in the vicinity of the black hole
is smaller than the black hole mass.
Equation (8) gives the energy of a domain wall in the

1þ 1-dimensional flat case (a kink). It is proportional to
η3λ1=2ð1 − v2Þ−1=2. We will interpret this expression as a
surface energy. On the other hand, the mass m determines
the energy scale and the length scale associated with the
black hole. This yields a corresponding energy estimate for
the domain wall in the form η3λ1=2ð1 − v2Þ−1=2m2. We
require this energy to be much smaller than the mass of the
black hole, i.e.,

η3λ1=2mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≪ 1: ðB1Þ

For m ¼ 1 and domain walls with v < 0.999, it suffices to
set η ¼ 0.1 and λ ¼ 100. Then, the left-hand side of
Eq. (B1) is always less than 0.224.

APPENDIX C: REPULSION FROM
THE BLACK HOLE

In this Appendix, we give a heuristic argument that a
domain wall, that is initially at rest, is repulsed from the
black hole.
For clarity, we will work in Boyer-Lindquist coordinates

(denoted in this Appendix as t, r, θ, and φ). The Kerr
metric, written in Boyer-Lindquist coordinates, has the
familiar form

ds2 ¼ −
�
Δ − a2sin2θ

Σ

�
dt2 þAsin2θ

Σ
dφ2 þ Σ

Δ
dr2

þ Σdθ2 −
2asin2θðr2 þ a2 − ΔÞ

Σ
dtdφ; ðC1Þ

where Σ ¼ r2 þ a2 cos2 θ, Δ ¼ r2 þ a2 − 2mr, and A ¼
ðr2 þ a2Þ2 − Δa2 sin2 θ.
We consider the initial data

ϕðt; r; θ;φÞjt¼0 ¼ η tanh

 
η

ffiffiffi
λ

2

r
ðr cos θ − z0Þ

!
;

∂tϕðt; r; θ;φÞjt¼0 ¼ 0 ðC2Þ

and assume that z0 > 0. The domain wall described by
Eq. (C2) is perpendicular to the symmetry axis of the
spacetime. Let us consider a point C with coordinates
r ¼ z0, θ ¼ 0. It belongs to the intersection of the domain
wall and the axis θ ¼ 0. We show that for t ¼ 0 the domain
wall at point C drifts away from the black hole, i.e., toward
larger values of r.
Let ημ be the timelike Killing vector associated with

metric (C1). We have ημ ¼ ð1; 0; 0; 0Þ. Define the radial
momentum Pr ¼ −Tr

μη
μ, where the energy momentum is

given by Eq. (14). A simple calculation yields

Pr ¼ −
Δ
Σ
∂tϕ∂rϕ:

Clearly, outside the black hole, an outgoing wave corre-
sponds to positive Pr. Conversely, for the incoming wave,
one has Pr < 0. It is possible to show that Pr is non-
negative at point C for initial data (C2). In practice, it
suffices to investigate the sign of P ¼ −∂tϕ∂rϕ. Since the
domain wall described by Eq. (C2) is initially at rest, we
have P ¼ 0 for t ¼ 0. It is, however, possible to compute
the derivative
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U ¼ ∂tPjC;t¼0 ¼ −∂tð∂tϕ∂rϕÞjC;t¼0

¼ −∂2
tϕ∂rϕjC;t¼0 − ∂tϕ∂t∂rϕjC;t¼0; ðC3Þ

where the last term vanishes. A rather lengthy calculation
involving the equation of motion (13) yields for initial
data (C2)

U ¼ −∂2
tϕ∂rϕjC;t¼0 ¼

mη4λða2 þ ðz0 − 2mÞz0Þ
ðz20 þ a2Þ2 ; ðC4Þ

which is positive outside the horizon. Hence, P is non-
negative at C, at least for some short period of time
t ∈ ½0; ϵÞ. We conclude that the domain wall is repulsed
from the black hole.
A similar calculation can be also done for the Reissner-

Nordström metric, which in standard coordinates can be
written as

ds2RN ¼ −
�
1 −

2m
r

þQ2

r2

�
dt2

þ
�
1 −

2m
r

þQ2

r2

�−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ: ðC5Þ

Repeating the same calculation for the Reissner-Nordström
spacetime, we obtain

U ¼ −∂2
tϕ∂rϕjC;t¼0 ¼

mη4λðQ2 þ ðz0 − 2mÞz0Þ
z40

: ðC6Þ

Here, again, U is positive outside the horizon. This leads to
the same conclusion that the black hole drifts away from the
black hole.
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