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Abstract
In this paper I study the stationary, spherically symmetric accretion of fluids
onto a charged black hole in the presence of a cosmological constant. For
some isothermal equations of state it is possible to obtain analytic solutions.
For the case of a radiation fluid I derive the relation between the locations of
horizons and sonic (critical) points. In specific cases the solutions form closed,
binocular-like trajectories in a phase diagram of the velocity versus radius.

Keywords: accretion, black hole, cosmological constant, charge, de Sitter

1. Introduction

In a series of recent papers [1–4] Karkowski, Mach and Malec investigated the spherically
symmetric Bondi-type accretion of perfect fluids in Schwarzschild–(anti-)de Sitter space-
times. In [1] and [2] a more general case of self-gravitating fluid is also studied. The primary
motivation of these works was cosmological; the authors were mainly trying to determine the
way in which the presence of the cosmological constant influences the possible accretion rate.

In this paper I go a step further and consider relativistic Bondi-type accretion [22, 23] in
the Reissner–Nordström–(anti-)de Sitter spacetime. The motivation behind this choice comes
from the fact that the structure of Reissner–Nordström metrics resembles certain features
characteristic for the Kerr solution that could influence accretion [5]. They share similar
horizon structure [5], for example. Also, the Penrose diagram for a generic case of Reissner–
Nordström–de Sitter spacetime and the Penrose diagram for the Kerr–de Sitter Universe are
similar [6]. These similarities in causal and horizon structures let one suppose that accretion
solutions in both spacetimes may be similar. In fact it is common to treat the Reissner–
Nordström solutions as a toy model for astrophysical black holes [5, 7–9]. Finding general,
radially dominated, stationary accretion flows on the Kerr metric seems to be intractable at
present (cf [10–12]), with the exception of ultra-relativistic potential flows [13, 14]. Inves-
tigating spherically symmetric solutions in Reissner–Nordström–(anti-)de Sitter spacetime
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seems to be a way to avoid (at least temporarily) the main mathematical difficulties of dealing
with metrics that are not spherically symmetric. I believe, however, that steady Bondi-type
accretion in the Kerr spacetime and in Reissner–Nordström-type spacetimes could share some
features of common behaviour, at least qualitatively.

Reissner–Nordström–de Sitter black holes can also be considered in the context of anti-
de Sitter/conformal field theory correspondence [15, 16]. The thermodynamical properties of
Reissner–Nordström–(anti-)de Sitter black holes have been the subject of numerous inves-
tigations [17–20].

Very recently, Chaverra and Sarbach presented another analysis of Bondi-type accretion
flows on essentially arbitrary, spherically symmetric metrics [21]. The solutions discussed in
this paper fall in their class. Of course, by specializing in a narrower set of Reissner–
Nordström–(anti-)de Sitter spacetimes I was able to obtain much more detailed information
about the corresponding accretion solutions.

The order of this paper is as follows. In section 2 I introduce the Reissner–Nordström–

(anti-)de Sitter metric and specify the coordinate system. Section 3 introduces general
equations of the flow. In section 4 I discuss the solutions corresponding to different iso-
thermal test fluids. I show, that for some of them it is possible to obtain analytic solutions and
plot them in a phase diagram of the velocity vs. radius. It is shown that for subrelativistic fluid
and negative cosmological constant it is possible to obtain closed, binocular-like trajectories
(homoclinic solutions). Section 5 summarizes numerical results for polytropic test fluids. In
section 6 I give a short summary of the paper and compare the obtained results. In the
appendix I prove the relation between locations of horizons and sonic points in case of the
radiation fluid in Reissner–Nordström–(anti-)de Sitter spacetime.

2. Reissner–Nordström–(anti-)de Sitter spacetime

In polar coordinates (t, r, θ, f) the metric of the Reissner–Nordström–(anti-)de Sitter
spacetime can be written as [19]:
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where m and Q denote the mass and the charge of a black hole, and Λ is a cosmological
constant. This coordinate system is singular at the solutions (with respect to the radius) of the
equation
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This equation has three real, positive roots at most, corresponding to the Cauchy horizon, the
event horizon and the cosmological horizon. The last one exists only for de Sitter spacetimes
(Λ > 0). In order to obtain a generic case where these three horizons exist (or two in case of
Λ < 0) one imposes constraints on the values of m, Q and Λ. For Λ > 0 there is either Δ = 0,
Q2 � 1/(4Λ) or Δ > 0, Q 1 4 ,2 ( )< L and for Λ < 0 there is Δ � 0, where
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I can get rid of the coordinate system singularities at the black hole horizons by intro-
ducing coordinates with time t′ defined as

dt dt
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The determinant of the metric (5) is g r sin .4 2 q= -

3. Flow in Reissner–Nordström–(anti-)de Sitter spacetime

In this article I consider a perfect fluid characterized by the energy-stress tensor

T e p u u pg , 6( ) ( )= + +mn m n mn

where e denotes the energy density, p is the pressure and uμ is the four-velocity of the fluid.
The Bondi-type (or Michel-type [22, 23]) accretion is a steady, spherically symmetric flow. In
both coordinate systems, all quantities should be functions of radius only, and u θ = uf = 0.
From the normalization of the four-velocity vector I get
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One can check that in both coordinate sytems ut and ut¢ have exactly the same form. I will
describe the motion of fluid using two conservation equations:

u 0, 9( ) ( )r =m
m

e p u u pg 0, 10( )( ) ( ) + + =m
m n mn

where r denotes the baryonic (rest-mass) density. Equation (9) can be rewritten as
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Let me introduce a specific enthalpy h e p .( ) r= + Assuming that the flow is smooth,
equation (10) can be expressed as
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where I used equation (9). In the following I will consider isentropic flows, for which
dh = dp/ρ, and in consequence
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u hu h u hu hu u h 0. 13( ) ( ) ( ) + ¶ = ¶ - G + ¶ =m
m n n

m
m n nm
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n

Taking ν = t′ one may discover that the terms containing Christoffel symbols cancel each
other. This yields

hu 0. 14r t( ) ( )¶ =¢

Note that equations (9) and (10) may be rewritten as equations (11) and (14). Let me point out
that in both of the considered coordinate systems these equations have the same form, and
consequently the obtained functions u rt( ) (u rt ( )¢ ) and u rr( ) are the same in both systems. For
this reason I will not differentiate between ut and ut¢ in what follows.

By integrating equations (11) and (14), and substituting ut¢ with equation (8) one gets
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These equations constitute the starting point of the remaining part of this work.

3.1. Sonic points

Let a denote the local speed of sound. A location in which the four-velocity of the fluid
satisfies a u ur

t
2 2( )= will be called a sonic point (because of the spherical symmetry of the

flow, it is actually a sphere). I will consider barotropic equations of state (h = h(ρ)), so
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Taking into account equation (17), differentiating equations (15) and (16) yields
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From now on quantities with an asterisk will refer to the sonic point. Equation (19) can be
rewritten as
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Equations (15), (16) and (17) have to be supplemented with suitable boundary condi-
tions. In the remaining part of the paper, the values of the density and the speed of sound at
the boundary of the cloud are denoted by ρ∞ and a∞. The radius of the cloud is denoted by
r∞. It can either be finite or infinite depending on the context.

3.2. Hamiltonian dynamical system

Differentiating equations (15) and (16) with respect to r, and using relation equation (17)
leads to
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These equations constitute an autonomous, Hamiltonian two-dimensional dynamical system.
Its orbits are composed of the solutions of equations (15) and (16). The parameter l is
arbitrary, so the reparametrization of this system shall not change its orbits. From
equation (20) it is clear that sonic points are the critical points of this dynamical system.

One may treat the left-hand side of equation (16) as a Hamiltonian H of this system.
Equation (21) may be recreated from this Hamiltonian as
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Plots in this paper will be given in u ur

t
2( ) versus r variables, as they present information

in a more readable way. One may consider the above dynamical systems in u r/ut and r
variables. It will then be described by the Hamiltonian
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This dynamical system has an additional critical point, which is located at the horizon.

4. Accretion of isothermal test fluids

In this chapter I consider the equation of state in the form p = ke where k is constant. In this
case a dp de,2 = so a2 = k. Moreover, equation (17) yields

de

d
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e p e
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By integrating this term from r∞ to any point inside the ball of fluid I get
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(29) yields the following expression for the enthalpy
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In the following I will be especially interested in the flows that pass through the sonic
point, although I also describe non-transonic solutions. Transonic flows are interesting for
many reasons. They are often considered in the context of spherical accretion [1, 2, 22, 23].
Their physical meaning comes from the fact that they maximize the accretion rate [22, 24] and
are global in some cases [22]. This second property also holds for some types of spacetime
and matter considered in this paper.

For a k2 = equation (20) can be written as
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Equation (32) can be solved numerically for any k. On the other hand for k 1, , , , ,3
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it reduces to four degree polynomial equations of u r(r) at most, and can be solved analitically.
In this paper I will consider four cases: k = 1 (ultra-stiff fluid), k 1

2
= (ultrarelativistic fluid),

k 1

3
= (radiation fluid), and k 1

4
= (subrelativistic fluid).

4.1. Solution for k = 1

A fluid obeying the equation of state p = ke for k = 1 is called ultra-stiff fluid. In this case
equation (32) implies that

u
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There exist two solutions u rr ( ) differing only in sign. The expression for r* is much more
complicated. Equation (33) is identical to the expression for the locations of the horizons (2) so
the sonic point has to be located on the horizon. The solution can be obtained analytically, though
the resulting expressions are lengthy. Because of that, I will not provide explicit solutions.

Knowing r* allows one to compute u r
* from equation (20). These two numbers allow one

to obtain the C constant in equation (34); that results in the explicit form of the function u r(r).
Finally, it is possible to get ut(r) from equation (8). Sample plots of u ur

t
2( ) (r) for this and

other cases are shown in figures 3 and 4.
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4.2. Solution for k ¼ 1
2

In this case, describing ultrarelativistic fluid, equation (33) results in
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It is also quartic, similar to the k = 1 case, and therefore I will not provide the explicit
solution. On the other hand, equation (32) becomes a quadratic equation with the solution of
the form

u Cr C r
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Again, one can obtain r* and u r
* from equations (35) and (20), and then use them to calculate

C from equation (36), repeating the procedure from the previous paragraph.
With two solutions (36), for a generic set of parameters I get two possible functions

u ur
t

2( ) describing fluids passing through the sonic point. This corresponds to the standard
nonrelativistic accretion considered by Bondi in [22]. The standard interpretation is that one
of the mentioned functions describes gas accreting onto a black hole, while the second one is
connected withthe so-called stellar wind. Both solutions are shown in figures 3 and 4.

Small changes of the constant C lead to solutions characterized by different values of
entropy. An example of solutions generated for other values of C, and therefore not passing
through the sonic point, is presented in figure 1.

4.3. Solution for k ¼ 1
3

The case k 1

3
= is especially interesting, as it describes radiation fluid. Moreover, for k 1

3
= ,

equation (33) can be reduced to the quadratic equation

r mr Q3 2 0. 372 2 ( )* *- + =

Figure 1. Solutions obtained for isothermal equations of state p = e/2 with m = 1,
Q = 95/100 and Λ = 1/25 for C constant (from equation (36)) equal to 0.146, 0.246
(transonic solution), and 0.346. Dashed vertical lines denote locations of the horizons.
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The critical points are located at

r
m m Q3 9 8

2
. 38

2 2
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Please note that the location of the critical point is independent of the value of the
cosmological constant. The same effect can be observed for the Schwarzschild–(anti-)de
Sitter spacetime [2]. As can be seen in figures 3 and 4 one of these two points is a saddle
point, while the second one seems to be a center point.

The relation between the radial component of the four-velocity ur and r can be described as
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As before one can calculate ur
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Inserting equations (38) and (40) into equation (39) allows one to find the value of the
constant C depending on m, Λ, and Q. Varying the value of C leads to results similar to the
ones for the case of k 1

2
= .

Figure 2. Locations of the horizons and the critical points depending on the
cosmological constant L and the black holeʼs charge Q for the equation of state in a
form p e 3= . Solid, red lines denote Cauchy horizons, dashed, blue lines denote
event horizons, dotted, black lines denote cosmological horizons and a thick, black line
denotes critical points. Different lines correspond to cases with different values of the
cosmological constant L (changing from −16/90 to 1/5). Location of the critical
points does not depend on the cosmological constant.
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There exists a correlation between the locations of the critical points for k 1

3
= and the

horizons of a black hole, which is shown in figure 2. It can be proven that if there exist three
horizons, one of them must be above both critical points, one of them must be between the
critical points, and one must be below both critical points. For Λ < 0, when there exist two
horizons, one is below both critical points and one is located between them. The proof can be
found in the Appendix. This property implies that the horizons of two types can overlap each
other only at the critical points.

4.4. Solution for k ¼ 1
4

When k ,1

4
= equations (33) and (32) yield

r r
m

r
Q

6

7

2

5

2
0, 414 2

2
( )* * *

L
+ - + =

m

r

Q

r
r u Cr u1

2

3
. 42r r

2

2
2 2

2
2( ) ( )

⎛
⎝⎜

⎞
⎠⎟- + -

L
+ =

By repeating the procedure from previous paragraphs one can obtain the function u u r .r
t

2( ) ( )
Again, varying the constant C in equation (42) results in solutions that are similar to those
obtained in the previous case.

The solutions are shown in figures 3 and 4. One can observe that in this case it is possible
to get a closed trajectory on a plot u ur

t
2( ) versus r, as depicted in figure 4. Further discussion

can be found at the end of the next section.

5. Accretion of polytropic test fluids

In this section I assume a polytropic equation of state of the form p K ,r= G where K and Γ

are constants. For this equation of state

Figure 3. Transonic solutions obtained for the isothermal equation of state p=ke with
m = 1, Q = 95/100 and Λ = 1/100. Dotted vertical lines denote the locations of
horizons.
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h
a

1

1
. 43

2
( )=

G -
G - -

Together with equation (16) it gives

r u

a

1

1
const, 44

m

r

Q

r
r2

3
2 2

2

2

2 ( )
( )

- + - +

G - -
=

L

and in particular

a
m

r

Q

r
r u

a
m

r

Q

r
r u

1 1
2

3

1 1
2

3
. 45

r

r

2
2

2
2 2

2
2

2
2 2( )

( ) ( )

( ) ( )

G - - - + -
L

+

= G - - - + -
L

+

¥ ¥
¥ ¥

¥

Using equation (17) one can find that for the polytropic equation of state

a

a

a

a

1

1
. 46

2

2

2

2

1
1

( )
⎛
⎝⎜

⎞
⎠⎟r r=

G - -
G - -¥

¥

¥
G-

This, in connection with equation (15), yields

u u
r

r

a

a

a

a

1

1
. 47r r

2

2

2

2

2

2

1
1

( )
⎛
⎝⎜

⎞
⎠⎟=

G - -
G - -¥

¥ ¥

¥

G-

Combining equations (45) and (47) one gets

a
m

r

Q

r
r B

a
m

r

Q

r
r u

1 1
2

3

1 1
3

2 2 2
, 48r

2
2

2
2

2
2

2
2 2

( )

( ) ( ) ( )

*

* *
* *

G - - - + -
L

+

= G - - - + -
L

+

¥ ¥
¥

¥

Figure 4. Transonic solutions obtained for the isothermal equation of state p = ke with
m = 1, Q = 95/100 and Λ = −1/100. Dotted vertical lines denote the locations of
horizons.
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where

B u
r

r

a

a

a

a

1

1
. 49r 2

4

4

2

2

2

2

2
1

( ) ( )
⎛
⎝⎜

⎞
⎠⎟*

* *

*
=

G - -
G - -¥ ¥

¥
G-

Substituting a 2
* and u r

* with formulas taken from equation (20), one gets equation (49) with
r* as the only one unknown. Solving this equation with boundary values of r¥ and a¥ gives
the positions of the critical points r* and, as a result, the values of u ,* and a2*. Knowledge of
the values of r∞, a∞, r*, u*, and a 2

* allows one to determine u r
¥ from equation (47). Finally,

one can calculate the constant in equation (44) at r∞. Combining this formula with
equation (47) provides an implicit formula for u r(r). Solving it numerically and using
equation (8) one can get the function u u r .r

t
2( ) ( ) Similarly to the case of isothermal fluid one

may variate the constant B from equation (49) obtaining solutions that are not transonic.
Figure 5 shows a sample plot of the function u u rr

t
2( ) ( ).

Figure 5 demonstrates that it is possible to get subsonic solutions that form closed
(homoclinic) orbits. One can obtain a trajectory in a binocular shape consisting of two
closed curves—one above the sonic point and one below it, lying partially under the event
horizon. The transonic solutions also form a closed orbit, similar to the one obtained for
isothermal fluid with k 1

4
= . It has been known that in the case of the Reissner–Nordström

spacetime one can obtain flow trajectories that are closed near the Cauchy and event horizons
[14]. On the other hand, the possibility of getting trajectories closing for radii far from the
event horizon in the Schwarzshild–anti-de Sitter spacetime has been revealed in [2]. It sug-
gests that in the presence of both cosmological constant and charge it should be possible to
get trajectories closed from both sides. The results described here confirm this to be the case
in special cases of subrelativistic isothermal flow or polytropic flow.

6. Summary

In this paper I considered isothermal and polytropic flows in the Reissner–Nordström–(anti-)
de Sitter spacetime. I described the way to find sonic points and to obtain the solutions
u u rr

t
2( ) ( ). One may think about these sonic points as critical points of a Hamiltonian

dynamical system connected with this flow. I investigated specific cases of isothermal test
fluids: so-called ultra-stiff fluid, ultrarelativistic fluid, radiation fluid, and subrelativistic fluid.
In these cases the problem of solving the equations of motion of the fluid can be reduced to
solving a polynomial of at most four degree. Exemplary plots of the flows were showed. I
proved the correlation between positions of the horizons and the sonic points for the radiation
fluid. Polytropic flows were also studied. It transpired that in case of the subrelativistic
isothermal flow or polytropic flow it is possible to obtain closed, binocular-like trajectories in
u u rr

t
2( ) ( ) phase space. This property is consistent with previous results considering space-

times with either non-zero cosmological constant [2] or charge [14], where trajectories were
closing respectively in the neighbourhood of the cosmological horizon and the Cauchy
horizon.

This is especially interesting in the context of rotating black holes. As it was mentioned
in the Introduction, there exist qualitative similarities between Reissner–Nordström spacetime
and the Kerr spacetime. The obtained results reveal interesting properties of the accretion in
the Reissner–Nordström case. I believe that at least some of them can be present in Bondi-
type accretion on rotating black holes.
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This paper fits into current research on closed flow trajectories (cf. [2, 4, 14, 21]). It
appears, that whether solutions of this type exist depends on both the spacetime and the
equation of state of the fluid. In the case of the Reissner–Nordström–anti-de Sitter spacetime
it is relatively easy to obtain such solutions—they appear to exist for matter models that can
be interpreted as a gas of massive particles [4]. In other types of spacetimes it may be not so
common, for example, for a pure Schwarzschild solution one may have closed trajectories in
more exotic case of polytropes with a high polytropic index [21]. The dependence of the
existence of the closed solutions of considered spacetime and fluid types is a problem that
needs further investigation. Of course it would be especially enlightening to compare results
obtained here to corresponding results for Kerr spacetimes, which unfortunately do not exist
so far.
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Appendix

In this appendix I prove the relation between locations of the horizons and critical points that
was discussed in section 4.3. In the generic case of the Reissner–Nordström–de Sitter
spacetime, when there exist three horizons, one of them is always located above both critical
points, one is between the critical points, and one is below both critical points. Similiar
property also holds for the Reissner–Nordström–anti-de Sitter spacetime: when there exist
two horizons, one of them is between the critical points, and the second one is below both
critical points.

Figure 5. Solutions for polytropic flow characterized by m = 1, Q = 9/10,
3.535 10 ,4L = - ´ - Γ = 4/3, r∞ = 106, and a 0.2.2 =¥ The plot presents a transonic

(obtained for B = B0) and two non-transonic solutions.
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In order to prove it, let me consider two polynomials:

f r r r mr
3

2 , A.14 2( ) ( )=
L

- +

g r r mr
1

2

3

2
. A.22( ) ( )= - -

These functions are formulas for Q2 derived from the equations (2) and (37). For fixed m and
L, the function f r( ) yields a value of Q2 for which there is a horizon in r . Similarly the
function g r( ) yields Q2 for which there is a critical point in r . Inverses of these functions were
plotted in figure 2. I consider behaviour of these polynomials for r 0> and Q 02 > . The
function f r( ), as a quartic function, may have at most three extrema. The function g r( ) is a
quadratic function with a maximum at r m3 2= . Sample plots of functions f r( ) and g r( ) are
presented in figure A1. As I demand the existence of three horizons in 0L > case and two
horizons in 0L < case, I am interested in situations when for r 0> and a fixed value of Q2

there are respectively three and two values of r such that f r Q2( ) = .
By differentiating f r( ) one can obtain a condition for extrema of f :

f r r r m
4

3
2 2 0. A.33( ) ( )¢ =

L
- + =

The case when an extremum is an inflection point ( f r 0( )¢¢ = ) will be considered later.
Subtracting equations (A.1 and A.2) results in

f r g r
r

r r m
4

4

3
2 2 . A.43( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟- =

L
- +

It implies, that for r 0¹ functions f r( ) and g r( ) have f r g r( ) ( )= at extrema of f r( ). Both
functions f r( ) and g r( ) vanish at r 0= . Moreover one has f m m g0 2 3 2 0( ) ( )¢ = > = ¢ . Let
me now consider the two cases.

At first I will assume 0L > . I demand the existence of three horizons, so for r 0> the
function f r( ) has to have two extrema (it is clear that it cannot have more extrema, as
f 0 0( )¢ > ). Because f g0 0 0( ) ( )¢ > ¢ > and 0L > the first of these extrema will be a
maximum (at r1) and the second one will be a minimum (at r2). Of course f r g r1 1( ) ( )= and

Figure A1. Plots of f(r) (dashed) and g(r) (solid) for m = 1 and sample Λ values.
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f r g r2 2( ) ( )= . It means that the function f r( ) is increasing for r r1< . Then it is decreasing
until r reaches r2. After that f r( ) goes to infinity. Three horizons can exist only, if a fixed Q2

(such that for the horizons f r Q2( ) = ) satisfies r Q r2
2

1< < . It implies, that one of the
horizons is located on the left side of the parabole g r( ) (below the critical points), one inside it
(between the critical points), and one on the right side (above the critical points).

A similar argument works in the case of 0L < . This time I demand the existence of two
horizons in the half-plane r 0> . Again one has f g0 0 0( ) ( )¢ > ¢ > . Because

f rlimr ( ) = -¥¥ , the graph f r( ) has to cross the graph g r( ) in a point r such that
r m0 3 2< < . Then f r( ) starts decreasing and cannot cross g r( ) again. In the opposite

situation it would have a minimum and then would start increasing, while g r( ) would be still
decreasing. The function f r( ) could not change the sign of derivative and one would have

f rlimr ( ) = ¥¥ , what stays in a contradiction with the assumption that 0L < . It means,
that there exists at most two horizons— one below both critical points and one between them.

The function f r( ) does not have an extremum in the point described by equation (A.3), if
additionally f r 0( )¢¢ = in the same point. Both of these conditions lead to m2 9 2( )L = and
the occurrence of a inflection point at r m3 2= (the maximum of the function g r( )).
Obviously this is possible only in the Reissner–Nordström–de Sitter spacetime. In this case
there is only one horizon (which is located below both critical points).
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