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Pseudovector and pseudoscalar spin-dependent interactions in atoms
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Hitherto unknown elementary particles can be searched for with atomic spectroscopy. We conduct such a
search using a potential that results from the longitudinal polarization of a pseudovector particle. We show that
such a potential, inversely proportional to the boson’s mass squared, V ∝ 1/M2, can stay finite at M → 0 if
the theory is renormalizable. We also look for a pseudoscalar boson, which induces a contact spin-dependent
potential that does not contribute to new forces searched for in experiments with macroscopic objects, but
may be seen in atomic spectroscopy. We extract limits on the interaction constants of these potentials from
the experimental spectra of antiprotonic helium, muonium, positronium, helium, and hydrogen.
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I. INTRODUCTION

A possible explanation for various outstanding puzzles in
physics, such as the origins of dark matter [1] and dark energy
[2,3], the strong-CP puzzle [4], and the hierarchy puzzle [5], is
the existence of beyond-the-standard-model (exotic) bosons.
The exchange of such virtual bosons gives rise to an interac-
tion potential. This motivates experimental searches for such
potentials in nuclear, atomic, and molecular phenomena [6–8].

Recent work [9] derived a list of these potentials, sorted by
types of interactions (as opposed to Ref. [10], which classi-
fied the potentials by their spin-momentum structure). These
are nonrelativistic potentials in coordinate space, induced by
the exchange of spin-zero or spin-1 exotic bosons between
fermions. Reference [9] lists two types of potentials that were
omitted in Ref. [10]:

(a) A potential proportional to the inverse square of the
intermediate spin-1 boson mass, originating from its longitu-
dinal polarization.

(b) Potentials that include the contact term δ(r), with r
being the distance between the interacting fermions.

Point (a) is important for the study of exotic bosons
with pseudovector-pseudovector interactions. Point (b) is of
concern when an experimental search for new bosons is con-
ducted in atomic systems, where a contact interaction can play
a vital role. Next, we discuss each of these potentials and
the methodology of using them to obtain constraints on the
properties of new bosons. Then, in Sec. III we use these po-
tentials to obtain limits on boson mass and coupling strength
in various atomic systems. We conclude in Sec. IV.

II. PROPERTIES OF PSEUDOVECTOR
AND PSEUDOSCALAR POTENTIALS

A. Potential proportional to 1/M2

Among the nine potentials derived in Ref. [9] which de-
scribe the exchange of an exotic boson between two fermions
or macroscopic objects, the pseudovector-pseudovector po-
tential is the only velocity-independent one with a term
inversely proportional to the boson mass squared:

VAA(r) = −gA
1gA

2 σ1 · σ2
e−Mr

4πr︸ ︷︷ ︸
V2

−gA
1gA

2m1m2

M2

[
σ1 · σ2

[
1

r3
+ M

r2
+ 4π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

[
3

r3
+ 3M

r2
+ M2

r

]]
e−Mr

4πm1m2︸ ︷︷ ︸
V3

. (1)

Here, gA are dimensionless interaction constants that
parametrize the pseudovector interaction strength, σ1 and σ2

denote the Pauli spin-matrix vectors of the two fermions, m1

and m2 are the masses of the fermions, M is the mass of the
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boson, r̂ is the unit vector directed from fermion 2 to fermion
1, and r is the distance between the two fermions. We work in
natural relativistic units, h̄ = c = 1. Parts of the potentials de-
fined as V2 and V3 link these terms to the definitions of the po-
tentials described in Ref. [10]. While deriving VAA(r), we have
retained the leading-order spin-dependent terms; that is why
operators such as V8 in Ref. [10] do not show up in Eq. (1).
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To find the interaction for composite systems, one should
sum the interaction (1) over all fermion constituents (elec-
trons, protons, and neutrons), each with its own interaction
constants. The result will be proportional to the nuclear or
atomic spins, similar to the usual magnetic interaction be-
tween atoms in a crystal. Examples of composite systems used
in experimental searches for spin-dependent potentials can be
found in Refs. [6,11–14].

The V3 term in Eq. (1) arises from a longitudinal polar-
ization mode for a massive spin-1 boson (which gives the
term qνqμ/M2 in the massive vector boson propagator, qν

being the four-momentum transferred between the fermions)
and nonconservation of the axial-vector current (qνJa

ν �= 0)
[9,15,16]. This term appears to have a singularity in the limit
of the boson mass M → 0. However, there should be no
divergence in a renormalizable theory. Let us reflect on the
following scenario based on the standard-model Lagrangian.
We will see that as M → 0, the combination of parameters
gA

1gA
2/M2 remains finite. Consider Z-boson exchange between

two fermions, where, in this case, the Z boson has purely
pseudovector interactions and does not mix with the photon
[sin(θW ) = 0, where θW is the weak mixing angle]. Then, the
Z-boson mass is given by M = gv/2, where v is the Higgs
vacuum expectation value and g is the (universal) electroweak
interaction constant [17]. The ratio g2/M2 = 4/v2 remains
finite as M → 0, since the right-hand side is a constant. For v

to be nonzero the fermion mass m f = f v/
√

2 ( f is a species-
dependent interaction constant) should be nonzero. Thus it is
appropriate to place constraints on gA

1gA
2/M2 of the V3 term

in Eq. (1). The association with renormalizability (with the
Higgs mechanisms of mass generation) makes this case wor-
thy of experimental study.

In the special case of a massless vector boson, M = 0,
only the V2 term remains in Eq. (1) because a massless vector
boson does not have a longitudinal polarization mode, and so
the V3 term does not appear in this case.

B. Bounds on contact terms

Searches for exotic spin-dependent forces have been con-
ducted both in atomic-scale experiments and in macroscopic-
scale experiments [11,14,18–22]. To search for new bosons,
one may look for the difference between observations and the-
oretical predictions in the spectrum of an atomic, molecular,
or nuclear system [23–25]. Such difference can be due to an
exotic-boson exchange between the system’s constituents.

Unlike in macroscopic searches for new bosons, a contact
term in a potential is of significance in atomic systems. Let
us focus on determining a bound on the properties of spin-
zero or spin-1 exotic bosons by using a potential that includes
the contact term δ(r), such as the one appearing in Eq. (1)
and other potentials in Ref. [9]. Contact terms were omitted in
Ref. [10] but appeared in Refs. [4,15].

FIG. 1. Constraints for the interaction between an electron and
an antiproton, at 90% confidence level, on the coupling constants
as a function of boson mass. We are using states in the (n, l ) =
(37, 35) manifold of antiprotonic helium p̄He+. The plots are based
on the experimental data from Ref. [26], theoretical calculations from
Ref. [27], and our numerical estimate of the spin-dependent contri-
bution. (a) Using the Vpp potential of Eq. (6) in numerical integration.
For M < 102 eV the limit is at 0.0025. (b) Using VAA in Eq. (1). In
the range M < 102 eV the bound is gA

e gA
p̄/M2 � 1.3 × 10−18 eV−2.

In the vicinity of M = 5 × 104 eV the bound is at 4.7 × 10−19 eV−2.
This and other bounds are summarized in Table I.

As in Ref. [23], we compare experimental results for the
hyperfine structure of the antiprotonic helium [26] with the-
oretical QED-based calculations for this system [27]. The
difference between experiment and theory �E at 90% con-
fidence level determined from∫ +�E

−�E

1√
2πσ

e−(x−μ)2/(2σ 2 )dx = 0.9, (2)

where μ is the mean difference between theoretical and ex-
perimental transition energies and σ is the total uncertainty,
σ 2 = σ 2

theor + σ 2
expt. To avoid misunderstanding, note that here

theory uncertainty means uncertainty in the results of the
calculations of the transition frequencies within the standard
model.

We focus on a transition with the antiproton in the (n, l ) =
(37, 35) state and the electron in the (1, 0) state (where
the first number is the principal quantum number and the
second one is the orbital angular momentum). Let us con-
sider the pseudoscalar-pseudoscalar potential, which appears
in Ref. [23] and contains a contact term:

Vpp(r) = −gp
1gp

2

4

[
σ1 · σ2

[
1

r3
+ M

r2
+ 4π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

[
3

r3
+ 3M

r2
+ M2

r

]]
e−Mr

4πm1m2︸ ︷︷ ︸
V3

. (3)
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TABLE I. Summary of the bounds obtained on properties of hypothetical bosons using various atomic systems.

Transition Bound In the range In Figure

Antiprotonic helium gp
egp

p̄ � 0.0025 M < 102 eV 1(a)

(35.5, 35, 34)–(34.5, 34, 34) gA
e gA

p̄ � 1.3 × 10−18 (M/eV)2 M < 102 eV 1(b)

Positronium gp
e− gp

e+ � 7.9 × 10−6 M < 102 eV 7
13S1–11S0 gp

e− gp
e+ � 1.0 × 10−9 M/eV M > 105 eV 7

gA
e− gA

e+ � 7.5 × 10−18 (M/eV)2 M < 102 eV 2(a)
gA

e− gA
e+ � 2.5 × 10−18 (M/eV)2 M > 105 eV 2(a)

Positronium gp
e− gp

e+ � 7.2 × 10−5 M < 102 eV 2(b)
13S1–23S1 gp

e− gp
e+ � 9.6 × 10−9 M/eV M > 105 eV 2(b)

gA
e− gA

e+ � 6.9 × 10−17 (M/eV)2 M < 102 eV 2(c)
gA

e− gA
e+ � 2.3 × 10−17 (M/eV)2 M > 105 eV 2(c)

Muonium gp
e−gp

μ+ � 2.1 × 10−8 M < 102 eV 8

13S1–11S0 gp
e− gp

μ+ � 1.4 × 10−12 M/eV M > 105 eV 8

gA
e− gA

μ+ � 9.5 × 10−23 (M/eV)2 M < 102 eV 3

gA
e− gA

μ+ � 3.2 × 10−23 (M/eV)2 M > 105 eV 3

Helium gp
e− gp

e− � 4.4 × 10−8 M < 102 eV 9
23P2–23P1 gA

e− gA
e− � 3.5 × 10−20 (M/eV)2 M < 102 eV 4

Hydrogen gp
e− gp

p � 2.1 (M/eV)−2 M < 102 eV 10

8Ehfs(2s) − Ehfs(1s) gp
e− gp

p � 1.8 × 10−15 (M/eV)2 M > 105 eV 10

gA
e− gA

p � 5.3 × 10−16 M < 102 eV 5

gA
e− gA

p � 4.5 × 10−31 (M/eV)4 M > 105 eV 5

We deduce the contribution of this potential to the tran-
sition energies of the antiproton in antiprotonic helium. The
difference between the expectation values of Vpp in the two
states gives an estimate of the energy shift between the states
caused by Vpp. The contact term contribution is of the form
gp

1gp
2C, where C is a constant. Other terms in the expectation

value of Vpp vary with boson mass. We denote such terms
by gp

1gp
2�U (M ). Assuming that the difference between theory

and experiment �E at 90% confidence level [Eq. (2)] is due
to Vpp, we may write∣∣gp

1gp
2(C + �U (M ))

∣∣ � |�E |, (4)

which results in

∣∣gp
1gp

2

∣∣ �
∣∣∣∣∣

�E

(C + �U (M ))

∣∣∣∣∣. (5)

The left-hand side in this expression is the ordinate in
Fig. 1(a). In the regime C � �U (M ) the right-hand side
would be a constant independent of M. However, in the limit
of large M we obtain �U (M ) → −C and nearly cancel it.
This may lead to a numerical instability at large M, discussed
in Appendix A.

The solution we propose is to use a different form of
the potential in numerical calculations, a form which ap-
peared during the derivation of the potentials and contains the
operator ∇. Such a form for Eq. (3) is

Vpp(r) = gp
1gp

2

16πm1m2
(σ1 · ∇)(σ2 · ∇)

(
e−Mr

r

)
. (6)

Then, calculating expectation values with Eq. (6), we use
integration by parts to avoid possible numerical issues of the

contact term. From integration by parts of Eq. (6) we see that
there is no physical problem, only a numerical one.

In Eq. (3), the correct large-M asymptotic is achieved due
to delicate cancellation of different terms. This is hard to
achieve in a numerical calculation. However, in Eq. (6) there
is only one term, so no cancellation is required and the cor-
rect asymptotic is immediately seen [e−Mr/r → δ(r)4π/M2].
Using Eq. (6) instead of Eq. (3) and integrating by parts,
we arrive at Fig. 1(a)—a bound on the | gp

e−gp
p̄ | coupling

constants as a function of boson mass. Note that in Ref. [23]
the bound was placed on the coefficient f3, which relates to
the pseudoscalar coupling constants in the following way [10]:

f3 = − gp
egp

p̄me

4mp̄
, where me is the mass of the electron and mp̄ is

the mass of the antiproton.
We sort the potentials according to the type of mediating

particle (scalar, vector, etc.) and place limits on their coupling
constants [9]. In this form the limits may be compared with
the astrophysical, dark matter search and particle accelerator
limits.

III. RESULTS

A. New bound using 1/M2 term

We use the properties discussed above to obtain a bound
based on Eq. (1) for electron-antiproton interaction in antipro-
tonic helium. In order to avoid numerical issues as M → ∞,
the form of Eq. (6) can be used in calculating expectation
values for the exclusion plot. Thus we construct Fig. 1(b). We
identify the bound produced by the term proportional to 1/M2

in VAA. Bounds on VAA of this type may be obtained using the
results in Refs. [24,28–32], or using any other scheme that is
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FIG. 2. Constraints for the electron-positron interaction, at 90%
confidence level, on the coupling constants as a function of boson
mass. (a) The plot is based on experimental [34–36] and theoretical
[37] values for the 13S1–11S0 ground-state transition in positronium
[33] and our numerical estimate of the spin-dependent contribution.
(b) The plot is based on experimental [38] and theoretical [39,40]
values for the 13S1–23S1 transition in positronium [32] and our nu-
merical estimates of the spin-dependent contribution. The bound is
based on the Vpp potential of Eq. (6). (c) Using VAA in Eq. (1). Same
transition as in (b).

able to constrain V3. Note further that the bound in Fig. 1(b) is
for a semileptonic spin-dependent interaction between matter
(electron) and antimatter (antiproton).

The bound in Fig. 1(b), as well as bounds in Figs. 2–5
which use VAA, are derived in the following way. The equiva-
lent of Eq. (4) for VAA is

∣∣∣∣∣gA
1gA

2

(
�U2(M ) + 1

M2
�Ũ3(M )

)∣∣∣∣∣ � �E , (7)

where �U3(M ) = �Ũ3(M )/M2; �U2(M ) and �U3(M ) are
related to V2 and V3 per Eq. (1). The bound in Fig. 1(b) is

FIG. 3. Constraints for the interaction between an antimuon and
an electron, at 90% confidence level, on the coupling constants as
a function of boson mass, using VAA in Eq. (1). The plot is based
on experimental [41] and theoretical [42,43] values for the hyperfine
ground-state transition in muonium [32] and our numerical estimate
of the spin-dependent contribution.

from ∣∣∣∣∣
gA

1gA
2

M2

∣∣∣∣∣ �
∣∣∣∣∣

�E

(M2�U2(M ) + �Ũ3(M ))

∣∣∣∣∣. (8)

The term �Ũ3(M ) dictates the shape of the plot for small
mass M, while M2�U2(M ) dictates the shape for large mass
M. The ordinates differ between Figs. 1(a) and 1(b) since
Eqs. (5) and (8) are used, respectively. The scale of each figure
is chosen to highlight the shape of each bound.

B. Positronium, muonium, helium, and hydrogen

We obtain a bound on the potential in Eq. (1) using
the ground-state 13S1–11S0 transition in positronium. As in
Ref. [33], we take |�E | � 5 MHz [11]. The result appears
in Fig. 2(a), and its bound is described in Table I. The shape
of the bound line is explained by the fact that V3 dominates
for small masses M, while V2 dominates for large masses M
where M2�U2(M ) results in a constant (see Appendix B).

We can get a bound on gA
e−gA

e+ from Eq. (7), instead of a
bound on gA

e−gA
e+/M2. Then we can compare the bound with

the result in Ref. [33] and see that we have a more stringent

FIG. 4. Constraints for the interaction between electrons, at
90% confidence level, on the coupling constants as a function of
boson mass, using VAA in Eq. (1). The plot is based on experi-
mental [44] and theoretical [45] values for the 23P2–23P1 transition
in helium [24] and our numerical estimate of the spin-dependent
contribution.
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FIG. 5. Constraints for the electron-proton interaction, at 90%
confidence level, on the coupling constants as a function of bo-
son mass, using VAA in Eq. (1). The plot is based on experimental
[43,46–55] and theoretical [56] values for the 8Ehfs(2s) − Ehfs(1s)
difference between hyperfine transitions in hydrogen [57] and our
numerical estimate of their spin-dependent contributions. Such a
difference cancels the contribution of the contact terms, since the
electron density on the proton in the 2s state is eight times smaller
than in the 1s state. The vertical asymptote at 1450 eV is due to a
cancellation in the denominator of Eq. (8) for this plot.

bound in the regime of M 	 �Ũ3/�U2. This is due to the fact
that, in contrast to Ref. [33], we use a potential containing the
1/M2 term.

In Figs. 2(b) and 2(c) we present bounds on pseudoscalar
and pseudovector electron-positron interaction based on the
13S1–23S1 transition in positronium. We take �E = 10 MHz
for this transition [32]. In Appendix B we give general analyt-
ical results for the potentials’ expectation values in 1s and 2s
states.

The ground-state hyperfine transition is measured accu-
rately also in the atomic system of muonium. Using this
transition, we obtain a bound on the potential in Eq. (1). As in
Ref. [32], we take |�E | � 5 × 10−4 MHz. The result appears
in Fig. 3.

In Fig. 4 we obtain a bound on pseudovector coupling
constants and boson mass from the 23P2–23P1 transition of
helium, using the results in Ref. [24], where |�E | � 3.7 kHz.

Finally, in Fig. 5 we use spectroscopic transitions in hy-
drogen to obtain a bound on electron-proton pseudovector
interaction. Following Ref. [57], we take the difference (at
90% confidence level) between theoretical and experimental
results |�E | � 0.102 kHz for 8Ehfs(2s) − Ehfs(1s), where Ehfs

stands for the energy of the hyperfine transition in a particular
state.

IV. CONCLUSION

One can search for new elementary particles using atomic
spectroscopy. In this paper, we conduct such a search using
a potential that results from the longitudinal polarization of
a pseudovector particle. We also consider the pseudoscalar
potential that includes a contact spin-dependent term, which
does not contribute to new forces searched for in experi-
ments with macroscopic objects, but does contribute in atomic
spectroscopy. We extract limits on the interaction constants
of pseudovector and pseudoscalar particles from the experi-
mental spectra of antiprotonic helium, muonium, positronium,
helium, and hydrogen. The results are summarized in Table I.
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APPENDIX A: EXCLUSION PLOT WITH CONTACT TERM

Direct application of Eq. (3) of the main text leads to Fig. 6,
where apparently we obtained a bound on the coupling con-
stants for any boson mass M, as the bound edge is horizontal
on the right side of the plot. Nonetheless, this bound plot
is incorrect for boson masses much larger than the fermion
masses, due to numerical reasons. The problem is that the
calculation for large masses M is affected by absence of the
proper cancellation between different terms in Eq. (3) of the
main text. Therefore in Fig. 6 we colored in white the bound
where the result is inaccurate.

By focusing on M < m1, m2 (where m1 and m2 are fermion
masses) we avoided the issue of finite numerical precision
at large boson masses in the exclusion plot of Fig. 3(b) in
Ref. [23]. This ensured that the plot in Ref. [23], which in-
cludes the contribution of the contact term, is correct in the
range considered.

FIG. 6. Constraints for the interaction between an electron and
an antiproton, at 90% confidence level, on the coupling constants as
a function of boson mass, using the Vpp potential with the contact
term [Eq. (3) of the main text] in numerical integration. The bound
for large masses M is affected by absence of the proper cancellation
between different terms in Eq. (3) of the main text. The affected
region on the top right is shown in white above a dashed line. The
shaded area is associated with the shaded area in Fig. 1(a) of the
main text. See Fig. 1(a) for the accurate bound.
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FIG. 7. Constraints for the electron-positron interaction, at 90%
confidence level, on the coupling constants as a function of boson
mass using Eq. (3) of the main text. The plot is based on experimental
[34–36] and theoretical [37] values for the 13S1–11S0 ground-state
transition in positronium [33] and our numerical estimate of the spin-
dependent contribution.

APPENDIX B: ANALYTICAL DERIVATION
OF EXPECTATION VALUES

Consider the potentials without their coupling constants
coefficients

V2 = (σ1 · σ2)
e−Mr

r
,

V3 =
[
σ1 · σ2

(
M

r2
+ 1

r3
+ 4π

3
δ3(r)

)

− (σ1 · r̂)(σ2 · r̂)

(
M2

r
+ 3M

r2
+ 3

r3

)]
e−Mr .

We need the impact of these potentials on the energy differ-
ence between the 13S1 and 23S1 states in hydrogen, muonium,
and positronium, which are spherically symmetric. This al-
lows us to average the V3 potential over angles, using 〈r̂i r̂k〉 =
1
3δik . Note also that 〈σ1 · σ2〉 = 1 for the total spin S = 1
states. As a result we only need integration of the potentials

〈V2〉 = e−Mr

r
, 〈V3〉 = 1

3

(
4πδ(r) − M2

r

)
e−Mr,

FIG. 8. Constraints for the interaction between an antimuon and
an electron, at 90% confidence level, on the coupling constants as a
function of boson mass, using Vpp in Eq. (3) of the main text. The plot
is based on experimental [41] and theoretical [42,43] values for the
hyperfine ground-state transition in muonium [32] and our numerical
estimate of the spin-dependent contribution.

FIG. 9. Constraints for the interaction between electrons, at 90%
confidence level, on the coupling constants as a function of boson
mass, using Vpp in Eq. (3) of the main text. The plot is based on exper-
imental [44] and theoretical [45] values for the 23P2–23P1 transition
in helium [24] and our numerical estimate of the spin-dependent
contribution.

with the squared hydrogenlike wave functions for 1s and 2s
orbitals

|ψ1(r)|2 = k3e−2kr

π
, |ψ2(r)|2 = k3e−kr

8π

(
1 − kr

2

)2

, (B1)

where k = 1/a for hydrogen and muonium and k = 1/2a for
positronium, where a is the Bohr radius. For hydrogenlike
ions k = Z/a. The results are

〈ψ1|V2|ψ1〉 = 4k3

(2k + M )2
,

〈ψ2|V2|ψ2〉 = k3(k2 + 2M2)

4(k + M )4
, (B2)

〈ψ1|V3|ψ1〉 = 16k4(k + M )

3(2k + M )2
,

〈ψ2|V3|ψ2〉 = k3

6
− k3M2(k2 + 2M2)

12(k + M )4
. (B3)

FIG. 10. Constraints for the electron-proton interaction, at 90%
confidence level, on the coupling constants as a function of boson
mass, using Vpp in Eq. (3) of the main text. The plot is based on
experimental [43,46] and theoretical [56] values for the 8Ehfs(2s) −
Ehfs(1s) difference between hyperfine transitions in hydrogen [57]
and our numerical estimate of their spin-dependent contributions.

022812-6



PSEUDOVECTOR AND PSEUDOSCALAR SPIN-DEPENDENT … PHYSICAL REVIEW A 105, 022812 (2022)

APPENDIX C: ADDITIONAL PLOTS OF BOUNDS
ON PSEUDOSCALAR INTERACTIONS

In Figs. 7–10 we show several plots referred to in Table I of the main text.
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