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The exchange of spin-0 or spin-1 bosons between fermions or spin-polarized macroscopic objects gives rise
to various spin-dependent potentials. We derive the coordinate-space nonrelativistic potentials induced by the
exchange of such bosons, including contact terms that can play an important role in atomic-scale phenomena,
and correct for errors and omissions in the literature. We summarize the properties of the potentials and
their relevance for various types of experiments. These potentials underpin the interpretation of experiments
that search for new bosons, including spectroscopy, torsion-pendulum measurements, magnetometry, parity
nonconservation, and electric dipole moment experiments.
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I. INTRODUCTION

There are four known types of interactions in nature—
electromagnetic, strong, weak, and gravitational. Still, addi-
tional interactions may exist. For example, the exchange of a
new spin-0 or spin-1 boson between two fermions produces
a plethora of “exotic” interaction potentials [1]. Yet-to-be-
discovered bosons may solve several outstanding puzzles. The
axion (a spin-0 boson) may explain the apparent absence of
CP violation in strong interactions [2–9]. The observed dark
matter [10] and dark energy [11] may also be explained by the
existence of new bosonic particles. The possibility to solve
such central questions motivates numerous searches for new
bosons. Recent examples of searches for new forces mediated
by such bosons can be found in Refs. [12–52].

In Ref. [53] (see also the earlier papers [54,55]), the three
distinct nonrelativistic potentials arising from the exchange of
a spin-0 boson between spin-polarized and spin-unpolarized
bodies were presented. Later, Ref. [1] expanded this list to
include additional long-range nonrelativistic potentials aris-
ing from the exchange of spin-0 bosons and spin-1 bosons
(such as Z ′ bosons and paraphotons). These potentials were
presented in Ref. [1] in a mixed momentum- and coordinate-
space representation, which is convenient when the relative
velocity between two bodies can be described by a classi-
cal vector, such as in the macroscopic-scale experiments of
Refs. [28,35,42,52]. However, in phenomena that arise on the
(sub)atomic scale, the relative velocity between two particles
can no longer be described by a classical vector, but must
instead be described by a quantum vector operator (see, for
example, Refs. [41,44,51]).

Furthermore, the potentials induced by the exchange of
bosons in general contain not only long-range terms, but also

short-range (contact) terms, which can play an important role
in atomic-scale experiments. For example, the usual magnetic
dipole-dipole interaction between atomic electrons and the
nucleus (mediated by the exchange of photons) contains both
long-range and contact terms. For atomic states with zero
electron orbital angular momentum (which are described by
spherically symmetric wave functions), the expectation value
of the long-range part of the magnetic dipole-dipole inter-
action vanishes and the entire contribution to the hyperfine
energy shift comes from the contact part of the magnetic
interaction [56].

In the present paper, we derive the coordinate-space
nonrelativistic potentials, including contact terms. These
potentials are particularly important in searches for new
spin-dependent forces based on atomic-scale experiments
(such as in [41,49]) and on macroscopic-scale experiments
[13,16,28,35,42,52]. In atomic systems that satisfy Zα � 1,
where Z is the nuclear charge and α ≈ 1/137 is the fine-
structure constant at zero momentum transfer, the velocities of
the particles are small. For example, in atomic hydrogen, the
expectation value of the square of the velocity of the electron
orbiting the nucleus (in natural relativistic units, h̄ = c = 1)
is 〈v2〉 ∼ α2 ∼ 10−4. In macroscopic-scale experiments that
search for velocity-dependent effects due to the relative mo-
tion of Earth and the Sun, the square of the relative velocity is
v2 ∼ 10−8.

The structure of this paper is as follows. In Sec. II, we
derive the coordinate-space nonrelativistic potentials induced
by the exchange of spin-0 and spin-1 bosons. In Sec. III, we
discuss the properties and nuances of these potentials, and
point out several erroneous results and omissions in the earlier
literature. Some of the more technical details are presented in
the appendixes.
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FIG. 1. Elastic scattering of two fermions with masses m1 and m2

and spins s1 and s2, respectively, mediated by a boson of mass M with
four-momentum qμ that is transferred from fermion 2 to fermion 1.

II. COORDINATE-SPACE POTENTIALS

Consider the elastic scattering of two fermions with masses
m1 and m2 and spins s1 and s2, respectively, mediated by a
boson of mass M with four-momentum qμ that is transferred
from fermion 2 to fermion 1 (Fig. 1). We focus on three types
of bosons in the present work—a spin-0 boson φ (which can
be either massive or massless), a massive spin-1 boson Z ′, and
a massless spin-1 boson γ ′. Each boson has its own set of
local Lorentz-invariant interactions with the standard-model
fermions ψ [1,57]:

Lφ = φ
∑
ψ

ψ̄
(
gs

ψ + iγ5gp
ψ

)
ψ, (1)

LZ ′ = Z ′
μ

∑
ψ

ψ̄γ μ
(
gV

ψ + γ5gA
ψ

)
ψ, (2)

Lγ ′ = vh

�2
Pμν

∑
ψ

ψ̄σμν[Re(Cψ ) + iγ5Im(Cψ )]ψ. (3)

Here ψ denotes the fermion field (for instance, ψ = e for
an electron, and ψ = N for a nucleon), Pμν = ∂μAν − ∂νAμ

is the field strength tensor of the massless paraphoton field
Aμ, σμν = i

2 [γ μ, γ ν], and γ μ, γ5 = iγ 0γ 1γ 2γ 3 are Dirac
matrices. The dimensionless interaction constants gs

ψ , gp
ψ , gV

ψ ,
gA

ψ , Re(Cψ ), Im(Cψ ) parametrize the scalar, pseudoscalar,
vector, pseudovector, tensor, and pseudotensor interaction
strengths, respectively. The Higgs vacuum expectation value
is denoted by vh, and � is the ultraviolet energy cutoff scale
for Lagrangian (3).

We have chosen the interactions in Eqs. (1)–(3), since this
set of interactions spans the full space of Lorentz-invariant
Dirac operators. The case of a massive spin-1 boson is dis-
tinguished from the case of a massless spin-1 boson by the
presence of a longitudinal polarization, and so we treat the
massless and massive cases separately.

We derive the coordinate-space nonrelativistic potentials
associated with the interactions in Eqs. (1)–(3) by applying
the Feynman diagrammatic technique, which is described in
detail in standard textbooks [58,59]. We summarize our con-
ventions, along with useful identities and Fourier transforms
in Appendixes A–C. We present the detailed derivations of
three potentials in Appendix D.

Each of the Lagrangians in Eqs. (1)–(3) contains a sum of
two terms, which correspond to two types of vertices. There
are three distinct combinations of these two vertices for the
scattering of two fermions, and so each Lagrangian can give
rise to three distinct potentials. In total, the following nine
nonrelativistic potentials result:

Vss(r) = −gs
1gs

2
e−Mr

4πr︸ ︷︷ ︸
V1

, (4)

Vps(r) = −gp
1gs

2 σ1 · r̂
(

1

r2
+ M

r

)
e−Mr

8πm1︸ ︷︷ ︸
V9,10

, (5)

Vpp(r) = −gp
1gp

2

4

[
σ1 · σ2

[
1

r3
+ M

r2
+ 4π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

[
3

r3
+ 3M

r2
+ M2

r

]]
e−Mr

4πm1m2︸ ︷︷ ︸
V3

, (6)

VVV (r) = gV
1 gV

2
e−Mr

4πr︸ ︷︷ ︸
V1

+gV
1 gV

2

4

[
σ1 · σ2

[
1

r3
+ M

r2
+ M2

r
− 8π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

[
3

r3
+ 3M

r2
+ M2

r

]]
e−Mr

4πm1m2︸ ︷︷ ︸
V2+V3

, (7)

VAV (r) = gA
1gV

2 σ1 ·
{

p1

m1
− p2

m2
,

e−Mr

8πr

}
︸ ︷︷ ︸

V12,13

−gA
1gV

2

2
(σ1 × σ2) · r̂

(
1

r2
+ M

r

)
e−Mr

4πm2︸ ︷︷ ︸
V11

, (8)

VAA(r) = −gA
1gA

2 σ1 · σ2
e−Mr

4πr︸ ︷︷ ︸
V2

−gA
1gA

2m1m2

M2

[
σ1 · σ2

[
1

r3
+ M

r2
+ 4π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

[
3

r3
+ 3M

r2
+ M2

r

]]
e−Mr

4πm1m2︸ ︷︷ ︸
V3

, (9)

VT T (r) = 4v2
hRe(C1)Re(C2)m1m2

�4

[
σ1 · σ2

[
1

r3
− 8π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

3

r3

]
1

4πm1m2︸ ︷︷ ︸
V2+V3

, (10)
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VT̃ T (r) = 4v2
hIm(C1)Re(C2)m1m2

�4

[
(σ1 × σ2) ·

{
p1

m1
− p2

m2
,

1

r3
+ 4π

3
δ(r)

}]
1

8πm1m2︸ ︷︷ ︸
V14

+ 4v2
hIm(C1)Re(C2)m1m2

�4

{(
p1

m1
− p2

m2

)
i

,
3(σ1 · r̂)(σ2 × r̂)i

8πm1m2r3

}
︸ ︷︷ ︸

V15

−2v2
hIm(C1)Re(C2)m1m2

�4

σ1 · [∇δ(r)]

m1m2
2︸ ︷︷ ︸

V9,10

, (11)

VT̃ T̃ (r) = 4v2
hIm(C1)Im(C2)m1m2

�4

[
σ1 · σ2

[
1

r3
+ 4π

3
δ(r)

]
− (σ1 · r̂)(σ2 · r̂)

3

r3

]
1

4πm1m2︸ ︷︷ ︸
V3

. (12)

In these expressions, σ1 and σ2 denote the Pauli spin-matrix
vectors of the two fermions, r̂ is the unit vector directed from
fermion 2 to fermion 1, r is the distance between the two
fermions, and {A, B} ≡ AB + BA is the anticommutator of two
operators A and B. The momenta p1 = −i∇1 and p2 = −i∇2

are vector differential operators in coordinate space.
For the sake of comparison with previous literature, we

matched the individual terms in Eqs. (4)–(12) onto the Vi

potential terms of Ref. [1]. In the momentum-space represen-
tation, the spin-momentum structures of V2 in Eq. (7), V9,10 in
Eq. (11), and V14 in Eq. (11) are multiplied by q2, the square
of the spatial components of the transferred momentum. Thus,
although V9,10 has different forms in Eqs. (5) and (11), the
underlying spin-momentum structure of these potential terms
in the momentum-space representation is the same up to a
factor of q2.

The potentials in Eqs. (5), (8), and (11) are written in an
abbreviated form lacking symmetry under the permutation of
particle indices 1 ↔ 2. In the case of these potentials, we
must add the terms obtained by permuting the particle indices
1 ↔ 2.

Once the above terms are added, the potentials in Eqs. (4)–
(12) are symmetric with respect to the permutation of particle
indices 1 ↔ 2, and hence do not vanish for identical particles.
In order to determine whether or not specific matrix elements
of the potentials in Eqs. (4)–(12) vanish for identical particles,
one needs to take into account the fact that the overall wave
function of indistinguishable fermions is antisymmetric under
permutation of fermions.

We note that Eqs. (4)–(12) contain fewer than the 16
terms presented in Ref. [1], since we are interested in the
nonrelativistic limit. For example, the V8 term of Ref. [1]
arises as an O(v2) relativistic correction to the V2 term in
Eq. (9) and hence can be neglected in nonrelativistic systems.

We have chosen to sort the potentials in Eqs. (4)–(12)
by their types of physical couplings, in contrast to sorting
them into 16 groups by their mathematical spin-momentum
structure as in [1]. We believe that our classification is more
useful from a physicist’s point of view, since one is ultimately
interested in the physical coupling constants of a particular
model.

Other representations of these coordinate-space potentials
are possible. In Appendix E, we present these potentials in a
semirelativistic form that is convenient for numerical atomic
calculations using Dirac-Hartree-Fock wave functions.

III. DISCUSSION

We first point out a number of erroneous results and
omissions in the earlier literature:

(1) Regarding the overall sign of the pseudoscalar-
pseudoscalar potential in Eq. (6), we agree with the calcu-
lations of Refs. [1,60], correcting the earlier sign error in
Ref. [53].

(2) The overall signs of the tensor-type potentials in
Eqs. (10)–(12) are opposite to those in Ref. [1].

(3) The M2/r term in V2 + V3 of the vector-vector potential
in Eq. (7), which arises together with a contact term, was
omitted in Ref. [1].

(4) The V3 term (omitted in Ref. [1]) in the pseudovector-
pseudovector potential in Eq. (9) arises from a longitudinal
polarization mode for a massive spin-1 boson and noncon-
servation of the axial-vector current. Here we agree with the
recent calculation of Ref. [61]. This term tends to infinity in
the limit of the boson mass M → 0 and hence the assumptions
of perturbation theory are no longer justified (formally speak-
ing, there is a violation of the perturbative unitarity bound),
similarly to the violation of the perturbative unitarity bound in
the high-energy scattering of longitudinal W and Z bosons in
the standard model without a Higgs boson. In order to obtain
a finite result in the limit M → 0, one would either need to
introduce new particle(s) or construct a suitable ultraviolet
completion to the nonrenormalizable theory.

In light of the above, we believe it is worthwhile
to reanalyze some earlier experiments (see, for example,
[33,35,42,48]) using the corrected potentials presented in the
present paper and also to note the results of our paper for
future experiments.

Additionally, we note that it is possible to write certain
potentials in a form where some of their constituent “bare”
terms, namely with the interaction constants (which also con-
tain particle indices) removed, are antisymmetric with respect
to the permutation of particle indices 1 ↔ 2. For example,
instead of writing the scalar-pseudoscalar potential in Eq. (5)
in the form Vps(r) = C1σ1 · r̂ + C2σ2 · r̂, where C1 and C2 can
be identified from Eq. (5), the authors of [1] chose to write the
same expression in the form C̃1(σ1 + σ2) · r̂ + C̃2(σ1 − σ2) ·
r̂, where C1 = C̃1 + C̃2 and C2 = C̃1 − C̃2. Here, one of the
bare terms is symmetric under permutation of fermions, while
the other is antisymmetric. The authors of [1] note that only
one combination of σ1 ± σ2 survives for identical fermions.
One should take this into account when searching for
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TABLE I. Properties of nonrelativistic potentials induced by the exchange of spin-0 and spin-1 bosons.

Potential

Property V1 V2 V3 V2 + V3 V9,10 V11 V12,13 V14 V15

Parity, P : (x, y, z) → (−x, −y, −z) + + + + − − − − −
Time-reversal symmetry, T : t → −t + + + + − + + − −
Velocity dependence − − − − − − + + +
Relevance in spectra (first-order energy shift) + + + + − − − − −
Mediated by spin-0 boson + − + − + − − − −
Mediated by massive spin-1 boson + + + + − + + − −
Mediated by paraphoton − − + + + − − + +

effects of spin-dependent forces between identical fermions.
For instance, the authors of [33] present constraints on the
antisymmetric potentials V7, V15, and V16 for electrons, even
though such potentials vanish for two identical fermions.

We summarize the properties of the nonrelativistic poten-
tials induced by the exchange of spin-0 and spin-1 bosons in
Table I. Several nuances of these potentials are also worth
discussing. In macroscopic-scale experiments, the momen-
tum and radial vectors appearing in Eqs. (4)–(12) may be
treated as classical vectors, and symmetrized expressions
such as {p, f (r)} may be replaced by their classical value,
{p, f (r)} → 2p f (r). In atomic-scale experiments, however,
the momentum and radial vectors need to be treated as quan-
tum operators, and explicit symmetrization in expressions
such as {p, f (r)} must be retained.

Another difference between macroscopic-scale and
atomic-scale experiments in relation to spin-dependent
potentials is the manifestation of the parity- and/or
time-reversal-invariance-violating nature of these potentials.
Consider the P, T -violating correlation σ · r̂ in the term V9,10

in Eq. (5). In macroscopic-scale experiments, r̂ is a classical
vector directed between macroscopically separated bodies,
and the interaction σ · r̂ causes the fermion spins to precess
about the vector r̂ [12,15,25,39,43,47]. In this sense, the
macroscopic interaction σ · r̂ is reminiscent of the interaction
of a fermion magnetic moment with a magnetic field. In
atomic-scale experiments, r̂ is a radial operator directed
between atomic electrons and nucleons, and so the correlation
σ · r̂ mixes atomic states of opposite parity and gives rise to
atomic electric dipole moments [46,51,54]. Specific details
of how electric dipole moments are induced in atoms and
molecules as a result of the P, T -violating potential term
V9,10 can be found in Refs. [46,51]. Electric dipole moments
in atoms and molecules can also be similarly induced as a
result of the P, T -violating potential terms V14 and V15. Both
atomic- and macroscopic-scale measurements involve spin
precession. However, the spin precession takes place about
different sets of vectors. In macroscopic-scale experiments,
spin precession takes place about the vectors B and r̂, while in
atomic-scale experiments, spin precession takes place about
the vectors B and E.

Finally, some of the potentials in Eqs. (4)–(9) may not be
practical for numerical atomic calculations in their presented
form for boson masses M > m1, m2. For example, in the case
of a hydrogenlike system in a state with zero electron orbital
angular momentum, the expectation value of the operator in
Eq. (6) vanishes in the limit M → ∞. In this limit, we have

e−Mr/r → 4πδ(r)/M2. This δ(r) term cancels the δ(r) term
inside the leftmost brackets in Eq. (6), after integrating over
the angular coordinates (likewise, the other terms in Eq. (6)
cancel for an arbitrary boson mass, after integrating over
angular coordinates). Numerically, this cancellation is hard
to achieve. Finite numerical precision becomes insufficient at
arbitrarily large boson masses, leading to problems in numer-
ical calculations. To circumvent such issues, one can instead
write Eq. (6) in the following equivalent form [which appears
in an intermediate step of the derivation of the potential via
Eq. (C4)]:

Vpp(r) = gp
1gp

2

16πm1m2
(σ1 · ∇)(σ2 · ∇)

(
e−Mr

r

)
, (13)

and use integration by parts when calculating matrix elements
of this operator. A similar situation occurs in Eq. (9).

Note that as M → ∞, matrix elements of Eq. (13) scale
as ∝1/M2. This is a general property of the potentials in
Eqs. (4)–(9), whose terms scale as ∝1/M2 (or faster) in
the limit M → ∞. One can see this property more clearly
in the semirelativistic form of the potentials presented in
Appendix E.

In Eq. (7), in addition to V3 of Eq. (6) there is a contribution
of V2 which is equivalent in form to

gV
1 gV

2

16πm1m2
σ1 · σ2�

(
e−Mr

r

)
. (14)

This expression results in two terms, by Eq. (C3) in Ap-
pendix C, which cancel as M → ∞ in a similar manner as
above. Likewise, Eq. (5) can be written as

Vps(r) = gp
1gs

2

8πm1
(σ1 · ∇)

(
e−Mr

r

)
, (15)

thus highlighting its scaling ∝ 1/M2 as M → ∞.
To summarize, we have derived the coordinate-space non-

relativistic potentials induced by the exchange of spin-0 and
spin-1 bosons, including contact terms that can play an
important role in atomic-scale experiments. In the process, we
have corrected for various errors and omissions in the earlier
literature. These potentials are important for the interpretation
of numerous experiments, including spectroscopy, torsion-
pendulum, magnetometry, parity-nonconservation, and
electric-dipole-moment experiments, in the search for new
bosons.
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APPENDIX A: UNITS AND CONVENTIONS

We employ the natural relativistic units h̄ = c = 1 and
the metric signature (+ − −−). We label space-time and
spatial coordinates with Greek and Latin indices, respectively.
We employ the Einstein summation convention for repeated
indices. We use the following representation of the Dirac
matrices:

γ 0 =
[

1 0
0 −1

]
, γ i =

[
0 σi

−σi 0

]
, γ5 =

[
0 1
1 0

]
,

(A1)

where σi is the ith Pauli matrix.

APPENDIX B: USEFUL IDENTITIES

[σi, σ j] = 2iεi jkσk, (B1)

{σi, σ j} = 2δi j, (B2)

εi jkε
imn = δm

j δn
k − δn

j δ
m
k , (B3)

(A × B) · (C × D) = (A · C)(B · D) − (B · C)(A · D). (B4)

APPENDIX C: FOURIER TRANSFORMS

∫
d3q

(2π )3

eiq·r

M2 + |q|2 = e−Mr

4πr
, (C1)

∫
d3q

(2π )3

(σ · q)eiq·r

M2 + |q|2 = −i(σ · ∇)

(
e−Mr

4πr

)
, (C2)

∫
d3q

(2π )3

|q|2eiq·r

M2 + |q|2 =
[
δ(r) − M2

4πr

]
e−Mr, (C3)

∫
d3q

(2π )3

(σ1 · q)(σ2 · q)eiq·r

M2 + |q|2

= σ1 · σ2

4π

[
1

r3
+ M

r2
+ 4π

3
δ(r)

]
e−Mr

− (σ1 · r̂)(σ2 · r̂)

4π

[
3

r3
+ 3M

r2
+ M2

r

]
e−Mr, (C4)

∫
d3q

(2π )3

eiq·r

|q|2 = 1

4πr
, (C5)

∫
d3q

(2π )3
eiq·r = δ(r), (C6)

∫
d3q

(2π )3

qkqleiq·r

|q|2 = 1

4π

[
δkl

r3
− 3

rkrl

r5
+ 4π

3
δklδ(r)

]
, (C7)

∫
d3q

(2π )3
qeiq·r = −i∇δ(r), (C8)

∫
d3q

(2π )3
|q|2eiq·r = −�δ(r). (C9)

APPENDIX D: CALCULATING COORDINATE-SPACE
POTENTIALS: THREE EXAMPLES

1. Pseudoscalar-scalar potential

Applying the Feynman rules to the tree-level process in
Fig. 1 with vertex 1 being of the pseudoscalar type and
vertex 2 being of the scalar type in Lagrangian (1) gives the
amplitude

M(q) = i
[
i2ū(p1, f )γ5gp

1u(p1,i )
][

iū(p2, f )gs
2u(p2,i )

]
×

[ −i

M2 − q2

]
, (D1)

where q = p1, f − p1,i = p2,i − p2, f is the four-momentum
associated with the virtual boson.

In the nonrelativistic limit, q2 = q2
0 − |q|2 ≈ −|q|2, and

the spinor products in (D1) simplify to

ū(p1, f )γ5u(p1,i ) ≈ −σ1 · q, (D2)

ū(p2, f )u(p2,i ) ≈ 2m2, (D3)

where p1 = (p1,i + p1, f )/2 and p2 = (p2,i + p2, f )/2 are the
momenta of the two fermions, averaged over their respective
initial and final states.

The resulting nonrelativistic momentum-space potential
reads

Ṽ (q) ≈ M(q)

4m1m2
≈ igp

1gs
2

2m1

σ1 · q

M2 + |q|2 . (D4)

The nonrelativistic coordinate-space potential is related to the
momentum-space potential via the three-dimensional Fourier
transform:

V (r) =
∫

d3q

(2π )3
eiq·rṼ (q). (D5)

Using the Fourier transform (C2), we arrive at the coordinate-
space potential in Eq. (5).

We note that, apart from the nonderivative form of the
pseudoscalar interaction in (1), the derivative form of the
pseudoscalar interaction is also commonly used in the liter-
ature (see, e.g., [62–64]):

Lderiv. = −(∂μφ)
∑
ψ

gp
ψ

2mψ

ψ̄γ μγ5ψ. (D6)

The form of the nonrelativistic potential in Eq. (5) does not
depend on whether the nonderivative or derivative form of
the pseudoscalar interaction is used. To see this explicitly,
we note that, instead of the spinor product in (D2), we have
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the following spinor product for the derivative form of the
pseudoscalar interaction:

qμ

2m1
ū(p1, f )γ μγ5u(p1,i ) ≈ σ1 · p1

m1
q0 − σ1 · q. (D7)

In the nonrelativistic limit, |q0| � |q| and |p1|/m1 � 1, and
so the spinor product in (D7) reduces to (D2). Likewise, the
form of the nonrelativistic potential in Eq. (6) also does not
depend on whether the nonderivative or derivative form of the
pseudoscalar interaction is used.

2. Vector-vector potential

Applying the Feynman rules to the tree-level process in
Fig. 1 with both vertices being of the vector type in La-
grangian (2), gives the amplitude

M(q) = i
[
iū(p1, f )γ μgV

1 u(p1,i )
][

iū(p2, f )γ νgV
2 u(p2,i )

]

×
[

i(gμν − qμqν/M2)

M2 − q2

]
. (D8)

In the nonrelativistic limit, q2 ≈ −|q|2, and the spinor
products in (D8) simplify to

ū(p1, f )γ 0u(p1,i ) ≈ 2m1, (D9)

ū(p2, f )γ 0u(p2,i ) ≈ 2m2, (D10)

ū(p1, f )γu(p1,i ) ≈ 2p1 − iq × σ1, (D11)

ū(p2, f )γu(p2,i ) ≈ 2p2 + iq × σ2. (D12)

The qμqν/M2 term in the propagator does not contribute
to the amplitude, because of the conservation of the vector
current in both vertices. Retaining the leading-order spin-
independent term and the leading-order spin-dependent term
yields the nonrelativistic momentum-space potential:

Ṽ (q) ≈ gV
1 gV

2

M2 + |q|2
[

1 − (q × σ1) · (q × σ2)

4m1m2

]
. (D13)

Performing the Fourier transform, Eq. (D5), with the aid of
the identity (B4) and the Fourier transforms (C1), (C3), and
(C4), we arrive at the coordinate-space potential in Eq. (7).

3. Pseudovector-vector potential

Applying the Feynman rules to the tree-level process in
Fig. 1 with vertex 1 being of the pseudovector type and
vertex 2 being of the vector type in Lagrangian (2) gives the
amplitude

M(q) = i
[
iū(p1, f )γ μγ5gA

1u(p1,i )
][

iū(p2, f )γ νgV
2 u(p2,i )

]

×
[

i(gμν − qμqν/M2)

M2 − q2

]
. (D14)

In the nonrelativistic limit, q2 ≈ −|q|2, and the spinor
products in (D14) simplify to

ū(p1, f )γ 0γ5u(p1,i ) ≈ 2σ1 · p1, (D15)

ū(p2, f )γ 0u(p2,i ) ≈ 2m2, (D16)

ū(p1, f )γγ5u(p1,i ) ≈ 2m1σ1, (D17)

ū(p2, f )γu(p2,i ) ≈ 2p2 + iq × σ2. (D18)

Again, the qμqν/M2 term in the propagator does not
contribute to the amplitude, because of the conservation of
the vector current in the second vertex. We hence find the
following nonrelativistic momentum-space potential:

Ṽ (q) ≈ gA
1gV

2

M2 + |q|2
[
σ1 ·

(
p1

m1
− p2

m2

)
+ i

(σ1 × σ2) · q
2m2

]
.

(D19)

Performing the Fourier transform, Eq. (D5), with the aid
of the Fourier transforms (C1) and (C2), and then per-
forming the symmetrization (p1/m1 − p2/m2)(e−Mr/r) →
1
2 {p1/m1 − p2/m2, e−Mr/r}, we arrive at the coordinate-space
potential in Eq. (8).

APPENDIX E: COORDINATE-SPACE POTENTIALS
IN SEMIRELATIVISTIC FORM

In a form convenient for numerical atomic calculations
using relativistic Dirac-Hartree-Fock wave functions, the po-
tentials in Eqs. (4)–(9), including Dirac spinors, can be written
in the following general form:

Vss(r) = −(
ψ̄2gs

2ψ2
)(

ψ̄1gs
1ψ1

)e−Mr

4πr
, (E1)

Vps(r) = −(
ψ̄2gs

2ψ2
)(

ψ̄1iγ5gp
1ψ1

)e−Mr

4πr
, (E2)

Vpp(r) = −(
ψ̄2iγ5gp

2ψ2
)(

ψ̄1iγ5gp
1ψ1

)e−Mr

4πr
, (E3)

VVV (r) = (
ψ̄2γ

μgV
2 ψ2

)(
ψ̄1γμgV

1 ψ1
)e−Mr

4πr
, (E4)

VAV (r) = (
ψ̄2γ

μgV
2 ψ2

)(
ψ̄1γμγ5gA

1ψ1
)e−Mr

4πr
, (E5)

VAA(r) = (
ψ̄2γ

μγ5gA
2ψ2

)(
ψ̄1γμγ5gA

1ψ1
)e−Mr

4πr
, (E6)

where we have made use of the static approximation for
the boson propagators, and in Eq. (E6), we have dropped
additional terms arising from the longitudinal polarization
mode of the massive spin-1 boson. In practical applications,
often one of the fermions can be treated nonrelativistically, in
which case the potentials in Eqs. (E1)–(E6) reduce to a mixed
relativistic-nonrelativistic form (see, e.g., Refs. [44,46,51] for
more details).
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